论文中文题名: | 红柳林矿井中西部风化基岩含水层涌(突)水危险性预测 |
姓名: | |
学号: | 19209071005 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 0818 |
学科名称: | 工学 - 地质资源与地质工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿井水害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Prediction of water inrush risk in the weathered bedrock |
论文中文关键词: | |
论文外文关键词: | Hongliulin coal mine ; weathered bedrock ; water-rich evaluation ; Prediction of water inrush risk |
论文中文摘要: |
<p>矿井水害是威胁煤矿安全、高效生产的主要灾害之一。随着我国煤炭工业重心西移,陕北侏罗纪煤田已成为当前我国重要的煤炭生产基地。该区风化基岩含水层普遍发育,是威胁矿井安全生产的主要含水层之一。分析风化基岩含水层富水性,研究煤层开采覆岩破坏规律,预测开采扰动下风化基岩含水层涌(突)水危险性,对矿井防治水工作具有重要意义。</p>
<p>本文以陕北侏罗纪煤田红柳林井田中西部为研究区,在收集研究区地质及水文地质资料的基础上,总结了研究区内4种主要煤层上覆含、隔水层组合类型:松散层透(含)水层-红(黄)土隔水层-风化基岩含水层-正常基岩复合含水层型、松散层透(含)水层-红(黄)土隔水层-风化基岩含水层型、松散层透(含)水层-红(黄)土隔水层-风化基岩-烧变岩含水层-正常基岩复合含水层型、松散层透(含)水层-风化基岩含水层-正常基岩复合含水层型。第四系松散层局部弱至中等富水,风化基岩含水层富水性弱至强,正常基岩复合含水层富水性弱。</p>
<p>分析了影响风化基岩含水层富水性的6个控制因素,即风化基岩厚度、岩芯采取率、风化程度、岩性组合、风化基岩顶面标高及砂地比。将风化基岩富水性划分为强、中等、弱和极弱4种类型,基于IFAHP-熵权法求得各因素权重分别为0.239、0.232、0.182、0.1575、0.0815和0.108。应用Bayes判别分析法、GIS空间分析法、随机森林(RF)法和克里金插值法4种方法对研究区风化基岩富水性进行了预测。应用研究区矿井现有水害资料和工作面涌水量资料对4种方法的预测结果进行验证,发现Bayes判别分析法预测结果更加符合实际。</p>
<p>基于红柳林井田以往煤层开采覆岩冒裂带钻孔探查资料,确定了该区煤层开采顶板冒采比、裂采比分别为5.5和29.5。据此计算研究区不同区域首采煤层的冒落带、裂隙带发育高度,分析其与风化基岩含水层的导通关系,将研究区冒裂安全性程度分为5个级别,并绘制了研究区不同区域首采煤层的冒裂安全性分区图。</p>
<p>依据风化基岩富水性类别和煤层开采冒裂安全性类别的组合关系,将研究区涌(突)水危险性类型划分为安全区、相对安全区、较安全区、中等区、较危险区、相对危险区、危险区和极危险区8种类型。将风化基岩富水性分区预测图与冒裂安全性分区预测图进行叠加分析,编制了研究区不同区域首采煤层开采的涌突水危险性分区预测图。研究区中等以上危险性面积占89.15%,中等及其以下危险性面积占10.85%。极危险区、危险区和相对危险区主要分布于各煤层的剥蚀边界附近,且基本呈北东—南西向条带状分布。研究成果对红柳林煤矿矿井防治水工作具有重要指导意义,对类似矿井也具有一定参考价值。</p>
﹀
|
论文外文摘要: |
<p>Mine water damage is one of the main disasters that threaten the safety and efficient production of coal mines. With the westward shift of the center of my country's coal industry, the Jurassic coalfields in northern Shaanxi have become an important coal production base in my country. Weathered bedrock aquifers are widely developed in this area and are one of the main aquifers that threaten the safe production of mines. Analyzing the water-richness of weathered bedrock aquifers, studying the damage law of overlying rock in coal seam mining, and predicting the risk of water inrush in weathered bedrock aquifers under mining disturbances are of great significance to mine water control work.</p>
<p>This paper takes the central and western parts of the Hongliulin mine field in the Jurassic coalfield in northern Shaanxi as the study area. Based on the collection of geological and hydrogeological data in the study area, this paper summarizes the combination types of 4 main coal seams overlying bearing and aquifers in the study area: loose Layer permeable (inclusive) water layer - red (yellow) clay aquifer - weathered bedrock aquifer - normal bedrock composite aquifer type, loose layer permeable (inclusive) water layer - red (yellow) clay aquifer - weathered Bedrock aquifer type, loose layer permeable (inclusive) water layer - red (yellow) clay aquifer - weathered bedrock - burnt rock aquifer - normal bedrock composite aquifer type, loose layer permeable (inclusive) water layer - Weathered bedrock aquifer - normal bedrock composite aquifer type. The quaternary loose layer is weak to moderately rich in water locally, the weathered bedrock aquifer is weak to strong, and the normal bedrock composite aquifer is weak.</p>
<p>Six controlling factors affecting the water richness of the weathered bedrock aquifer are analyzed, namely the thickness of the weathered bedrock, the rate of core extraction, the degree of weathering, the lithologic combination, the elevation of the top surface of the weathered bedrock and the ratio of sand to ground. The weathered bedrock water richness is divided into four types: strong, medium, weak and extremely weak. Based on the IFAHP-Entropy weight method, the weights of each factor are obtained as 0.239, 0.232, 0.182, 0.1575, 0.0815 and 0.108, respectively. Four methods of Bayes discriminant analysis method, GIS spatial analysis method, random forest (RF) method and Kriging interpolation method were used to predict the water-richness of the weathered bedrock in the study area. The prediction results of the four methods are verified by using the existing mine water hazard data and the water inflow data of the working face in the study area, and it is found that the prediction results of the Bayes discriminant analysis method are more realistic.</p>
<p>Based on the drilling exploration data of the overlying rock cracking zone in Hongliulin mine field in the past, it is determined that the roof mining ratio and cracking ratio of coal seam mining in this area are 5.5 and 29.5, respectively. Based on this, the development height of the caving zone and fissure zone of the first mining coal seam in different areas of the study area was calculated, and the conduction relationship with the weathered bedrock aquifer was analyzed. The safety zoning map of the first mining coal seam in different areas of the study area is presented.</p>
<p>According to the combination relationship between the weathered bedrock water-rich category and the coal seam mining cracking safety category, the risk types of water inrush in the study area are divided into safe area, relatively safe area, relatively safe area, medium area, relatively dangerous area, relatively safe area. 8 types of hazardous area, hazardous area and extremely hazardous area. The weathered bedrock water-rich zoning prediction map and the cracking safety zoning prediction map are superimposed and analyzed, and the water inrush risk zoning prediction map of the first coal seam mining in different areas of the study area is compiled. In the study area, 89.15% of the study area was at moderate or higher risk, and 10.85% was at moderate or lower risk. The extremely dangerous area, the dangerous area and the relatively dangerous area are mainly distributed near the denudation boundary of each coal seam, and are basically distributed in a northeast-southwest strip. The research results have important guiding significance for the prevention and control of water in Hongliulin coal mine, and also have certain reference value for similar mines.</p>
﹀
|
参考文献: |
[1] 赵开功,李彦平.我国煤炭资源安全现状分析及发展研究[J].煤炭工程,2018,50(10):185-189. [2] 王双明.对我国煤炭主体能源地位与绿色开采的思考[J].中国煤炭,2020,46(02):11-16. [3] 谢和平,王金华,王国法,任怀伟,刘见中,葛世荣,周宏伟,吴刚,任世华.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报,2018,43(05):1187-1197. [4] 代革联.矿井水害防治[M].徐州:中国矿业大学出版社,2016:484-487. [5] 范立民,马雄德,蒋泽泉,等.保水采煤研究30年回顾与展望[J].煤炭科学技术,2019,47(07):1-30. [6] 范立民,蒋泽泉.榆神矿区保水采煤的工程地质背景[J].煤田地质与勘探,2004,05:32-35. [7] 苗彦平,蔚波,姬中奎等.侏罗纪浅埋煤层开采典型水害模式及分区[J].煤矿安全,2021,52(08):75-82. [8] 杨帆.张家峁井田二盘区风化基岩水文地质特征[J].煤炭技术,2021,40(09):64-66. [10] 孙夕平,张昕,李璇,等.基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J].岩性油气藏,2021,33(01):220-228. [11] 张梅英.某地风化岩层微观特征的研究[J].水文地质工程地质,1990(03):39-41. [12] 李日运,吴林峰.岩石风化程度特征指标的分析研究[J]. 岩石力学与工程学报,2004,23(22):3830-3833. [13] 冯涛. 武广客运专线韶花段球状风化花岗岩工程特性研究[D].西南交通大学博士论文,2007. [14] 岳艳艳.深部粘土-煤系风化岩接触带类型及开采致灾机理研究[D]. 徐州:中国矿业大学硕士论文,2014.5. [15] 贾雪梅.黑方台红层泥岩的风化作用及其古风化壳特征[D].兰州:兰州大学硕士论文,2014.5. [16] 侯恩科,童仁剑,王苏健,等.陕北侏罗纪煤田风化基岩富水性Fisher模型预测方法[J].煤炭学报,2016,41(09):2312-2318. [17] 余斐,江晓益,谭磊.凝灰岩岩基风化带精细划分技术[J].地质论评,2019,65(S1):30-32. [18] 尚颖丽,李世杰,王世杰,等.南极普通球粒陨石风化等级的重新厘定[J].岩石学报,2016,32(01):71-76. [19] 柴辉婵,李文平.近风氧化带开采导水裂隙发育规律及机制分析[J]. 岩石力学与工程学报,2014,33(7):1319-1328. [20] 邵长云,钟庆华,葛双成,等.利用岩体波速定量划分君石风化度的试验研究[J]. 工程勘察,2012,40(3):87-90. [23] Parker A. 1970. An index of weathering for silicate rocks. Geological Magazine, 107(6):501-504. [28] 徐小涛,邵龙义.利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J].古地理学报,2018,20(03):515-522. [31] 白涛,魏东岚,李永化,等.辽南地区红色风化壳粒度特征分析[J].国土与自然资源研究,2020(05):25-29. [32] 刘巍,张付涛,刘立民.西北地区风化岩土体冻结特性及抗压强度分析[J].煤矿安全,2019,50(11):216-219. [33] 张梦瑶,李扬,王秀娟,等.厚松散层岩土体特征与力学试验研究[J].广州大学学报(自然科学版),2019,18(06):88-92. [34] 丁卿峰.深部砂土-煤系风化岩接触带力学特征研究[D]. 徐州:中国矿业大学硕士论文,2015.5. [35] 李晓燕,蒋有录,陈涛.古风化壳孔隙与裂缝发育特征及其油气地质意义[J].地球科学与环境学报,2010,32(01):60-64+88. [36] 白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[J].岩石力学与工程学报,2011,30(06):1298. [37] 白喜庆,白海波,沈智慧.新驿煤田奥灰顶部相对隔水性及底板突水危险性评价[J].岩石力学与工程学报,2009,28(02):273-280. [38] 董书宁,刘其声.华北型煤田中奥陶系灰岩顶部相对隔水段研究[J].煤炭学报,2009,34(03):289-292. [39] 王皓.华北型煤田奥灰顶部岩层隔水性能及利用与注浆改造关键技术[D].煤炭科学研究总院,2016. [40] 涂敏,张华磊,荣传新,等.煤层邻近基岩风化带地面预注浆加固与矿压显现特征研究[J].采矿与安全工程学报,2018,35(06):1185-1190. [41] 田多,赵启峰,邵国安,等.风氧化带内综放开采覆岩变异特征与矿压显现规律研究[J].采矿与安全工程学报,2015,32(05):808-813. [42] 章权.“富水性”小议[J].水文地质工程地质,1981(06):59-23. [43] 闫朝波. 张家峁煤矿煤层顶板涌(突)水危险性分区预测研究[D].西安科技大学,2013. [44] 奚砚涛,冯春莉,郭英海,等.钻孔单位涌水量换算的理论与实践[J].煤田地质与勘探,2015,43(01):48-51. [45] 梁向阳.基于综合探查手段的深埋矿井工作面顶板富水性分区[J].煤矿安全,2020,51(07):161-165. [46] 刘百祥,鲜鹏辉,仇念广.瞬变电磁法在探查工作面上覆煤层采空区富水性中的应用[J].煤矿安全,2020,51(04):137-141. [47] 王朝引.基于陆相沉积控制的主充水含水层富水性三维展布特征[J].煤炭科学技术,2020,48(12):198-204. [48] 武强,樊振丽,刘守强,等.基于GIS的信息融合型含水层富水性评价方法——富水性指数法[J].煤炭学报,2011,36(07):1124-1128. [49] 侯恩科,龙天文,刘庆利,等.基于ArcGIS的洛河组含水层富水性评价[J].煤田地质与勘探,2019,47(02):151-156. [54] 李东东. 红柳林煤矿2-2煤顶板涌(突)水危险性评价[D].西安科技大学,2017. [55] 侯恩科,张萌,孙学阳,等.浅埋煤层开采覆岩破坏与导水裂隙带发育高度研究[J].煤炭工程,2021,53(11):102-107. [56] 盛奉天,段玉清.彬长矿区巨厚砂岩含水层下综放开采导水裂隙带高度研究[J].煤炭工程,2022,54(03):84-89. [57] 李鹏宇,姜岳,宗琪,等.中硬覆岩综放开采导水裂隙带发育高度影响因素与预计模型[J].煤炭技术,2018,37(02):80-82. [58] 张峰,题正义,秦洪岩.基于MATLAB多元非线性特厚煤层导水裂隙带高度预计[J].煤炭技术,2021,40(01):56-61. [59] 柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018,35(02):359-365. [60] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996(03):2-7. [61] 邢延团.洛河组含水层下厚煤层开采导水裂隙带高度探测与分析[J].煤炭工程,2019,51(09):91-95. [62] 侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001(06):611-615. [63] 张杰.浅埋煤层中的关键层运动与导水裂隙发展[J].湖南科技大学学报,2010,25(4):25-28. [64] 许家林,朱卫兵,王晓振.基于关键层位置的导水裂隙带高度预计方法[J].煤炭学报,2012,37(5):762-769. [69] 王玮,郭玉,方忠年.综采导水裂隙带发育高度主控因素模拟研究[J].矿业研究与开发,2020,40(10):51-55. [70] 陈建鹏,胡涛,李柱和,等.南阳煤矿两带高度UDEC数值模拟研究[J].煤炭技术,2020,39(04):133-135. [71] 翟志伟,张传达,孟秀峰,等.煤层覆岩导水裂隙带发育高度综合分析技术研究[J].煤炭工程,2022,54(02):116-120. [72] 孙学阳,李鹏强,寇规规,等.特厚煤层导水裂隙带发育高度的模拟实验[J].煤炭技术,2018,37(06):143-144. [73] 张齐. 小保当一号井导水裂隙带发育规律及渗流特性模拟实验研究[D].西安科技大学,2021. [74] 黄忠正,赵宝峰.地表水体下工作面开采安全性分析[J].能源与环保,2020,42(04):10-15. [75] 侯恩科,范继超,谢晓深,等.基于微震监测的深埋煤层顶板导水裂隙带发育特征[J].煤田地质与勘探,2020,48(05):89-96. [76] 赵子浩,刘进晓,王来河,等.近水平煤层覆岩导水裂隙带高度预计与实测[J].矿业安全与环保,2017,44(02):66-69. [77] 刘伟韬,陈志兴,张茂鹏.覆岩裂隙带发育高度数值模拟和现场实测[J].矿业安全与环保,2016,43(01):57-60. [78] 周英.柠条塔井田直罗组沉积相与富水性关系的研究[D].西安科技大学,2015. [79] 邱长健.红柳林煤矿北一盘区4-2煤充水特征研究[D].西安科技大学,2018. [80] 侯恩科,纪卓辰,车晓阳,等.基于改进AHP和熵权法耦合的风化基岩富水性预测方法[J].煤炭学报,2019,44(10):3164-3173. [81] 江球. 煤层火烧区富水性瞬变电磁法探测研究[D].长安大学,2018. [82] 李海军. 红柳林煤矿浅埋煤层群开采覆岩导水裂隙带发育规律研究[D].西安科技大学,2019. [83] 王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,(01):7-14. |
中图分类号: | TD745 |
开放日期: | 2023-06-22 |