题名: | 基于正激拓扑的单级功率因数校正变换器研究 |
作者: | |
学号: | 20206227111 |
保密级别: | 保密(3年后开放) |
语种: | chi |
学科代码: | 085207 |
学科: | 工学 - 工程 - 电气工程 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2023 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 开关变换器分析与设计 |
导师姓名: | |
导师单位: | |
提交日期: | 2023-06-26 |
答辩日期: | 2023-06-01 |
外文题名: | Research on Single Stage Power Factor Correction Converter Based on Forward Topology |
关键词: | |
外文关键词: | Forward Converter ; PFC ; Average Current Control ; Compensation Network |
摘要: |
针对传统正激变换器应用于功率因数校正时存在输入电流死区的问题,本文提出了一种新型正激单级PFC变换器,提升了变换器的电气性能,对正激单级PFC变换器的推广应用具有重要指导意义。 对新型正激变换器的工作原理进行详细分析,依据励磁电感及正激电感在工频周期内的工作特性,发现变换器存在3种组合工作模式,并深入分析了变换器在不同工作模式时的能量传输过程,得出附加电容既可使变压器磁芯复位,也可将励磁能量传输至负载端,同时还可消除输入电流死区。推导了变换器的附加电容电压应力、电感峰值电流、功率器件应力及输出端二倍工频纹波电压峰峰值等的解析表达式,据此提出了主电路元器件参数的设计方法。建立了变换器的功率级小信号模型,推导出了功率级各环节的传递函数,并推导了电压环和电流环的开环传递函数,考虑采样保持增益和数字控制延迟对电压环及电流环幅相特性的影响,提出了双环各自的补偿网络设计方法,提升了平均电流控制新型正激单级PFC变换器的动、稳态性能。考虑开关冲击电流将降低电流采样的精度,提出了平均电流采样算法。为防止硬启动对电路造成损坏,加入了系统软启动机制、电路保护机制等一系列优化控制。 根据所提出的设计方法,研制出一台48V/4A的样机并进行了实验研究,实验结果表明,所研制样机的功率因数在输入电压和负载电阻的变化范围内最高可达0.998。同时,样机其他电气性能均符合预先设定的指标,验证了理论分析的正确性和设计方法的可行性。 |
外文摘要: |
Aiming at the problem of input current dead band when traditional forward converters are applied to power factor correction, this paper proposes a new type of forward single-stage PFC converter, which improves the electrical performance of the converter and has important guiding significance for the promotion and application of forward single-stage PFC converters. The working principle of the new forward converter is analyzed in detail, according to the working characteristics of the excitation inductance and the forward inductor in the power frequency cycle, it is found that there are three combined working modes of the converter, and the energy transfer process of the converter in different working modes is analyzed in depth, and it is concluded that the additional capacitance can not only reset the transformer core, but also transmit the excitation energy to the load end, and also eliminate the input current dead zone. The analytical expressions of additional capacitor voltage stress, inductor peak current, power device stress and output double power frequency ripple voltage peak-to-peak of the converter are derived, and the design method of the main circuit component parameters is proposed. The small signal model of the power stage of the converter is established, the transfer function of each link of the power stage is derived, the open-loop transfer function of the voltage loop and the current loop is derived, and the influence of sample-and-hold gain and digital control delay on the amplitude phase characteristics of the voltage loop and the current loop is considered, and the design method of the compensation network of the double loop is proposed, which improves the dynamic and steady-state performance of the new forward single-stage PFC converter with average current control. Considering that the switching inrush current will reduce the accuracy of current sampling, an average current sampling algorithm is proposed. In order to prevent the hard start from damaging the circuit, a series of optimization controls such as the system soft start mechanism and the circuit protection mechanism are added. According to the proposed design methodology, a 48V/4A prototype was developed and experimental research was carried out, and the experimental results showed that the power factor of the developed prototype could reach 0.998 in the range of changes in input voltage and load resistance. At the same time, other electrical properties of the prototype meet the preset indicators, which verifies the correctness of the theoretical analysis and the feasibility of the design method. |
参考文献: |
[1]吴乙雨. 100W数字多模式单级PFC反激变换器控制算法设计[D]. 南京: 东南大学, 2017. [3]陈文健. 基于GaN的图腾柱无桥PFC变换器的研究[D]. 杭州: 杭州电子科技大学, 2022. [5]李明洪. DCM-CRM单级PFC变换器研究[D]. 成都: 西华大学, 2019. [6]张晋川. 高效图腾柱式无桥PFC变换器的研究[D]. 南京: 南京理工大学, 2021. [7]曾燊杰. Boost PFC变换器的无模型预测控制研究[D]. 合肥: 合肥工业大学, 2019. [10]揭东华. 3kVA功率因数校正装置研制[D]. 南京: 南京航空航天大学, 2007. [11]杨栩. 基于GaN HEMT的数字控制图腾柱无桥PFC变换器研究与设计[D]. 成都: 西南交通大学, 2020. [12]赵梓淮. DCM和CRM混合模式反激PFC变换器研究[D]. 成都: 西华大学, 2020. [13]俞晋翀. 适用于DCM Boost变换器的数字有源功率因数校正技术及其FPGA实现[D]. 武汉: 华中科技大学, 2020. [14]薛飞.CCM模式下单相Boost APFC电流的解析计算方法[J]. 电力系统及其自动化学报, 2023, 35(04): 109-115. [15]王颖. 3kW电动汽车车载充电机的设计与实现[D]. 武汉: 武汉理工大学, 2019. [19]王振南. 含可控整流电路的无电解电容单级PFC变换器研究[D]. 北京: 北方工业大学, 2021. [22]王尚宁, 丘东元, 张波. 基于TRIZ理论的单级功率因数校正电路拓扑分析[J]. 电工电能新技术, 2016, 35(01): 60-66. [23]冯传阳. Boost-Flyback单级PFC变换器研究[D]. 成都: 西华大学, 2021. [27]刘树林, 张海亮, 王航杰, 等. 抑制输出能量倒灌的二次侧自复位正激变换器的能量传输过程分析[J]. 电工技术学报, 2020, 35(S2): 477-483. [28]Rudy Severns. The History of the Forward Converter[J]. Switching Power Magazine, 2000, 7: 20-22. [29]朱良梅. 基于数字控制的全桥单级PFC变换器研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [30]王鹏,贲洪奇,王雪松.单相单级PFC变换器预测控制算法研究[J].电力电子技术,2017,51(01):62-64. [31]侯良奎. 单级无桥隔离型功率因数校正变换器研究[D]. 合肥: 合肥工业大学, 2017. [35]李江松. 基于准谐振控制的正激PFC变换器的研究[D]. 杭州: 杭州电子科技大学, 2016 [37]王国礼, 金新民. 采用LCD箝位电路的正激DC-DC变换器[J]. 电工技术杂志, 2000, 26(12): 24-26. [38]Heinicke, Harald. Apparatus for Converting D.C. Voltage[P]. U.S. patent 392105418, 1975. [41]刘健, 王兆安, 刘树林. 高功率因数单级BOOST正激组合变换器的稳态分析[J]. 电力电子技术, 1998, (4): 18-21. [43]周万传. 双管正激式单级PFC变换器的研究[D]. 株洲: 湖南工业大学, 2010. [44]俞晋翀. 适用于DCM Boost变换器的数字有源功率因数校正技术及其FPGA实现[D]. 武汉: 华中科技大学, 2020. [45]杨威. 单相功率因数校正控制技术的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019. [46]高俊岭, 张东, 李登魁等. 基于平均电流控制的升压式PFC研究[J]. 重庆工商大学学报(自然科学版), 2020, 37(04): 9-13. [48]张同国, 高文进, 张冀, 高锦宏, 石超. 基于PI控制的DC/DC变换器峰值电流控制策略[J]. 机电工程技术, 2022, 51(05): 98-101. [49]权兵. 一种串联补偿反激式PFC变换器的研究与设计[D]. 西安: 西安科技大学, 2021. [50]吕焱峰. 基于单周期控制的单相高功率因数整流器的研究[D]. 西安: 西北工业大学, 2006. [51]郭晓瑞, 周鑫, 王燕锋. 基于平衡点计算的无差拍控制在PFC中的应用[J]. 湖州师范学院学报, 2020, 42(04): 64-68. [52]吕镇宇, 于新红, 吴蒙等. 交错并联PFC变换器的预测控制研究[J]. 信息技术, 2022, 363(02): 76-82. |
中图分类号: | TM46 |
开放日期: | 2026-06-26 |