- 无标题文档
查看论文信息

论文中文题名:

 粉煤灰基巷道喷涂堵漏材料研究    

姓名:

 王凯    

学号:

 20220226102    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张铎    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Research on spraying and plugging materials for fly ash-based roadways    

论文中文关键词:

 巷道喷涂材料 ; 粉煤灰 ; 激发剂 ; 复合激发剂 ; 巷道喷涂试验    

论文外文关键词:

 roadway spraying materials ; Fly ash ; Stimulants ; compound excitation ; Roadway spray test    

论文中文摘要:

煤炭的自然发火威胁着煤矿井下的安全生产,巷道中漏风通道的持续漏风供氧,是引起煤炭自燃的最主要原因。因此使用喷涂堵漏材料封堵巷道中的漏风通道是防治煤炭自然发火的重要方法。喷涂堵漏材料除了能发挥堵漏风的作用外,还能阻燃、防止煤壁渗水和封堵瓦斯气体,对煤矿井下的防水、防火和堵漏风以及煤炭自燃灾害的防治具有重要的作用。本文以电厂固体废物粉煤灰作为巷道喷涂材料的粉料,选择多种粉煤灰的活性激发剂,制备和分析粉煤灰基巷道喷涂堵漏材料性能,得到了一种价格实惠、性能优良、适应于煤矿井下的巷道喷涂材料。同时为粉煤灰的资源化利用提供一种新的途径。本研究主要内容如下:

(1)根据聚合物水泥防水涂料的配方设计方法,在不同液粉比(液料/粉料)条件下,固定水泥:填料质量比为2:3,制备粉煤灰基巷道喷涂堵漏材料,应用聚合物水泥防水涂料物理性能测试方法,分别分析材料的干燥时间、拉伸性能、吸水率、阻燃性等物理性能。结果表明:随着液粉比的升高,材料的表干实干时间变长,材料的拉伸强度逐渐减小,断裂伸长率逐渐变大,吸水率逐渐减小,阻燃性能变差。当液粉比为1时,材料的拉伸强度为1.2MPa,断裂伸长率为120%,吸水率为4.7。经过综合分析,材料的最佳液粉比确定为0.4-0.5。

(2)采用最佳液粉比0.5,分别选择高铝水泥、白水泥、普通硅酸盐水泥作为无机粘合剂,分别选择碳酸钙、石英粉、滑石粉3种无机填料,制备喷涂堵漏材料,分析材料拉伸强度、断裂伸长率、吸水率等性能指标。结果表明:以硅酸盐水泥为无机粘合剂时,材料的物理性能表现较好,其拉伸强度为2.21MPa,断裂伸长率为60%,吸水率为5.5%,并且材料的成本更低,更加经济适用。使用石英粉作为无机填料时,材料的物理性能表现较好,材料的拉伸强度为2.81MPa,断裂伸长率为70%,吸水率为3.1%。最终选择硅酸盐水泥和石英粉为较优的无机粘合剂和无机填料。

(3)在液粉比为0.5,硅酸盐水泥:石英粉质量比为2:3的配方下,将配方中的硅酸盐水泥逐渐用粉煤灰部分替换,比较不同粉煤灰添加量对材料拉伸性能、粘结性能、吸水率的影响。结果表明:随粉煤灰添加量的增加,材料的拉伸性能、粘结强度、防水性能、粘结强度均出现了下降,当加入20%粉煤灰时,材料的拉伸强度为2.16MPa,断裂伸长率为65%,通过分析粉煤灰添加量对材料的物理性能的影响,将粉煤灰的添加量确定为20%。通过XRD物相分析,发现材料中的部分粉煤灰活性未激发,需要激发剂进一步增强材料的性能。

(4)比较了氢氧化钠、氯化钙、硫酸钠、三乙醇胺四种单一激发剂和氯化钙-硫酸钠、氢氧化钠-硫酸钠两种复合激发剂制备的材料各项性能指标。研究表明,单一激发剂中,添加2%硫酸钠的材料,其拉伸强度达到了2.43MPa,断裂伸长率达到了46%,粘结强度为1.1MPa,对材料的物理性能提升最好。在复合激发剂对材料的激发试验中,氯化钙:硫酸钠质量比为3:1时,材料的拉伸强度为2.52MPa,断裂伸长率为50%,物理性能表现最好。相较于单一激发剂复合激发剂对材料的拉伸强度提升了37%,柔韧性提高了8%。

(5)通过井下巷道的喷涂试验,检验了材料的堵漏风能力。结果表明:材料喷涂后巷道漏风量由120m3/min降低到60m3/min,降低了60m3/min,从总体来看,喷涂材料在巷道的喷涂有效降低了巷道漏风通道向采空区漏风,能够抑制采空区遗煤的自燃。

论文外文摘要:

The natural ignition of coal threatens the safe production of coal mines, and the continuous air leakage and oxygen supply of air leakage channels in the roadway is the most important cause of spontaneous combustion of coal. Therefore, the use of spraying plugging materials to block the air leakage channel in the roadway is an important method to prevent the natural ignition of coal. In addition to playing the role of plugging the leakage wind, spraying plugging materials can also be flame retardant, prevent coal wall water seepage and block gas gas, which plays an important role in waterproofing, fire prevention and plugging of coal mine underground and the prevention and control of coal spontaneous combustion disasters. In this paper, the solid waste fly ash of the power plant was used as the powder of the roadway spraying material, and a variety of active promoters of fly ash were selected to prepare and analyze the performance of the flyash-based roadway spraying material, and a roadway spraying material with affordable price and excellent performance suitable for coal mine underground was obtained. At the same time, it provides a new way for the resource utilization of fly ash. The main contents of this study are as follows:

(1) According to the formula design method of polymer cement waterproof coating, under different liquid-powder ratio (liquid/powder) conditions, the mass ratio of fixed cement:filler is 2:3, fly ash-based roadway spraying materials are prepared, and the physical properties test method of polymer cement waterproof coating are applied to analyze the physical properties such as drying time, tensile performance, water absorption, flame retardancy and other physical properties of the material. The results show that with the increase of liquid-powder ratio, the surface drying time of the material becomes longer, the tensile strength of the material gradually decreases, the elongation at break gradually increases, the water absorption rate gradually decreases, and the flame retardant performance deteriorates. When the liquid-powder ratio is 1, the tensile strength of the material is 1.2MPa, the elongation at break is 120%, and the water absorption is 4.7. After comprehensive analysis, the optimal liquid-to-powder ratio of the material was determined to be 0.4-0.5.

(2) Using the best liquid-to-powder ratio of 0.5, high aluminum cement, white cement and ordinary Portland cement were selected as inorganic binders, and three kinds of inorganic fillers such as calcium carbonate, quartz powder and talcum powder were selected respectively to prepare spraying and plugging materials, and analyze the tensile strength, elongation at break, water absorption and other performance indicators of the materials. The results show that when Portland cement is used as an inorganic binder, the physical properties of the material are better, its tensile strength is 2.21MPa, the elongation at break is 60%, the water absorption rate is 5.5%, and the cost of the material is lower and more economical. When quartz powder is used as inorganic filler, the physical properties of the material are better, the tensile strength of the material is 2.81MPa, the fracture growth rate is 70%, and the water absorption rate is 3.1%. Finally, Portland cement and quartz powder were selected as the better inorganic binders and inorganic fillers.

(3) Under the formula with a liquid-to-powder ratio of 0.5 and Portland cement:quartz powder mass ratio of 2:3, Portland cement in the formula was gradually replaced with fly ash, and the effects of different fly ash addition amounts on the tensile properties, bonding properties and water absorption of the material were compared. The results show that with the increase of fly ash addition, the tensile properties, bonding strength, waterproof performance and bonding strength of the material decrease, when 20% fly ash is added, the tensile strength of the material is 2.16MPa, the elongation at break is 65%, and the amount of fly ash added is determined to be 20% by analyzing the influence of fly ash addition on the physical properties of the material. Through XRD phase analysis, it was found that some of the fly ash activities in the material were not excited, and an initiator was required to further enhance the performance of the material.

(4) The performance indicators of materials prepared by four single initiators, sodium hydroxide, calcium chloride, sodium sulfate and triethanolamine, and two composite initiators, calcium chloride-sodium sulfate and sodium hydroxide-sodium sulfate, were compared. The results show that the tensile strength of the material with 2% sodium sulfate in the single initiator reaches 2.43MPa, the elongation at break reaches 46%, and the bonding strength is 1.1MPa, which is the best improvement of the physical properties of the material. In the excitation test of the composite initiator on the material, when the mass ratio of calcium chloride:sodium sulfate is 3:1, the tensile strength of the material is 2.52MPa, the elongation at break is 50%, and the physical properties are the best. Compared with a single initiator, the composite provocator increases the tensile strength of the material by 37% and the flexibility by 8%.

(5) Through the spraying test of the underground roadway, the ability of the material to block the leakage air was verified. The results show that the air leakage volume of the roadway after material spraying is reduced from 120m3/min to 60m3/min, which is reduced by 60m3/min, and on the whole, the spraying of the spraying material in the roadway effectively reduces the air leakage from the roadway to the goaf area, which can inhibit the spontaneous combustion of coal in the goaf.

参考文献:

[1] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报~([1])[N]. 人民日报,2023-03-01(009).

[2] 裴习君.“无废城市”理念下我国城市生活垃圾处理模式探析[J].长沙大学学报,2019,33(03):25-27.

[3] 国家统计局.中华人民共和国2021年国民经济和社会发展统计公报~([1])[N].人民日报,2022-03-01(010).

[4] 顾一帆, 孙家国. 基于水胶比变化粉煤灰混凝土性能试验研究[J]. 低温建筑技术, 2019, 41(5):4.

[5] 刘全,白志民,王东,汪溢汀. 我国粉煤灰化学成分与理化性能及其应用分析[J]. 中国非金属矿工业导刊, 2021, 000(001):1-9.

[6] 孙红娟,曾丽,彭同江.粉煤灰高值化利用研究现状与进展[J].材料导报, 2021, 35(03): 3010-3015.

[7] 俞能,柴淑媛,曲金星,魏雅娟.粉煤灰制备高分子复合材料研究现状[J].建材技术与应用,2021(01):13-15.

[8] 张中华.粉煤灰制备吸附剂捕集CO2的研究[J].中国电机工程学报,2021, 41 (04): 1227-1233+1529.

[9] 郭彦青.粉煤灰资源化综合利用途径[J].能源与节能,2020(04):140-141.

[10] Mahinsasa Rathnayake,JulnipitawongP,TangtermsirikulS,etal. Utilization of coal fly ash and botto mash ass olid sorbents for sulfur dioxider eduction from coal fired power plant : Life cycle assessment and applications [J].Journal of Cleaner Production,2018.

[11] Xuan X,Yue C,Li S,et al. Selective catalytic reduction of NO by ammonia with fly ash catalyst[J]. Fuel,2003, 82(5):575-579.

[12] Jianping Yang,Yongchun Zhao,Junying Zhang,Chuguang Zheng. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation[J]. Fuel,2016,164.

[13] 姜龙.燃煤电厂粉煤灰综合利用现状及发展建议[J].洁净煤技术,2020,26(04):31-39.

[14] Iftekhar,Ahmad,Prakash. Mechanical Properties of Fly Ash Filled High Density Polyethylene[J]. Journal of Minerals & Materials Characterization & Engineering, 2010, 9(3).

[15] Vassilev S V,Menendez R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 4. Characterization of heavy concentrates and improved fly ash residues[J]. Fuel, 2005, 84(7/8):973-991.

[16] 王丽萍,李超.粉煤灰资源化技术开发与利用研究进展[J].矿产保护与利用,2019,39(04):38-45

[17] 宣小平,岳长涛,姚强,李术元.以粉煤灰为载体的金属氧化物催化剂脱硝研究[J].环境科学学报,2003(01):33-38.

[18] 朱士豪.聚合物改性水泥基防水堵漏材料制备及性能研究[D].山东建筑大学,2022.

[19] 韩晋鑫,王飞,于创.新型改性水泥砂浆喷涂堵漏风材料的特性研究[J].中国矿业,2021,30(09):114-119.

[20] 冉东升.聚合物水泥防水材料拉伸性能的影响因素研究[J].中国建筑防水,2020(S1):4-7.

[21] Xue Bin Li,Yang C M,Teng D Q,et al. Experimental study on material ratio and mechanical properties of flexible spraying material in soft rock roadway[J]. Coal Engineering, 2018.

[22] Zhou F B,Jin-Hai L I,Liu Y K,et al. A new spraying material of composite slurry and its property for air-isolation[J]. Journal of China Coal Society, 2010, 35(7):1155-1159.

[23] Du Y. Study on spraying polyurethane foam materials for air leakage in gob roadway[J]. China Coal, 2017.

[24] Song X,Wei X,Zhou F. New spraying material for roadway and its application[J]. China Coal, 2011.

[25] 杜云峰.喷涂聚氨酯泡沫材料防治穿采空区巷道漏风[J].中国煤炭,2017,43(01):116-118.

[26] 杨友明,肖迪,孙焕波.浅谈非金属补偿器在循环流化床锅炉烟风道设计上的应用[J].科技与企业,2015(02):234.

[27] 李超.脱炭粉煤灰制备煤矿井下巷道喷涂材料[D].山西大学,2012.

[28] 宁晓龙.聚氨酯弹性体的动态性能研究[D].华东理工大学,2011.

[29] 化工新材料:聚氨酯产业发展前景可期[J].现代化工,2010,30(S2):5.

[30] 尚建国.煤矿井下防水防火功能性材料的开发研究[D].山西大学,2010.

[31] 谭桂蓉,吴秀俊.CFB脱硫灰渣的性能及应用研究[J].粉煤灰综合利用,2009(04):37-40.

[32] 王俊峰,杜云峰,邬剑明,晏泓.新型矿用密闭堵漏材料的制备及性能研究[J].煤矿安全,2009,40(05):30-33.

[33] 谢晟元.浅谈静电除尘在炭素焙烧烟气净化中的应用[J].炭素技术,2008(05):72-74.

[34] 王兆丰,肖东辉,陈向军.分源法预测望云煤矿瓦斯涌出量[J].煤,2008(06):24-26.

[35] 李应权,徐永模,韩立林.聚合物水泥类防水材料性能改进的研究[J].中国建筑防水,2002(03):21-24.

[36] 张沂.聚合物水泥类防水材料综述[J].中国建筑防水,2001(04):10-12.

[37] 文虎,徐精彩.王村矿煤巷高冒区聚氨酯泡沫堵漏风技术[J].矿业安全与环保,2001(03):33-34+63.

[38] Akshata G. Patil,A.M. Shanmugharaj,S. Anandhan. Interparticle interactions and lacunarity of mechano-chemically activated fly ash[J]. Powder Technology,2015,272.

[39] Zhiliang Chen,Shengyong Lu,Minghui Tang,Jiamin Ding,Alfons Buekens,Jie Yang,Qili Qiu,Jianhua Yan. Mechanical activation of fly ash from MSWI for utilization in cementitious materials[J]. Waste Management,2019,88.

[40] Sanjay Kumar,Gábor Mucsi,Ferenc Kristály,Péter Pekker. Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymers[J]. Advanced Powder Technology,2017,28(3).

[41] Akshata G. Patil,S. Anandhan. Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash[J]. Powder Technology,2015,281.

[42] Craig Stephen L. Mechanochemistry: A tour of force.[J]. Nature,2012,487(7406).

[43] Mucsi Gábor. Mechanical activation of power station fl y ash by grinding – A review[J]. Epitoanyag - Journal of Silicate Based and Composite Materials,2016,68(2).

[44] Sanjay Kumar,Rakesh Kumar. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer[J]. Ceramics International,2010,37(2).

[45] Yuting Du,Hongfu Wang,Zhongchang Wang,Zechuan Wang,Hongchun Xia. Mineralogical and active mechanical excitation characteristics of filled fly ash cementitious materials[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2017,32(2).

[46] 罗忠涛, 马保国, 李相国,等. 水热碱性环境下粉煤灰水化进程研究[J]. 中国矿业大学学报, 2010(02):275-278.

[47] Lingjun Ma,Yu Feng,Man Zhang,Qingxin Zheng,Bing Wang,Lina Han,Yuping Li,Liping Chang,Weiren Bao,Jiancheng Wang. Mechanism study on green high-efficiency hydrothermal activation of fly ash and its application prospect[J]. Journal of Cleaner Production,2020,275.

[48] T. Hemalatha,Ananth Ramaswamy. A review on fly ash characteristics–Towards promoting high volume utilization in developing sustainable concrete[J]. Journal of Cleaner Production,2017,147.

[49] Jian-Bo Zhang,Shao-Peng Li,Hui-Quan Li,Ming-Ming He. Acid activation for pre-desilicated high-alumina fly ash[J]. Fuel Processing Technology,2016,151.

[50] Losey Delanie J,Sihvonen Sarah K,Veghte Daniel P,Chong Esther,Freedman Miriam Arak. Acidic processing of fly ash: chemical characterization, morphology, and immersion freezing.[J]. Environmental science. Processes & impacts,2018,20(11).

[51] 赵海君, 严云, 胡志华. 低钙粉煤灰活性激发技术的研究[J]. 水泥工程, 2008(3):4.

[52] 于继寿, 李仁福, 隋成飞,等. 酸碱激活粉煤灰的研究[J]. 粉煤灰综合利用, 2000, 14(002):26-27.

[53] Diego F. Velandia,Cyril J. Lynsdale,John L. Provis,Fernando Ramirez,Ana C. Gomez. Evaluation of activated high volume fly ash systems using Na2SO4 , lime and quicklime in mortars with high loss on ignition fly ashes[J].Construction and Building Materials,2016,128.

[54] 杨晓凤, 彭龙贵, 张再勇. 强碱激发剂对高掺量粉煤灰水化活性的影响及表征[J]. 化工新型材料, 2011(S1):4.

[55] Buchwald A. Current state of research and technology the opportunities they offer and their significance for the precast industry[J]. Betonwerk und Fertigteil-Technik/Concrete Precasting Plant and Technology, 2006, 72(7):42-49.

[56] 王敏,吴勇生,李如燕,等.碱激发剂对铸造粉尘-粉煤灰基地质聚合物抗压强度的影响[J]. 硅酸盐通报, 2013, 32(6):6.

[57] Maria Chiara Bignozzi,Stefania Manzi,Maria Elia Natali,William D.A. Rickard,Arie van Riessen. Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio[J]. Construction and Building Materials,2014,69.

[58] Akash Dakhane,Shannon Tweedley,Siva Kailas,Robert Marzke,Narayanan Neithalath. Mechanical and microstructural characterization of alkali sulfate activated high volume fly ash binders[J]. Materials & Design,2017,122.

[59] Hoang-Anh Nguyen. Utilization of commercial sulfate to modify early performance of high volume fly ash based binder[J]. Journal of Building Engineering,2018,19.

[60] 柯国军, 杨晓峰, 彭红,等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报, 2005.

[61] 王智, 郑洪伟. 硫酸盐对粉煤灰活性激发的比较[J]. 粉煤灰综合利用, 1999, 13(3):4.

[62] Lv X K. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Protein and peptide letters, 2020, 27(6).

[63] Dongho Jeon,Woo Sung Yum,Yeonung Jeong,Jae Eun Oh. Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2[J]. Cement and Concrete Research,2018,111.

[64] Chen Li,Hongbo Zhu,Mengxue Wu,Kaifan Wu,Zhengwu Jiang. Pozzolanic reaction of fly ash modified by fluidized bed reactor-vapor deposition[J]. Cement and Concrete Research,2017,92.

[65] Saldanha R B,Filho H S,Ribeiro J,et al. Modelling the influence of density, curing time, amounts of lime and sodium chloride on the durability of compacted geopolymers monolithic walls[J]. Construction and Building Materials, 2017, 136(Complete):65-72.

[66] 王复生, 朱元娜, 马金龙,等. 氯化钠对掺磨细矿渣粉硅酸盐水泥基材料活性激发能力和结合方式影响的试验研究[J]. 硅酸盐通报, 2009, 28(4):8.

[67] 吕擎峰, 王子帅, 陈臆,等. 氯化钠对碱激发地聚物强度影响机理研究[J]. 功能材料, 2020, 51(2):6.

[68] 兰明章, 侯伟芳, 王亚丽. 醇胺对掺粉煤灰水泥基材料性能的影响[J]. 混凝土, 2015(8):3.

[69] Xiao Chen,Guorui Zhu,Mingkai Zhou,Jie Wang,Qian Chen. Effect of Organic Polymers on the Properties of Slag-based Geopolymers[J]. Construction and Building Materials,2018,167.

[70] 杨萌, 孙正, 周卫兵,等. 醇胺类助磨剂对粉煤灰水泥水化硬化过程的影响[J]. 水泥, 2011(12):4.

[71] 汤青青, 张丽娟, 孙国文,等. 三乙醇胺-氢氧化钙对大掺量粉煤灰水泥胶凝体系早期活性激发[J]. 硅酸盐通报, 2018, 37(9):6.

[72] D. Heinz,M. Göbel,H. Hilbig,L. Urbonas,G. Bujauskaite. Effect of TEA on fly ash solubility and early age strength of mortar[J]. Cement and Concrete Research,2009,40(3).

[73] Jionghuang He,guangcheng long,cong ma,kunlin ma,youjun xie,yi shi,ning li,zhiqing cheng. Effect of triethanolamine on hydration kinetics of cement-fly ash system at elevated curing temperature[J]. ACS Sustainable Chemistry & Engineering,2020,8(27).

[74] Sun Guowen,Tang Qingqing,Zhang Jianjian,Liu Zhiyong. Early activation of high volume fly ash by ternary activator and its activation mechanism[J]. Journal of Environmental Management,2020,267(C).

[75] 李权威. 聚合物水泥基饰面涂层体系设计及性能研究[D].济南大学,2022.

[76] 田翠,赵守佳,杨福成.聚合物水泥防水材料粘结强度影响因素的探讨[J].中国建筑防水,2015(09)

中图分类号:

 TD752.2    

开放日期:

 2024-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式