- 无标题文档
查看论文信息

论文中文题名:

 采空区松散煤体内温度对气体渗流 规律的影响研究    

姓名:

 贾勇骁    

学号:

 18220089012    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 郑学召    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Study on the influence of the temperature in the goaf loose coal body on the gas seepage law    

论文中文关键词:

 松散煤体 ; 温度 ; 气体渗流 ; 数值模拟 ; 采空区    

论文外文关键词:

 loose coal body ; temperature ; gas seepage ; numerical simulation ; goaf    

论文中文摘要:

       随着矿井开采深度的增加和综采技术的发展,煤矿采空区面积显著增大,煤自燃灾害形势更加严峻。采空区漏风是产生煤自燃的重要原因之一,因此研究采空区内部气体渗透特征及采空区风流运移特征十分重要。本文选取三种煤样为主要研究对象,搭建了松散煤体气体渗流综合实验平台,对不同温度条件下松散煤体内的气体渗流特征进行系统分析,以物理实验为基础,通过COMSOL数值模拟方法研究采空区松散煤体内温度升高与渗流规律的关系。主要结论如下:

       (1)基于自主搭建的松散煤体气体渗流综合实验平台,进行了不同温度下的松散煤体气体渗流实验。煤体温度从30 ℃升高至80 ℃过程中,气体低速通过粒径范围在3~5 mm松散无烟煤、烟煤及褐煤时均遵循达西渗流定律,当温度升高时,气体通过松散煤体的渗透率逐渐减小,且三种煤样渗透率无烟煤>烟煤>褐煤,30 ℃与80 ℃时的渗透率值分别为:无烟煤9.79×10-10 m2、8.35×10-10 m2;烟煤6.56×10-10 m2、5.39×10-10 m2;褐煤5.71×10-10 m2、3.27×10-10 m2

       (2)进行了恒温条件与连续升温条件下气体在松散煤体中渗流数值模拟研究。以物理实验为基础、烟煤为研究对象,分别模拟30 ℃至80 ℃时恒温条件下的渗流过程,分析渗流速度变化,进而模拟30 ℃~80 ℃连续升温6 h时的气体渗流过程,分析得到在外部热源逐渐升高过程中模型管内的温度分布与渗透率分布呈“椭球形壳体”,模型管中心温度低于外侧,中心渗透率高于外侧,且渗透率随温度增加而减小,变化值为30 ℃至80 ℃时外壁渗透率从6.25×10-10 m2减小至5.74×10-10 m2,中心的渗透率从6.21×10-10 m2减小至5.72×10-10 m2,变化规律及数值与物理实验吻合性较好。

      (3)进行了采空区气体渗流数值模拟研究。以平煤八矿某工作面的现场数据为基础建立采空区渗流模型,模拟采空区温度影响条件下的温度分布、渗透率分布及氧气浓度分布,随着工作面从第10天推进至第35天时,高温区域高温点的温度从34.2 ℃升高至47.2 ℃时渗透率从6.3×10-10 m2减小至6.07×10-10 m2。随着温度的升高,煤体渗透率减小,高温区域的氧浓度逐渐减小,氧气运移路径发生变化。

       研究采空区松散煤体内气体渗流规律变化,有效掌握了采空区风流的运移特征,为煤自然发火的监测以及防治等工作提供了一定的理论基础。

论文外文摘要:

       With the increase of mine mining depth and the development of fully mechanized mining technology, the area of coal goaf has increased significantly, and the disaster situation of coal spontaneous combustion has become more severe. Air leakage in the goaf is one of the important reasons for spontaneous combustion of coal. Therefore, it is very important to study the characteristics of the gas permeability and air flow in the goaf. In this paper, three coal samples are selected as the main research objects, and a comprehensive experimental platform for gas seepage in loose coals is built, and the characteristics of gas seepage in loose coals under different temperature conditions are systematically analyzed. Based on physical experiments, the COMSOL numerical simulation method is used to study The relationship between the temperature rise in the loose coal in the goaf and the seepage law. The main conclusions are as follows:

       (1) Based on the self-built loose coal gas seepage experiment platform, the loose coal gas seepage experiment at different temperatures was carried out. When the temperature of the coal body rises from 30 ℃ to 80 ℃, the gas passes through the loose anthracite, bituminous coal and lignite at a low velocity in the particle size range of 3~5 mm. Darcy's law of percolation is followed. When the temperature rises, the gas passes through the loose coal. The permeability of the three coal samples is gradually decreasing, and the permeability of the three coal samples is anthracite>bituminous>lignite. The permeability values at 30 ℃ and 80 ℃ are respectively: anthracite 9.79×10-10 m2, 8.35×10-10 m2; bituminous coal 6.56 ×10-10 m2, 5.39×10-10 m2; lignite 5.71×10-10 m2, 3.27×10-10 m2.

       (2) The simulation of gas seepage in the loose coal mass under constant temperature conditions and continuous heating conditions was carried out. Based on physical experiments and bituminous coal as the research object, the seepage process under constant temperature conditions from 30 ℃ to 80 ℃ is simulated, and the change of seepage velocity is analyzed. Furthermore, it simulates the gas permeation process when the temperature is continuously increased from 30 ℃ to 80 ℃ for 6 h, and analyzes the temperature distribution in the model tube in the process of the gradual increase of the external heat source. The permeability distribution is like an "ellipsoidal shell", and the center temperature of the model tube is lower than the outer side, the permeability of the center is higher than that of the outer side, and the permeability decreases with increasing temperature. When the change value is 30 ℃ to 80 ℃, the permeability of the outer wall decreases from 6.25×10-10 m2 to 5.74×10-10 m2. The permeability decreases from 6.21×10-10 m2 to 5.72×10-10 m2, and the change rule and value are in good agreement with the physical experiment.

       (3) The simulation of gas seepage in the goaf when there is heat storage and temperature rise somewhere in the goaf. Based on the field data of a working face of Pingdingshan No. 8 Coal Mine, a goaf seepage model is established to simulate the temperature distribution, permeability distribution and oxygen concentration distribution under the influence of the goaf temperature. As the working face progresses from day 10 to day 35, when the temperature of the high temperature point in the high temperature area increased from 34.2 ℃ to 47.2 ℃, the permeability decreased from 6.3×10-10 m2 to 6.07×10-10 m2. As the temperature increases, the coal permeability decreases, the oxygen concentration in the high temperature area gradually decreases, and the oxygen migration path changes.

       The study of the influence of the gas seepage law in the loose coal in the goaf effectively grasps the characteristics of air flow in the goaf, and provides a certain theoretical basis for the monitoring and prevention of coal spontaneous combustion.

参考文献:

[1] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11):2161-2178.

[2] 胡敏. 2020年《BP世界能源统计年鉴》正式发布[J]. 炼油技术与工程, 2020, 50(08):51.

[3] 陈晓坤. 煤自燃多源信息融合预警研究[D]. 西安科技大学, 2012.

[4] Liang Y T, Zhang J, Wang L C, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the processIndustries, 2019, 57:208-222.

[5] Deng J, XiaoY, Li Q W, et al. Experimental studies of spontaneous combustion and an aerobic cooling of coal[J]. Fuel, 2015, 157:261-269.

[6] 朱红青, 王海燕, 胡瑞丽, 等. 煤自燃低温氧化临界指标及其关联性分析[J]. 煤炭科学技术, 2013, 41(8):61-64,70.

[7] 梁运涛, 罗海珠. 中国煤矿火灾防治技术现状与趋势[J]. 煤炭学报, 2008, 33(2): 126-130.

[8] 贾海林, 余明高, 徐永亮. 矿井CO气体成因类型及机理辨识分析[J]. 煤炭学报, 2013, 38(10):1812-1818.

[9] Qin B T, Wang H T, Yang J Z, et al. Large-area goaf fires: a numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control[J]. Environmental Earth Sciences, 2016, 75(21):1396.

[10] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10):118-125.

[11] 唐海. 小煤矿透水事故分析及预防[J]. 中国安全科学学报, 2010, 20(01):101-105+180.

[12] 焦宇, 段玉龙, 周心权, 等. 煤矿火区密闭过程自燃诱发瓦斯爆炸的规律研究[J]. 煤炭学报, 2012, 37(05):850-856.

[13] 郑怀昌, 宋存义, 胡龙, 等. 采空区顶板大面积冒落诱发冲击气浪模拟[J]. 北京科技大学学报, 2010, 32(03):277-281+305.

[14] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报, 2020, 45(05):1557-1566.

[15] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01):66-99.

[16] 陈少康. 防治煤自燃的阻化微胶囊制备及性能研究[D]. 西安科技大学, 2020.

[17] Li C, Zhang L, Zhang X, et al. Flow and heat ransfer of a generalized Maxwell fluid with modified fractional Fourier's law and Darcy's law[J]. Computers & Fluids, 2016, 125:25-38.

[18] Chai Z, Shi B, Lu J, et al. Non-Darcy flow in disordered porous media: A lattice Boltzmann study[J]. Computers & Fluids, 2010, 39(10):2069-2077.

[19] Hasert M, Bernsdorf J, Roller S. Lattice Boltzmann simulation of non-Darcy flow in porous media[J]. Procedia Computer Science, 2011, 4(4):1048-1057.

[20] Karacan C.Ö., Ruiz F.A., Cotè M., et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2):121-156.

[21] Palchik V. Time-dependent methane emission from vertical prospecting boreholes drilled to abandoned mine workings at a shallow depth [J]. International Journal of Rock Mechanics & MiningSciences, 2014, 72:1-7.

[22] 秦跃平, 刘伟, 杨小彬, 等. 基于非达西渗流的采空区自然发火数值模拟[J]. 煤炭学报, 2012, 37(7), 1177-1183.

[23] 谢和平, 张泽天, 高峰, 等. 不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报, 2016, 41(10): 2405-2417.

[24] 茹忠亮, 简阔, 马国胜. 考虑Klinkenberg效应的多孔介质气体渗流模型[J]. 中国科技论文, 2018, 13(03): 310-313.

[25] Porter M L, Plampin M, Pawar R, et al. CO2, leakage in shallow aquifers: A benchmark modeling study of CO2, gas evolution in heterogeneous porous media[J]. International Journal of Greenhouse Gas Control, 2015, 39:51-61.

[26] Saeedi A, Rezaee R, Evans B, et al. Multiphase flow behaviour during CO2 geo-sequestration: Emphasis on the effect of cyclic CO2-brine flooding[J]. Journal of Petroleum Science & Engineering, 2011, 79(3):65-85.

[27] Vialle S, Druhan J L, Maher K. Multi-phase flow simulation of CO2, leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control, 2016, 44:11-25.

[28] Perera M S A, Ranjith P G, Choi S K, et al. A parametric study of coal mass and cap rock behaviour and carbon dioxide flow during and after carbon dioxide injection[J]. Fuel, 2013, 106(2):129-138.

[29] Cekmer O, Um S, Mench M M. A combined path-percolation-Lattice-Boltzmann model applied to multiphase mass transfer in porous media[J]. International Journal of Heat & Mass Transfer, 2016, 93:257-272.

[30] 位乐. 煤中瓦斯运移的非达西渗流机理研究[J]. 煤矿安全, 2020, 51(07):22-25.

[31] 马恒, 王晓琪. 松散破碎岩石中气体渗流影响因素实验研究[J]. 中国安全生产科学技术. 2019, 15(08).

[32] Cai JC, You LJ, Hu, XY, et al. Prediction of effective permeability in porousmedia based on spontaneous imbibition effect[J]. International Journal of Modern Physics, C. Physics and Computers, 2012, 23(7), 1250054.

[33] Meng Z, Li G. Experimental research on the permeability of high-rank coal under a varying stress and its influencing factors[J]. Engineering Geology, 2013, 162:108-117.

[34] 张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究[J]. 煤炭学报, 2015, 40(04):836-842.

[35] 孙志刚, 马炳杰, 李奋. 低渗透储层流体非线性渗流机理及特征分析[J]. 西南石油大学学报(自然科学版), 2019, 41(02): 109-117.

[36] 赖令彬, 潘婷婷, 张虎俊, 等. 相对渗透率与含水饱和度关系微观机理[J]. 科学技术与工程, 2019, 19(12):115-122.

[37] 张志刚, 程波. 含瓦斯煤体非线性渗流模型[J]. 中国矿业大学学报, 2015, 44(03):453-459.

[38] 陈帅, 李波波, 张尧, 等. 页岩气储层微观渗流机理研究[J/OL]. 中国科学:技术科学: 1-11[2021-04-09].

[39] 李波波, 王斌, 杨康, 等. 煤岩孔裂隙结构分形特征及渗透率模型研究[J/OL]. 煤炭科学技术: 1-8 [2021-04-09].

[40] 侯东升, 梁卫国, 张倍宁,等. CO2驱替煤层CH4中混合气体渗流规律的研究[J]. 煤炭学报, 2019, 44(11):3463-3471.

[41] 陈卫忠, 龚哲, 于洪丹, 等. 黏土岩温度-渗流-应力耦合特性试验与本构模型研究进展[J]. 岩土力学, 2015, 36(05):1217-1238.

[42] 李波波, 高政, 杨康,等. 考虑温度、孔隙压力影响的煤岩渗透性演化机制分析[J]. 煤炭学报, 2020, 45(02):626-632.

[43] 潘玉婷, 赵耀江, 郭胜亮, 等. 温度作用煤岩力学渗流特性演化规律试验研究[J]. 中国矿业, 2021, 30(02):209-213.

[44] 张培森, 赵成业, 侯季群, 等. 温度-应力-渗流耦合条件下红砂岩渗流特性试验研究[J]. 岩石力学与工程学报, 2020, 39(10):1957-1974.

[45] 蔡婷婷, 冯增朝, 姜玉龙, 等. 不同温度应力下煤体蠕变中的渗流规律研究[J]. 岩石力学与工程学报, 2018, 37(S2):3898-3904.

[46] 王司建. 不同温度-蠕变条件下的含瓦斯煤渗流规律研究[D]. 河南理工大学, 2016.

[47] Jiang Y D, Luo Y H, Lu Y Y, et al. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale. 2016, 97:173-181.

[48] 滕腾, 王伟, 师访, 等. 温度-压力耦合下原煤中CO2渗流行为试验研究[J]. 中国矿业大学学报, 2019, 48(04):760-767.

[49] 蔡婷婷. 热-力耦合作用下煤体流变-渗流特性实验研究[D]. 太原理工大学, 2018.

[50] 易俊, 姜永东, 鲜学福. 应力场-温度场瓦斯渗流特性实验研究[J]. 中国矿业, 2007, (05):113-116.

[51] 郭倩. 基于温度-应力变化效应的煤岩体渗透率演化规律研究[D]. 郑州大学, 2018.

[52] 张丹丹. 温度对原煤与型煤渗流特性的影响分析[J]. 煤矿安全, 2018, 49(04):152-155+159.

[53] 李波波, 杨康, 袁梅, 等. 不同温度下孔隙压力对煤岩渗流特性的影响机制[J]. 地球科学, 2017, 42(08):1403-1412.

[54] Teng T; Wang J G.; Gao F; et al. A thermally sensitive permeability model for coal-gas interactions including thermal fracturing and volatilization,Volume 32, 2016, PP 319-333.

[55] 于永江, 张华, 张春会, 等. 温度及应力对成型煤样渗透性的影响[J]. 煤炭学报, 2013, 38(6):936-941.

[56] Xu Z, Liu Y, Wang Y P, et al. Analysis of Coupled Three-Dimensional Seepage and Temperature Fields in Fracture Network of Rock Mass[J]. International Journal of Computational Methods, 2018.

[57] Yang MQ, Xie HP, Gao MZ, et al. On distribution characteristics of the temperature field and gas seepage law of coal in deep mining[J]. Thermal Science, 2020, 24(6):3923-3931.

[58] Yang LS, Yang D, ZHAO J, et al. Changes of oil shale pore structure and permeability at different temperatures [J]. Oil Shale,2016,33(2):101-110.

[59] Xu P, Yang S Q. Influence of stress and high temperature treatment on the permeability evolution behavior of sandstone[J]. Acta Mechanica Sinica, 2019, 35(002):419-432.

[60] 李志强, 鲜学福, 隆晴明. 不同温度应力条件下煤体渗透率实验研究[J]. 中国矿业大学学报, 2009, 38(4):523-527.

[61] 张翔. 含瓦斯煤失稳破坏及渗流特征试验与模拟研究[J]. 矿业研究与开发, 2020, 40(10):102-107.

[62] 张永利, 张乐乐, 马玉林, 等. 温度作用下煤层瓦斯解吸渗流规律数值模拟[J]. 防灾减灾工程学报, 2014, 34(06):671-677.

[63] Xu G, Hao M, Jin H. Study on Fluid-solid Coupling Mathematical Models and Numerical Simulation of Coal Containing Gas[J]. Iop Conference, 2018, 113.

[64] Qin T, Liu Y L, Zhang K Y. The Thermal-Fluent-Solid Coupling Numerical Simulation Study of Coal and Rock Containing Gas[J]. Advanced Materials Research, 2014, 1010-1012:1498-1501.

[65] 邓存宝, 王继人, 洪林. 矿井封闭火区内气体运移规律[J]. 辽宁工程技术大学学报, 2004, 03:296-298.

[66] Pan Rongkun, Cheng Yuanping, Yu Minggao, et al. New technological partition for "three zones" spontaneous coal combustion in goaf[J]. International Journal of Mining Science and Technology, 2013, 23(4):489-493.

[67] Yuan L M, Smith A C. Numercial study on effects of coal properties on spontaneous heating long wall gob areas[J]. Fuel, 2008, 87(15):3409-3419.

[68] Liang Y T, Wang S G. Prediction of coal mine goaf self-heating with fluid dynamics inporousmedia[J]. Fire Safety Journal, 2017, 87:49-56.

[69] Liu W, Qin Y P. Aquantitative approach to evaluate risks of spontaneous combustion in long wall gobs based on CO emission satuppercorner[J]. Fuel, 2017, 210:359-370.

[70] 阮国强, 邢思云, 王振平. 采空区风流移动规律数值模拟及研究[J]. 煤矿现代化, 2009(04):75-76.

[71] 徐精彩, 邓军, 文虎. 采煤工作面采空区可能发火区域分析[J]. 西安矿业学院学报, 1998(01):14-17+23.

[72] 秦跃平, 朱建芳, 陈永权, 等. 综放开采采空区瓦斯运移规律的模拟试验研究[J]. 煤炭科学技术, 2003(11):13-16.

[73] 魏引尚, 邓敢博, 吴晓凡, 等. 急倾斜工作面采空区瓦斯分布规律的相似模拟研究[J]. 湖南科技大学学报(自然科学版), 2009, 24(01):13-17.

[74] 刘飞, 张洪庆, 张建营, 等. 基于COMSOL Multiphysics的煤岩体渗流规律研究[J].阴山学刊(自然科学版), 2017, 31(04):80-82.

[75] 秦玉金, 罗海珠, 姜文忠, 等. 非等温吸附变形条件下瓦斯运移多场耦合模型研究[J].煤炭学报, 2011, 36(3):412-416.

[76] 尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(4):535-541.

[77] 王宏图, 黄光利, 袁志刚, 等. 急倾斜上保护层开采瓦斯越流固-气耦合模型及保护范围[J]. 岩土力学, 2014, 35(5):1377-1390.

[78] 杨新乐, 任常在, 张永利, 等. 低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟[J]. 煤炭学报, 2013, 38(06):1044-1049.

[79] 朱南南, 舒龙勇, 范喜生,等. 回采工作面及采空区瓦斯运移的数学模型及数值模拟研究[J]. 安全与环境学报, 2021, 21(01):210-216.

[80] 姜亦武, 杨俊生, 赵鹏翔, 等. 倾斜高瓦斯煤层抽采条件下采空区漏风规律数值模拟[J]. 西安科技大学学报, 2021, 41(01):46-54.

[81] 罗振敏, 郝苗, 苏彬, 等. 采空区瓦斯运移规律实验及数值模拟[J]. 西安科技大学学报, 2020, 40(01):31-39.

[82] 郝宇, 逄锦伦. 不同风量和瓦斯条件下采空区自燃“三带”分布规律[J]. 矿业安全与环保, 2020, 47(02):40-44.

[83] 黎经雷, 牛会永, 鲁义, 等. 风速对近距离煤层采空区漏风及煤自燃影响研究[J]. 煤炭科学技术, 2019, 47(03):156-162.

[84] Zhang D, Cen XX, Wang WF, et al. The graded warning method of coal spontaneous combustion in Tangjiahui Mine[J]. Fuel, 2020.

[85] 徐精彩, 文虎, 邓军,等. 煤自燃极限参数研究[J]. 火灾科学, 2000, 9(2):14-18.

[86] 高旺来. 绝对渗透率对相对渗透率及其应用的影响[J]. 特种油气藏, 2016, 23(3):126-128.

[87] 姚池, 邵玉龙, 杨建华, 等. 非线性渗流对裂隙岩体渗流传热过程的影响[J]. 岩土工程学报. 2020, 42(06).

[88] 孙东惺. 致密多孔介质低速非线性渗流机理[J]. 化工管理. 2020, (15).

[89] 杨蕾. 煤层气解析—扩散—渗流问题的数值模拟方法及理论[D]. 山东大学, 2015.

[90] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9):1909-1917.

[91] 但卓. 柠条塔矿浅埋煤层采空区漏风规律及其应用[D]. 西安科技大学, 2019.

[92] 贝尔著, 李竞生, 陈崇希. 多孔介质流体动力学[M]. 中国建筑工业出版社, 1983.

[93] 陈善乐. 综放工作面采空区渗流场域及渗透系数研究[D]. 辽宁工程技术大学, 2015.

[94] 王芳. 深部采空区环境高温对遗煤自燃过程的影响模拟研究[D]. 西安科技大学, 2020.

中图分类号:

 TD753    

开放日期:

 2022-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式