- 无标题文档
查看论文信息

论文中文题名:

 激光熔覆原位碳/硼化物增强CoCrFeNi高熵合金涂层组织与性能研究    

姓名:

 李锦舟    

学号:

 21205224115    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 表面工程与再制造    

第一导师姓名:

 高中堂    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Study on microstructure and properties of in-situ carbon/boride reinforced CoCrFeNi high entropy alloys coating by laser claddin    

论文中文关键词:

 激光熔覆 ; 原位合成 ; 高熵合金 ; 显微硬度 ; 摩擦学性能    

论文外文关键词:

 Laser cladding ; In-situ synthesis ; High entropy alloy ; Microhardness ; Tribological properties    

论文中文摘要:

       本文以CoCrFeNi高熵合金为基体粉末,采用激光熔覆技术在Q235钢表面分别制备了原位碳化物、硼化物和碳/硼化物增强的高熵合金涂层。表征了涂层的物相组成、显微组织、元素分布、晶粒尺寸及析出相形貌。此外,测试了涂层的显微硬度、摩擦磨损性能和耐腐蚀性能,研究了原位增强相对高熵合金涂层组织与性能的影响。具体研究内容和结果如下:

       采用激光熔覆制备了不同Ti和C含量的高熵合金涂层,研究了Ti和C元素添加对高熵合金涂层组织和性能的影响。研究表明,CoCrFeNi高熵合金涂层为单相FCC固溶体。由于高熵合金的晶格畸变效应,导致基体相的晶格常数增大。随着Ti和C元素添加,涂层中生成了原位TiC和Cr7C3增强相,并主要以块体形式沿晶界和晶内分布。此外,原位碳化物的产生提高了形核率,细化了晶粒尺寸。高熵合金基体和TiC之间的取向关系被确定为基体相(1-1-1 )//TiC(1-1-1 ),基体相[110]//TiC[-1-1 0]。固溶强化、第二相强化、细晶强化的协同作用使高熵合金涂层的硬度和耐磨性得到显著提高。然而,生成过量的增强相会导致在磨损的过程中碳化物剥落,使得涂层的磨损反而加剧。

       在高熵合金涂层中制备了原位硼化物,并研究了原位硼化物对高熵合金涂层的物相组成、组织演变、元素分布、显微硬度及摩擦磨损性能的影响。结果表明,在高熵合金中引入Ti和B元素可以形成原位TiB,Cr2B,FeCrB,(FeCr)2B增强相。大量的硼化物在高熵合金涂层中生成提高了形核率,使高熵合金涂层的组织逐渐细化,由粗大的柱状晶和树枝晶向细小的树枝晶和等轴晶转变。由于多种强化机制的影响,导致涂层的显微硬度和摩擦磨损性能都有显著提升。然而,涂层中产生过多的硼化物反而会导致磨损量增大。Cr2B相与高熵合金基体相之间的晶体学位向关系为基体相(002)//Cr2B(-1-3-1 ),基体相[-510]//Cr2B[01-3]。随着原位硼化物含量的增加,涂层的磨损机制由粘着磨损逐渐转变为磨粒磨损和粘着磨损。

       通过添加不同含量的Ti、C和B元素制备出原位碳/硼化物增强的高熵合金涂层,研究了高熵合金涂层的物相组成、显微组织演变、显微硬度、摩擦磨损性能及耐腐蚀性能。研究发现,高熵合金涂层中的原位碳化物和硼化物随着Ti、C和B元素添加量的增大而增多。Ti、C和B元素加入后,高熵合金涂层显微组织转变为枝晶和枝晶间组织,并且在枝晶间区域生成了原位碳化物和硼化物。原位增强相的形成使高熵合金涂层的显微硬度和摩擦磨损性能显著提升。高熵合金涂层的磨损机制以粘着磨损、磨粒磨损和氧化磨损为主。不同高熵合金涂层在3.5 wt% NaCl溶液中表现出不同的耐腐蚀性,其中未添加Ti、C和B元素的涂层的耐腐蚀性能最佳。由于Ti、C和B元素添加后,涂层中生成了富Fe和Cr元素的碳硼化物消耗了耐腐蚀的Cr元素,导致涂层的耐腐蚀性能下降。

论文外文摘要:

       In this paper, high-entropy alloy (HEA) coatings reinforced by in-situ carbides, borides and carbon/borides were prepared on the surface of Q235 steel by laser cladding using CoCrFeNi HEA as matrix powder. The phase composition, microstructure, element distribution, grain size and precipitated phase morphology of the coating were characterized. In addition, the microhardness, friction and wear properties and corrosion resistance of the coatings were tested. The effects of in-situ reinforced phases on the microstructure and properties of HEA were studied. The specific research contents and results are as follows:

       HEA coatings with different Ti and C contents were prepared by laser cladding. The effects of Ti and C addition on the microstructure and properties of HEA coatings were studied. The study reveals that the CoCrFeNi HEA coating exhibit a single-phase FCC structure solid solution. Due to the lattice distortion effect of HEA, the lattice constant of the matrix phase increases. With the addition of Ti and C elements, in-situ TiC and Cr7C3 reinforced phases were formed in the coating, and mainly distributed along the grain boundary and intragranular in the form of blocks. In addition, the formation of in-situ carbides increases the nucleation rate and refines the grain size. The orientation relationship between the HEA matrix and TiC is determined as the matrix phase (1-1-1 )//TiC(1-1-1 ) and the matrix phase [110]//TiC[-1-1 0]. The hardness and wear resistance of the HEA coating are significantly improved by the synergistic effect of solid solution strengthening, second phase strengthening and fine grain strengthening. However, the formation of excessive reinforced phases will lead to the spalling of carbides during the wear process, which will aggravate the wear of the coating.

       In-situ borides were prepared in HEA coatings, and the effects of in-situ borides on the phase composition, microstructure evolution, element distribution, microhardness and friction and wear properties of HEA coatings were studied. The results show that in-situ TiB, Cr2B, FeCrB, (FeCr)2B reinforced phases can be formed by introducing Ti and B elements into HEA. The formation of a large number of borides in the HEA coating increases the nucleation rate, so that the microstructure of the HEA coating is gradually refined, from coarse columnar crystals and dendrites to fine dendrites and equiaxed crystals. Due to the influence of various strengthening mechanisms, the microhardness and friction and wear properties of the coating are significantly improved. However, excessive boride produced in the coating will lead to an increase in wear. The crystal orientation relationship between Cr2B phase and HEA matrix phase is matrix phase (002)//Cr2B(-1-3-1 ), matrix phase [-510]//Cr2B[01-3 ]. With the increase of in-situ boride content, the wear mechanism of the coating gradually changed from adhesive wear to abrasive wear and adhesive wear.

       In-situ carbon/boride reinforced HEA coatings were prepared by adding different contents of Ti, C and B elements. The phase composition, microstructure evolution, microhardness, friction and wear properties and corrosion resistance of HEA coatings were studied. It was found that the in-situ carbides and borides in the HEA coating increased with the increase of Ti, C and B elements. After the addition of Ti, C and B elements, the microstructure of the HEA coating is transformed into dendrite and interdendritic structure, and in-situ carbides and borides are formed in the interdendritic region. The formation of in-situ reinforced phases significantly improves the microhardness and friction and wear properties of the HEA coating. The wear mechanism of HEA coating is mainly adhesive wear, abrasive wear and oxidation wear. Different HEA coatings show different corrosion resistance in 3.5 wt% NaCl solution, and the coating without Ti, C and B elements has the best corrosion resistance. Due to the addition of Ti, C and B, the formation of carbon borides rich in Fe and Cr elements in the coating consumes the corrosion resistance element Cr, resulting in a decrease in the corrosion resistance of the coating.

参考文献:

[1]彭文雅, 李钢, 陈晓龙, 等. 润滑与腐蚀防护复合涂层的设计制备及性能研究 [J]. 表面技术, 2024: 1-8.

[2]宋继军. FeCoNiCrxAl激光熔覆层的组织与性能研究 [D]. 济南; 山东大学, 2020.

[3]齐泓钧, 坚永鑫, 陈子晗, 等. 超高速激光熔覆技术及其耐磨蚀涂层材料研究进展 [J]. 热加工工艺, 2024, (16): 1-8.

[4]Straumal B B, Klinger L, Kuzmin A, et al. High Entropy Alloys Coatings Deposited by Laser Cladding: A Review of Grain Boundary Wetting Phenomena [J]. Coatings, 2022, 12(3): 343.

[5]Gong N, Meng T L, Cao J, et al. Laser-cladding of high entropy alloy coatings: an overview [J]. Materials Technology, 2023, 38(1): 2151696.

[6]田宪华, 杨晓东, 刘亚, 等. 激光熔覆涂层材料的研究现状 [J]. 热加工工艺, 2024, (06): 1-5+9.

[7]孙达. 碳化物增强CrMnFeCoNi激光熔覆复合涂层的组织及耐磨性能 [D]. 天津; 天津理工大学, 2023.

[8]Cai Y C, Chen Y, Luo Z, et al. Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology [J]. Materials & Design, 2017, 133: 91-108.

[9]Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Materialia, 2014, 81: 428-441.

[10]Zhang Y, Han T f, Xiao M, et al. Microstructure and properties of laser-clad FeNiCoCrTi0.5Nb0.5 high-entropy alloy coating [J]. Materials Science and Technology, 2020, 36(7): 811-818.

[11]王伟, 陈田慧, 单旭光, 等. 激光熔覆高熵合金涂层组织结构及强化机理研究进展 [J]. 热喷涂技术, 2023, 15(04): 31-51.

[12]张连松, 苏涛, 沈思明. 车用不锈钢表面激光原位合成FeCrCoNi涂层组织及耐磨性 [J]. 粉末冶金工业, 2024, 34(01): 111-116.

[13]Arif Z U, Khalid M Y, Ur Rehman E, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications [J]. Journal of Manufacturing Processes, 2021, 68: 225-273.

[14]Yeh J W, Chen S K, Lin S J, et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

[15]马清. 激光熔覆WC增强FeCoNiCr高熵合金复合涂层的制备及组织性能研究 [D]; 广东工业大学, 2023.

[16]Yeh J W, Chen Y L, Lin S J, et al. High-Entropy Alloys-A New Era of Exploitation [J]. Materials Science Forum, 2007, 560: 1-9.

[17]柴文柯. 燃烧合成熔铸FeCoNiCr系多主元合金与组织研究 [D]. 南京; 东南大学, 2020.

[18]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448-511.

[19]Li J S, Jia W J, Wang J, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Materials & Design, 2016, 95: 183-187.

[20]向康. 纯钛表面激光熔覆制备CoCrFeNiTiNbx系中/高熵合金涂层及组织性能研究 [D]. 重庆; 重庆理工大学, 2021.

[21]Wang W R, Wang J Q, Sun Z H, et al. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys [J]. Journal of Alloys and Compounds, 2020, 812: 152139.

[22]Fang Y H, Chen N, Du G P, et al. High-temperature oxidation resistance, mechanical and wear resistance properties of Ti(C,N)-based cermets with Al0.3CoCrFeNi high-entropy alloy as a metal binder [J]. Journal of Alloys and Compounds, 2020, 815: 152486.

[23]Sahlberg M, Karlsson D, Zlotea C, et al. Superior hydrogen storage in high entropy alloys [J]. Scientific Reports, 2016, 6(1): 36770.

[24]Li P P, Wang A D, Liu C T. A ductile high entropy alloy with attractive magnetic properties [J]. Journal of Alloys and Compounds, 2017, 694: 55-60.

[25]Li Y Z, Shi Y. Microhardness, wear resistance, and corrosion resistance of AlxCrFeCoNiCu high-entropy alloy coatings on aluminum by laser cladding [J]. Optics & Laser Technology, 2021, 134: 106632.

[26]梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展 [J]. 材料工程, 2009, (12): 75-79.

[27]蔺健全. 激光熔覆CoCrFeMnNiBx高熵合金涂层的制备及其组织和性能研究 [D]. 昆明; 昆明理工大学, 2021.

[28]Gao S, Kong T, Zhang M, et al. Effects of titanium addition on microstructure and mechanical properties of CrFeNiTix (x=0.2-0.6) compositionally complex alloys [J]. Journal of Materials Research, 2019, 34(5): 819-828.

[29]吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553-1566.

[30]Owen L R, Jones N G. Lattice distortions in high-entropy alloys [J]. Journal of Materials Research, 2018, 33(19): 2954-2969.

[31]贾春堂. 激光熔覆AlxCoCrFeMoyNi高熵合金涂层的组织与性能 [D]. 鞍山; 辽宁科技大学, 2020.

[32]郝文俊. 激光熔覆CoCrFeNiSix高熵合金涂层组织及其性能的研究 [D]. 天津; 天津工业大学, 2021.

[33]Qiu X W, Zhang Y P, Liu C G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings [J]. Journal of Alloys and Compounds, 2014, 585: 282-286.

[34]Fu Y, Huang C, Du C W, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding [J]. Corrosion Science, 2021, 191: 109727.

[35]Zhang H, He Y Z, Pan Y, et al. Synthesis and Characterization of NiCoFeCrAl3 High Entropy Alloy Coating by Laser Cladding [J]. Advanced Materials Research, 2010, 97-101: 1408-1411.

[36]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science, 2014, 61: 1-93.

[37]Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96-103.

[38]Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. Journal of Applied Physics, 2011, 109(10): 103505.

[39]Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Materials Chemistry and Physics, 2012, 132(2): 233-238.

[40]Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling [J]. Materials Science and Engineering: A, 2016, 674: 203-211.

[41]董天顺, 刘建辉, 陆鹏炜, 等. 高熵合金复合涂层研究现状及展望 [J]. 粉末冶金工业, 2024, 34(01): 117-123.

[42]Zhang W, Tang R, Yang Z B, et al. Preparation, structure, and properties of high-entropy alloy multilayer coatings for nuclear fuel cladding: A case study of AlCrMoNbZr/(AlCrMoNbZr)N [J]. Journal of Nuclear Materials, 2018, 512: 15-24.

[43]王慧琳. 激光熔覆MoFexCrTiWAlNby高熔点高熵合金涂层 [D]. 贵阳; 贵州大学, 2020.

[44]王兴涛, 吴一凡, 孙金峰, 等. 等离子熔覆制备AlCrFeMnNi高熵合金涂层的微观组织与性能 [J]. 中国表面工程, 2023, 36(04): 107-117.

[45]Liao W B, Zhang H T, Liu Z Y, et al. High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering [J]. Entropy, 2019, 21(2): 146.

[46]张毅勇, 张志彬, 姚雯, 等. 高熵合金薄膜研究现状与展望 [J]. 表面技术, 2021, 50(01): 117-129.

[47]曹庆平, 杨超范, 王晓东, 等. 高熵合金薄膜制备、微结构和性能研究进展 [J]. 中国科学:技术科学, 2022, 52(03): 359-374.

[48]柴廷玺, 徐宏彤, 晏丽琴, 等. 等离子熔覆制备高熵合金涂层耐腐蚀性能的研究进展 [J]. 材料热处理学报, 2022, 43(03): 11-20.

[49]黄灿, 杜翠薇, 代春朵, 等. 高熵合金涂层的研究进展 [J]. 表面技术, 2019, 48(11): 15-22+35.

[50]黄晋培. 碳化物/高熵合金复合熔覆层组织与性能研究 [D]. 上海; 上海工程技术大学, 2021.

[51]豆微, 陈冲, 张国赏, 等. 高熵合金涂层的研究现状 [J]. 电镀与涂饰, 2023, 42(16): 33-42.

[52]朱颖. 激光熔覆FeNiCrCoCuxMoy高熵合金涂层研究 [D]. 贵阳; 贵州大学, 2019.

[53]Wu H, Zhang S, Zhang H Y, et al. Exploration of wear and slurry erosion mechanisms of laser clad CoCrFeNi+x(NbC) high entropy alloys composite coatings [J]. Tribology International, 2024, 193: 109405.

[54]黄祖凤, 张冲, 唐群华, 等. WC颗粒对激光熔覆FeCoCrNiCu高熵合金涂层组织与硬度的影响 [J]. 中国表面工程, 2013, 26(01): 13-19.

[55]Zhang S L, Sun Y N, Cheng W J, et al. Microstructure and tribological behavior of CoCrFeNiMo0.2/SiC high-entropy alloy gradient composite coating prepared by laser cladding [J]. Surface and Coatings Technology, 2023, 467: 129681.

[56]周勇, 康凯祥, 董会, 等. TiC增强高熵合金复合涂层的显微组织与摩擦磨损性能 [J]. 材料热处理学报, 2022, 43(03): 128-133.

[57]Peng Y B, Zhang W, Li T C, et al. Effect of WC content on microstructures and mechanical properties of FeCoCrNi high-entropy alloy/WC composite coatings by plasma cladding [J]. Surface and Coatings Technology, 2020, 385: 125326.

[58]张琪, 饶湖常, 沈志博, 等. WC颗粒对激光熔覆FeCoCrNiB高熵合金涂层组织结构与耐磨性的影响 [J]. 热加工工艺, 2014, 43(18): 147-150+155.

[59]Jiang J, Li R D, Yuan T C, et al. Microstructural evolution and wear performance of the high-entropy FeMnCoCr alloy/TiC/CaF2 self-lubricating composite coatings on copper prepared by laser cladding for continuous casting mold [J]. Journal of Materials Research, 2019, 34(10): 1714-1725.

[60]董世知, 孟旭, 马壮, 等. TiC对氩弧熔覆FeAlCoCrCuTi0.4高熵合金涂层组织和耐磨性影响 [J]. 材料科学与工程学报, 2020, 38(04): 590-594+642.

[61]Vyas A, Menghani J, Natu H. Influence of WC Particle on the Metallurgical, Mechanical, and Corrosion Behavior of AlFeCuCrCoNi-WCx High-Entropy Alloy Coatings [J]. Journal of Materials Engineering and Performance, 2021, 30(4): 2449-2461.

[62]李大艳, 姜慧, 邹龙江, 等. WC含量对激光熔覆AlCoCrFeNiNb0.75高熵合金涂层的组织与性能的影响 [J]. 热加工工艺, 2019, 48(10): 117-121+126.

[63]Wei R, Sun H, Chen C, et al. Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase [J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 63-67.

[64]Guo Y X, Liu Q B, Shang X J. In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding [J]. Rare Metals, 2020, 39(10): 1190-1195.

[65]Liu H, Liu J, Chen P J, et al. Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding [J]. Optics and Laser Technology, 2019, 118: 140-150.

[66]郭亚雄, 尚晓娟, 刘其斌. 激光原位合成MC增强AlCrFeNb3MoTiW高熔点高熵合金基复合涂层的高温组织演变 [J]. 稀有金属, 2018, 42(08): 807-813.

[67]Guo Y X, Shang X J, Liu Q B. Microstructure and properties of in-situ TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings [J]. Surface & Coatings Technology, 2018, 344: 353-358.

[68]Zhu S S, Yu Y Q, Zhang B S, et al. Microstructure and wear behaviour of in-situ TiN-Al2O3 reinforced CoCrFeNiMn high-entropy alloys composite coatings fabricated by plasma cladding [J]. Materials Letters, 2020, 272: 127870.

[69]Zhao W, Yu K, Ma Q, et al. Synergistic effects of Mo and in-situ TiC on the microstructure and wear resistance of AlCoCrFeNi high entropy alloy fabricated by laser cladding [J]. Tribology International, 2023, 188: 108827.

[70]Zhang H, Liu G, Ren N N, et al. Microstructure evolution and high temperature wear resistance of in-situ synthesized carbides reinforced NiCoFeCrSiMo high entropy alloy coatings fabricated by laser cladding [J]. Surface and Coatings Technology, 2023, 464: 129573.

[71]王智慧, 王虎, 贺定勇, 等. 等离子熔覆原位自生NbC/高熵合金显微组织研究 [J]. 稀有金属材料与工程, 2015, 44(12): 3156-3160.

[72]Guo Y, Li C, Zeng M, et al. In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding [J]. Materials Chemistry and Physics, 2020, 242: 122522.

[73]Cheng J, Liu D, Liang X, et al. Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings [J]. Surface and Coatings Technology, 2015, 281: 109-116.

[74]Fu Z Q, Chen W P, Wen H M, et al. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy [J]. Acta Materialia, 2016, 107: 59-71.

[75]Cheng J B, Sun B, Ge Y Y, et al. Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surface & Coatings Technology, 2020, 402: 126321.

[76]Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding [J]. Surface & Coatings Technology, 2019, 361: 63-74.

[77]Zhang Z L, Ling Y F, Hui J, et al. Effect of C additions to the microstructure and wear behaviour of CoCrFeNi high-entropy alloy [J]. Wear, 2023, 530: 205032.

[78]Chen L, Li Z J, Dai P Q, et al. Effects of carbon addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy prepared by powder metallurgy [J]. Journal of Materials Research and Technology, 2022, 20: 73-87.

[79]Gu Y L, Yi M L, Chen Y, et al. Effect of the amount of SiC particles on the microstructure, mechanical and wear properties of FeMnCoCr high entropy alloy composites [J]. Materials Characterization, 2022, 193: 12300.

[80]Basu I, De Hosson J T M. Strengthening mechanisms in high entropy alloys: Fundamental issues [J]. Scripta Materialia, 2020, 187: 148-156.

[81]Weng F, Yu H J, Chen C Z, et al. Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42+TiN mixed powders [J]. Journal of Alloys and Compounds, 2016, 686: 74-81.

[82]Liu H, Gao W P, Liu J, et al. Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding [J]. Journal of Materials Engineering and Performance, 2020, 29(11): 7170-7178.

[83]Cai Y C, Zhu L S, Cui Y, et al. Fracture and wear mechanisms of FeMnCrNiCo+x(TiC) composite high-entropy alloy cladding layers [J]. Applied Surface Science, 2020, 543: 148794.

[84]Cui Y, Shen J Q, Manladan S M, et al. Strengthening mechanism in two-phase FeCoCrNiMnAl high entropy alloy coating [J]. Applied Surface Science, 2020, 530: 147205.

[85]Gu Z, Xi S Q, Mao P, et al. Microstructure and wear behavior of mechanically alloyed powder AlxMo0.5NbFeTiMn2 high entropy alloy coating formed by laser cladding [J]. Surface & Coatings Technology, 2020, 401: 126244.

[86]Tong Z P, Liu H L, Jiao J F, et al. Microstructure, microhardness and residual stress of laser additive manufactured CoCrFeMnNi high-entropy alloy subjected to laser shock peening [J]. Journal of Materials Processing Technology, 2020, 285: 116806.

[87]Gussev M N, Field K G, Busby J T. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels [J]. Journal of Nuclear Materials, 2015, 460: 139-152.

[88]Zhang H, Ren Z C, Liu J, et al. Microstructure evolution and electroplasticity in Ti64 subjected to electropulsing-assisted laser shock peening [J]. Journal of Alloys and Compounds, 2019, 802: 573-582.

[89]Zhao C M, Zhu H G, Xie Z H. In situ FeCrB whiskers and TiB particles strengthened Fe1.2MnNi0.8Cr matrix composites [J]. Materials Characterization, 2021, 180: 111436.

[90]Cheng H, Wang H Y, Xie Y C, et al. Controllable fabrication of a carbide-containing FeCoCrNiMn high-entropy alloy: microstructure and mechanical properties [J]. Materials Science and Technology, 2017, 33(17): 2032-2039.

[91]Li Y T, Fu H G, Wang K M, et al. Effect of Mo addition on microstructure and wear resistance of laser clad AlCoCrFeNi-TiC composite coatings [J]. Applied Surface Science, 2023, 623: 157071.

[92]Zhang L J, Jiang Z K, Zhang M D, et al. Effect of solid carburization on the surface microstructure and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy [J]. Journal of Alloys and Compounds, 2018, 769: 27-36.

[93]畅海涛, 霍晓峰, 李万鹏, 等. 高熵合金强化机制的研究进展 [J]. 稀有金属材料与工程, 2020, 49(10): 3633-3645.

[94]Chen H, Cui H Z, Jiang D, et al. Formation and beneficial effects of the amorphous/nanocrystalline phase in laser remelted (FeCoCrNi)75Nb10B8Si7 high-entropy alloy coatings fabricated by plasma cladding [J]. Journal of Alloys and Compounds, 2022, 899: 163277.

[95]Li X F, Feng Y H, Liu B, et al. Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding [J]. Journal of Alloys and Compounds, 2019, 788: 485-494.

[96]Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1-x(WC)x high entropy alloy composites [J]. International Journal of Refractory Metals & Hard Materials, 2018, 75: 56-62.

[97]Zhang A J, Han J S, Su B, et al. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite [J]. Materials & Design, 2017, 114: 253-263.

[98]Zhang J F, Jia T, Zhu H G, et al. Microstructure and mechanical properties of in-situ TiC reinforced FeCoNiCu2.0 high entropy alloy matrix composites [J]. Materials Science and Engineering: A, 2021, 822: 141671.

[99]Zhuang D, D., Tao W W, Du B, et al. Microstructure and properties of TiC-enhanced CrMnFeCoNi high-entropy alloy coatings prepared by laser cladding [J]. Tribology International, 2023, 180: 1879-2464.

[100]Li J F, Xiang S, Luan H W, et al. Additive manufacturing of high-strength CrMnFeCoNi high-entropy alloys-based composites with WC addition [J]. Journal of Materials Science & Technology, 2019, 35(11): 2430-2434.

[101]Qi Y L, Zhao L, Sun X, et al. Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries [J]. Journal of Materials Science & Technology, 2021, 86: 271-284.

[102]Fang W, Yu H Y, Chang R B, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration [J]. Materials Chemistry and Physics, 2019, 238: 121897.

[103]Takeuchi A, Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element [J]. Materials Transactions, 2005, 46(12): 2817-2829.

[104]Liu Y A, Ding Y, Yang L J, et al. Research and progress of laser cladding on engineering alloys: A review [J]. Journal of Manufacturing Processes, 2021, 66: 341-363.

[105]Qu W, Ji C, Min L L, et al. Super capacity of boron on the grain refinement of FeCoCrNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2023, 945: 169320.

[106]Jiang D, Cui H Z, Chen H, et al. Wear and corrosion properties of B4C added CoCrNiMo high-entropy alloy coatings with in-situ coherent ceramic [J]. Materials & Design, 2021, 210: 10068.

[107]Son S, Lee J, Asghari-Rad P, et al. A facile strengthening method by co-doping boron and nitrogen in CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2022, 846: 143307.

[108]Gu Z, Xi S Q, Sun C F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings [J]. Journal of Alloys and Compounds, 2020, 819: 152986.

[109]Cui G, Han B, Yang Y, et al. Sulfurizing of CoCrFeNiSi0.4 and CoCrFeMoNi high entropy alloys fabricated by laser cladding [J]. Surface & Coatings Technology, 2020, 381: 125182.

[110]Zhang P, Li Z W, Liu H M, et al. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: A review [J]. Journal of Manufacturing Processes, 2022, 76: 397-411.

[111]Vyas A, Menghani J, Natu H. Metallurgical and Mechanical Properties of Laser Cladded AlFeCuCrCoNi-WC10 High Entropy Alloy Coating [J]. International Journal of Engineering, 2020, 33(7): 1397-1402.

[112]Liu H, Li X F, Hua P, et al. Microstructure and Properties of Laser-cladded Fe50Mn30Co10Cr10 High Entropy Alloy Coatings [J]. Journal of Thermal Spray Technology, 2022, 31(4): 991-999.

[113]徐磊, 王匀, 许桢英, 等. 同轴送粉激光熔覆气泡逃逸行为及分布研究 [J]. 精密成形工程, 2023, 15(01): 137-145.

[114]Jin G, Cai Z B, Guan Y J, et al. High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating [J]. Applied Surface Science, 2018, 445: 113-122.

[115]Yan G H, Zheng M Y, Ye Z H, et al. In-situ Ti(C, N) reinforced AlCoCrFeNiSi-based high entropy alloy coating with functional gradient double-layer structure fabricated by laser cladding [J]. Journal of Alloys and Compounds, 2021, 886: 161252.

[116]Zhang Y B, Zhang P, Liu H M, et al. The effect of Ti and B4C on the microstructure and properties of the laser clad FeCoCrNiMn based high entropy alloy coating [J]. Surface and Coatings Technology, 2022, 441: 128499.

[117]马亚芬, 李育升, 张麦仓, 等. 大尺寸优质GH4738合金铸锭的元素偏析规律及均匀化工艺 [J]. 材料热处理学报, 2023, 44(06): 81-89.

[118]Wu W, Jiang L, Jiang H, et al. Phase Evolution and Properties of Al2CrFeNiMox High-Entropy Alloys Coatings by Laser Cladding [J]. Journal of Thermal Spray Technology, 2015, 24(7): 1333-1340.

[119]Juan Y F, Li J, Jiang Y Q, et al. Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings [J]. Applied Surface Science, 2019, 465: 700-714.

[120]Shang X J, Liu Q B, Guo Y X, et al. Nano-TiC reinforced [Cr-Fe4Co4Ni4]Cr3 high-entropy-alloy composite coating fabricated by laser cladding [J]. Journal of Materials Research and Technology, 2022, 21: 2076-2088.

[121]Zhao X F, Cui H Z, Jiang D, et al. The collaborative effect of carbon-borides and the redistribution of Ni, Cr and Mo on the corrosion and wear resistance of NiCrMoCB coatings [J]. Vacuum, 2023, 212: 111981.

[122]Ren Z Y, Hu Y L, Tong Y G, et al. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy [J]. Tribology International, 2023, 182: 108366.

[123]Wen X, Cui X F, Jin G, et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding [J]. Journal of Alloys and Compounds, 2020, 835: 155449.

[124]Liu H, Gao Q, Dai J B, et al. Microstructure and high-temperature wear behavior of CoCrFeNiWx high-entropy alloy coatings fabricated by laser cladding [J]. Tribology International, 2022, 172: 107574.

[125]Tang H, Zhang H, Chen L, et al. Novel laser rapidly solidified medium-entropy high speed steel coatings with enhanced hot wear resistance [J]. Journal of Alloys and Compounds, 2019, 772: 719-727.

[126]徐猛. 激光熔覆CoCrFeMoNi高熵合金涂层的组织及性能分析 [D]. 镇江; 江苏科技大学, 2021.

[127]Qiu X W, Zhang Y P, He L, et al. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy [J]. Journal of Alloys and Compounds, 2013, 549: 195-199.

[128]Qiu X W. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification [J]. Journal of Alloys and Compounds, 2018, 735: 359-364.

[129]Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corrosion Science, 2018, 134: 131-139.

[130]Han Z H, Ren W N, Yang J, et al. The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys [J]. Journal of Alloys and Compounds, 2020, 816: 152583.

[131]Gu Z, Peng W S, Guo W M, et al. Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings [J]. Surface and Coatings Technology, 2021, 408: 126793.

[132]Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM) [J]. Corrosion Science, 2011, 53(10): 3186-3192.

[133]Wan H X, Song D D, Shi X L, et al. Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment [J]. Journal of Materials Science & Technology, 2021, 60: 197-205.

中图分类号:

 TH142    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式