- 无标题文档
查看论文信息

论文中文题名:

 全渠道背景下可持续供应链网络设计研究    

姓名:

 柯丹丹    

学号:

 20202097033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 管理科学与工程    

研究方向:

 系统分析与建模    

第一导师姓名:

 柯丹丹    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Research on sustainable supply chain network design problems in omnichannel    

论文中文关键词:

 可持续供应链网络设计 ; 全渠道 ; 混合整数规划 ; 机会约束规划 ; 优化    

论文外文关键词:

 sustainable supply chain network design ; Omnichannel ; Mixed integer programming ; Chance constrained programming ; Optimization    

论文中文摘要:

      由于电子商务与先进物流技术的快速发展,消费模式已从单一渠道的线下购买方式转变为线上、线下相结合的多渠道或全渠道模式。因此,研究全渠道背景下企业供应链网络设计问题具有重要的理论与实践意义。本文以全渠道可持续供应链网络为研究对象,分别对确定性和不确定环境下两类可持续供应链网络设计优化问题展开研究。

       首先,针对客户需求量、设施容量等参数已知情况下的可持续供应链网络设计问题,以最小化供应链总成本和碳排放量为优化目标,构建了一个多阶段混合整数线性规划(Mixed integer linear programming,MILP)模型,设计了基于迭代epsilon算法,其通过将双目标问题转化为一系列单目标问题进行求解从而获得原始双目标优化问题得真正帕累托前沿(Pareto frontier)。同时,基于决策者的不同偏好使用模糊决策方法选出供应链网络配置最优决策方案。最后,通过使用C++编程语言编码实现了上述模型与算法,并通过测试算例和105个随机生成算例验证了所构建模型和算法的有效性。

     其次,研究了不确定环境下的可持续供应链网络设计优化问题,综合考虑顾客需求、设施容量的不确定性以及碳排放上限等因素,以供应链总成本最小化为优化目标,首先构建了不确定环境下可持续供应链网络设计模型;使用机会约束规划方法和不确定理论,将所建立的不确定性模型等价转换为确定性的MILP模型。最后,使用C++编程语言编码实现了上述模型并应用CPLEX求解器对基准算例和随机生成算例进行验证与评价。实验结果表明,本研究构建的网络设计模型能够有效求解不确定环境下的可持续供应链网络设计与优化问题。此外,也分析了不同碳上限和不同概率情景下对供应链总成本结构的影响机理,这为相关企业决策者面临不确定环境下的可持续供应链网络规划和运营决策提供一定的理论和技术支持。

论文外文摘要:

Due to the rapid development of e-commerce and advanced logistics technology, the consumption mode has changed from the brick-and-mortar purchase mode (i.e., single offline channel) to the multi-channel or omni-channel modes based on online and offline. Therefore, it has important theoretical and practical significances to study the supply chain network design problems in omnichannel. This paper takes the omni-channel sustainable supply chain network as the research object, and aims to study two types (i.e., deterministic and uncertain) sustainable supply chain network design optimization problems.

First, we consider the deterministic sustainable supply chain network problem with known parameters such as customer demand and facility capacity. The objectives of the considered problem are to simultaneously minimize the total supply chain cost and carbon emissions released by the supply chain activities. We formulate a multi-stage mixed integer linear programming (Mixed Integer linear programming, MILP) model for the problem, and design an epsilon-constraint based iterative algorithm, which converts the studied bi-objective optimization problem into a series of single-objective optimization problems so as to obtain the true Pareto frontier for the original bi-objective problem. Also, the fuzzy decision-making method was designed for helping the decision makers select the optimal or best supply chain network configuration scheme under different preferences. Finally, our model and algorithm were implemented by using C++ programming language, and their effectiveness was verified by benchmark instances and 105 randomly generated examples.

Second, the sustainable supply chain network design problem with parameters uncertainty (such as uncertainty of customer demand, facility capacity, and carbon emission cap) is studied. The objective of the studied problem is to minimize the total supply chain cost. We first formulated an uncertain mathematical model for the studied problem, and then use the chance constrained programming method and uncertainty theory to equivalently transform the formulated uncertainty model into a deterministic MILP model. Finally, both benchmark instances and random testing instances are used to evaluate the efficiency of the above model, which is coded by C++ programming language and solved by the CPLEX MIP solver. The experimental results show that our proposed model is effective and efficient for the considered uncertain SCND problem in omnichannel. Besides, the impact mechanism of different carbon caps and different probability scenarios on the structure of the objective function is also analyzed. The results may support the decision makers to manage and plan their supply chain network effectively, especially under an uncertain environment.

参考文献:

[1] Rigby D. The future of shopping[J]. Harvard business review, 2011, 89(12): 65-76.

[2] Hübner A, Kuhn H, Wollenburg J. Last mile fulfilment and distribution in omni-channel grocery retailing: a strategic planning framework[J]. International Journal of Retail & Distribution Management, 2016, 44(3): 228-247.

[3] Marchet G, Melacini M, Perotti S, et al. Business logistics models in omni-channel: a classification framework and empirical analysis[J]. International Journal of Physical Distribution & Logistics Management, 2018, 48(4): 439-464.

[4] Zhang S, Lee C, Wu K, et al. Multi-objective optimization for sustainable supply chain network design considering multiple distribution channels[J]. Expert Systems with Applications, 2016, 65: 87-99.

[5] Yadav V, Tripathi S, Singh A. Bi-objective optimization for sustainable supply chain network design in omnichannel[J]. Journal of Manufacturing Technology Management, 2019, 30(6): 972-986.

[6] Niranjan T, Parthiban P, Sundaram K, et al. Designing a omnichannel closed loop green supply chain network adapting preferences of rational customers[J]. Sādhanā, 2019, 44: 1-10.

[7] Govindarajan A, Sinha A, Uichanco J. Joint inventory and fulfillment decisions for omnichannel retail networks[J]. Naval Research Logistics (NRL), 2021, 68(6): 779-794.

[8] Bretthauer K, Mahar S, Venakataramanan M. Inventory and distribution strategies for retail/e-tail organizations[J]. Computers & Industrial Engineering, 2010, 58(1): 119-132.

[9] Guerrero-Lorente J, Gabor A, Ponce-Cueto E. Omnichannel logistics network design with integrated customer preference for deliveries and returns[J]. Computers & Industrial Engineering, 2020, 144: 106433.

[10] Chalmardi M, Camacho-Vallejo J. A bi-level programming model for sustainable supply chain network design that considers incentives for using cleaner technologies[J]. Journal of Cleaner Production, 2019, 213: 1035-1050.

[11] Eskandarpour M, Dejax P, Péton O. Multi-directional local search for sustainable supply chain network design[J]. International Journal of Production Research, 2021, 59(2): 412-428.

[12] Guillén-Gosálbez G. A novel MILP-based objective reduction method for multi-objective optimization: Application to environmental problems[J]. Computers & Chemical Engineering, 2011, 35(8): 1469-1477.

[13] Kadziński M, Tervonen T, Tomczyk M, et al. Evaluation of multi-objective optimization approaches for solving green supply chain design problems[J]. Omega, 2017, 68: 168-184.

[14] Varsei M, Polyakovskiy S. Sustainable supply chain network design: A case of the wine industry in Australia[J]. Omega, 2017, 66: 236-247.

[15] Pinto-Varela T, Barbosa-Póvoa A, Novais A. Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances[J]. Computers & Chemical Engineering, 2011, 35(8): 1454-1468.

[16] Arampantzi C, Minis I. A new model for designing sustainable supply chain networks and its application to a global manufacturer [J].Journal of Cleaner Production,2017,156:276-292.

[17] Govindan K, Fattahi M, Keyvanshokooh E. Supply chain network design under uncertainty: A comprehensive review and future research directions[J]. European journal of operational research, 2017, 263(1): 108-141.

[18] Bidhandi H, Yusuff R. Integrated supply chain planning under uncertainty using an improved stochastic approach[J]. Applied Mathematical Modelling, 2011, 35(6): 2618-2630.

[19] Kara S, Onut S. A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling[J]. Expert Systems with Applications, 2010, 37(9): 6129-6137.

[20] Pishvaee M, Jolai F, Razmi J. A stochastic optimization model for integrated forward/reverse logistics network design[J]. Journal of Manufacturing Systems, 2009, 28(4): 107-114.

[21] Arabzad S, Ghorbani M, Zolfani S. A multi-objective robust optimization model for a facility location-allocation problem in a supply chain under uncertainty[J]. Engineering Economics, 2015, 26(3): 227-238.

[22] Melo M, Nickel S, Saldanha-Da-Gama F. Facility location and supply chain management–A review[J]. European journal of operational research, 2009, 196(2): 401-412.

[23] Aghezzaf E. Capacity planning and warehouse location in supply chains with uncertain demands[J]. Journal of the Operational Research Society, 2005, 56(4): 453-462.

[24] Modak N, Kelle P. Managing a dual-channel supply chain under price and delivery-time dependent stochastic demand[J]. European Journal of Operational Research, 2019, 272(1): 147-161.

[25] Baghalian A, Rezapour S, Farahani R. Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case[J]. European journal of operational research, 2013, 227(1): 199-215.

[26] Guillén‐Gosálbez G, Grossmann I. Optimal design and planning of sustainable chemical supply chains under uncertainty[J]. AICHE journal, 2009, 55(1): 99-121.

[27] Pishvaee M, Razmi J, Torabi S. An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 67: 14-38.

[28] Diabat A, Al-Salem M. An integrated supply chain problem with environmental considerations[J]. International Journal of Production Economics, 2015, 164: 330-338.

[29] Martí J, Tancrez J, Seifert R. Carbon footprint and responsiveness trade-offs in supply chain network design[J]. International Journal of Production Economics, 2015, 166: 129-142.

[30] Rezaee A, Dehghanian F, Fahimnia B, et al. Green supply chain network design with stochastic demand and carbon price[J]. Annals of operations research, 2017, 250(2): 463-485.

[31] Das R, Shaw K. Uncertain supply chain network design considering carbon footprint and social factors using two-stage approach[J]. Clean Technologies and Environmental Policy, 2017, 19(10): 2491-2519.

[32]齐严.全渠道零售背景下供应链整合对企业绩效的影响[J].中国流通经济,2021,35(10):39-54.

[33]叶超.“全渠道”流通发展的主要特征及发展前景[J].商业经济研究,2020,(10):39-41.

[34] 宁靓,孙晓云.互联网下传统零售企业战略转型研究——基于全渠道零售视角[J].商业经济研究,2020,(09):122-124.

[35] 李超锋.全渠道供应链下社交网络环境对顾客渠道选择行为的影响[J].商业经济研究,2022,(03):105-108.

[36] 陶峻.全渠道背景下零售商渠道选择与决策[J].商业经济研究,2021,(12):33-36.

[37] 李玉霞,庄贵军,卢亭宇.传统零售企业从单渠道转型为全渠道的路径和机理——基于永辉超市的纵向案例研究[J].北京工商大学学报(社会科学版),2021,36(01):27-36.

[38] 冯彬蔚.电子商务“线上+线下”联动发展的效果——基于奥卡姆剃刀理论的分析[J].商业经济研究,2020,(18):101-104.

[39] 李伟春,李伟,郑桂玲.新零售驱动下全渠道物流支撑体系重构[J].商业经济研究,2020,(13):101-104.

[40] 施天娇,杨斌,朱小林.全渠道零售场景下配送车辆路径问题[J].上海海事大学学报,2020,41(02):51-57.

[41]黄信恒.全渠道模式下零售企业供应链的优化探究[J].商业经济研究,2020,(05):101-103.

[42] 杨道箭,张秀杰.不确定需求下全渠道运营退货策略[J].预测,2020,39(02):84-89.

[43] 邱云飞,于智龙,郭羽含,刘雨诗,吕爽.蒙特卡洛树搜索下的整合多目标可持续闭环供应链网络优化[J].计算机集成制造2022,28(01) :269-293.

[44]许良,滕燕强.基于社会责任的可持续供应链网络设计[J].物流技术,2015,34(21):155-158.

[45] 张鑫,赵刚,李伯棠.可持续闭环供应链网络设计的多目标模糊规划问题[J].控制理论与应用,2020,37(03):513-527.

[46] 韩宇坤,马成林,李春萍,邵欣冉.黑龙江省木材加工企业可持续供应链优化研究[J].森林工程,2021,37(05):137-144.

[47] 甘俊伟,罗利,寇然.可持续逆向物流网络设计研究进展及趋势[J].控制与决策,2020,35(11):2561-2577.

[48] 高聪.考虑多维不确定性的生物能源供应链优化设计研究[J].河南师范大学学报(自然科学版),2022,50(02):58-64.

[49] 张得志,张方涛,陈婉茹,王臻杰.需求不确定下的中欧班列国际运输网络设计优化[J].铁道科学与工程学报,2021,18(11):2841-2848.

[50] 董海,高秀秀,魏铭琦.基于动态自适应布谷鸟搜索算法的多目标闭环供应链网络优化[J].系统工程,2020,38(04):46-58.

[51] 邱若臻,肖欣,孙艺萌,时顺鹏.不确定环境下的鲁棒多产品、多周期供应链网络设计模型[J].计算机集成制造系统,2019,25(10):2655-2665.

[52] 肖建华,刘侠,尚帅,陈萍.基于节点失效和需求不确定的弹性供应链网络优化模型与算法[J].统计决策, 2018,34(17):5053.

[53] 赵霞,曹宝明,窦建平.需求和原料价格不确定下农产品供应链网络鲁棒优化设计[J].管理工程学报,2017,31(04):17185.

[54] 邱若臻,陈瑞颍,关志民,黄小原.不确定经济环境下基于EVA的鲁棒供应链网络设计模型[J].控制与决策, 2017,32(02):203212.

[55] Stadtler H. Supply chain management: An overview[J]. Supply chain management and advanced planning: Concepts, models, software, and case studies, 2015: 3-28.

[56] Elkington J. Towards the sustainable corporation: Win-win-win business strategies for sustainable development[J]. California management review, 1994, 36(2): 90-100.

[57] Gomory R. Outline of an algorithm for integer solutions to linear programs and an algorithm for the mixed integer problem[J]. 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, 2010: 77-103.

[58] Xiao G, Li S, Wang X, et al. A solution to unit commitment problem by ACO and PSO hybrid algorithm[C]//2006 6th world congress on intelligent control and automation. IEEE, 2006, 2: 7475-7479.

[59] 郑金华,邹娟.多目标进化优化[M].北京:科学出版社, 2017:17.

[60] 任宏涛,郭颖,周文戟等.资源约束下绿色铝供应链网络设计多目标优化[J].系统工程理论与实践,2020,40(08):2090-2103.

[61] Miettinen K. Nonlinear multiobjective optimization[M]. Springer Science & Business Media, 1999.

[62] Feng J, Che A, Wang N. Bi-objective cyclic scheduling in a robotic cell with processing time windows and non-Euclidean travel times[J]. International Journal of Production Research, 2014, 52(9): 2505-2518.

[63] Haimes Y, Lasdon L, Wismer D. On a bicriterion formation of the problems of integrated system identification and system optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1971, 296-297.

[64] 师红花. 不确定环境下的弹性供应链网络设计研究[D].对外经济贸易大学,2021.

[65] Brynjolfsson E, Hu Y, Rahman M. Competing in the age of omnichannel retailing[J]. MIT sloan management Review, 2013, 54(4): 23-29.

[66] Wu X, Che A. A memetic differential evolution algorithm for energy-efficient parallel machine scheduling[J]. Omega, 2019, 82: 155-165.

[67] Zhang X, He M, Yang C. An optimal decision for the fresh food supply chain network under omnichannel context[J]. International Journal of Logistics Research and Applications, 2022: 1-42.

[68] Verhoef P, Kannan P, Inman J. From multi-channel retailing to omni-channel retailing: introduction to the special issue on multi-channel retailing[J]. Journal of retailing, 2015, 91(2): 174-181.

[69] Manupati V, Jedidah S, Gupta S, et al. Optimization of a multi-echelon sustainable production-distribution supply chain system with lead time consideration under carbon emission policies[J]. Computers & Industrial Engineering, 2019, 135: 1312-1323.

[70] 郑斐峰,何俊凯,刘明.基于Epsilon约束法的短纤维生产调度的双目标优化研究[J].运筹与管理,2018,27(03):1-8.

[71] Zadeh L. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.

[72] Esmaili M, Shayanfar H, Amjady N. Multi-objective congestion management incorporating voltage and transient stabilities[J]. Energy, 2009, 34(9): 1401-1412.

[73] Li Y, Chu F, Feng C, et al. Integrated production inventory routing planning for intelligent food logistics systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3): 867-878.

[74] 盛锋.需求不确定下的鲁棒供应链网络优化设计[J].科学技术与工程, 2012,12 (11):2649-2654+2664.

[75] Chopra S. Designing the distribution network in a supply chain[J]. Transportation Research Part E: Logistics and Transportation Review, 2003, 39(2): 123-140.

[76]许良,朱洋洋.需求具有碳排放敏感性的供应链网络设计研究[J].物流科技,2018,41(05):104-110.

[77]李亚坤. 碳政策约束下多周期供应链网络设计与优化模型研究[D].东北大学,2018.

[78] Charnes A, Cooper W. Chance-constrained programming[J]. Management science, 1959, 6(1): 73-79.

[79] Nazemi A, Tahmasbi N. A high performance neural network model for solving chance constrained optimization problems[J]. Neurocomputing, 2013, 121: 540-550. 

中图分类号:

 F274    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式