- 无标题文档
查看论文信息

论文中文题名:

 基于多源数据研究三峡地区环境负荷对地表形变的影响    

姓名:

 张成浩    

学号:

 21210226113    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 大地测量形变监测    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-01    

论文外文题名:

 The vertical crustal deformation caused by environmental load in the Three Gorges area is studied based on multi-source data    

论文中文关键词:

 三峡地区 ; 负荷形变 ; GNSS ; GRACE-FO ; 质量变化模型 ; 地震    

论文外文关键词:

 The Three Gorges region ; Load deformation ; GNSS ; GRACE-FO ; Quality change model ; Earthquake    

论文中文摘要:

       固体地球会随着地表大气、海洋和陆地水等环境质量负荷的变化而发生弹性形变。三峡水库周期性蓄放水产生的巨大水体质量变化导致三峡库区及其周边地区的地壳产生较大变形。目前,全球卫星导航定位系统GNSS可以准确地监测陆地水、大气等环境负荷变化引起的地表形变,但受站点数量的限制,并且GNSS时间序列还受到构造运动、热膨胀等因素的干扰; GRACE重力卫星为研究负荷形变提供了新的思路,它可以连续地监测全球的的质量变化,包括极地冰盖、山地冰川、地表径流和土壤水等,我们根据负荷形变理论,从而计算环境质量负荷变化引起的地表形变;此外,通过卫星测高、遥感卫星、地面监测站等技术手段,我们可以获取全球的海平面高度异常、土壤水、地表大气压等环境的变化,对引起负荷形变的各种环境变量分别构建环境负荷质量变化模型来研究负荷形变问题。因此,本文以三峡水库复杂的水文环境变化为研究背景,构建了三峡地区江河湖库水、土壤水、冰雪、植被冠层水、非潮汐大气和海洋这些环境负荷的质量变化模型,结合GNSS和GRACE-FO数据,研究了三峡地区环境负荷变化引起的地表形变,探讨了GNSS、GRACE-FO和环境质量变化模型在监测地表负荷形变上的差异,并结合地震目录数据分析了三峡水库蓄水过程与地震活动的响应关系。主要内容和成果如下:

(1)基于GRACE-FO数据计算了三峡地区的陆地水负荷垂直形变,GRACE-FO GSM和 Mascon两种数据产品计算的垂直形变空间分布和变化趋势在大部分地区总体一致,但是Mascon的计算结果空间分辨率更高,局部细节更加明显,量级也更大,因为Mascon产品更好的恢复了GSM数据处理过程中的信号衰减和泄露。

(2)利用环境质量变化模型分别计算了各种环境负荷引起的地表形变,发现不同环境负荷对三峡地区地表垂直形变的贡献为:非潮汐大气负荷>土壤水负荷>非潮汐海洋负荷>冰雪和植被冠层水负荷,而江河湖库水负荷在库区5km以内的区域大于大气负荷,在距离库区200km外的区域小于非潮汐海洋负荷。江河湖库水负荷垂直形变与水位呈负相关,最大形变区域在忠县附近,达到了23mm;三峡水库水位下降会导致库区两岸地表发生朝向库区中心的水平方向形变,水平(北向\东向)的形变在-2~2mm之间;此外对地表影响较大的大气负荷垂直形变年变化幅度在15mm左右。

(3)基于三峡地区14个GNSS站点的实测数据定量分析了GRACE-FO和质量变化模型在计算环境总负荷垂直形变上的差异,结果表明:GRACE-FO GSM+GAC、GRACE-FO Mascon+GAC、包含CPC土壤水的质量变化模型和包含GLDAS土壤水的质量变化模型这四类数据产品计算的环境总负荷垂直形变与GNSS实测结果的相关系数平均值分别为0.71、0.68、0.70和0.65,虽然GRACE-FO的结果整体精度较高,但位于库区附近的CQWZ和HBZG站,质量变化模型的计算结果与GNSS相关性更高。

(4)结合地震目录数据分析了三峡库区巴东到秭归段附近的地震活动与水库水位的时空关联性,探讨水库蓄水对库区地震活动的影响,结果发现:三峡水库诱发型地震的震中分布主要有两个地区,一是巴东断裂、高桥断裂和牛口断裂之间的区域,二是仙女山断裂和九畹溪断裂靠近库区的区域。该区域在水库蓄水前期地震震中分布分散,地震活动强度低,当2003年6月蓄水至135m期间和2006年9月蓄水至156m期间,短时间内水位的快速上升导致地震活动显著增强,但是震级普遍较低,而在2008年9月水库达到最高水位约175m后,地震活动频次有所下降,但地震强度略有增强,4级以上地震事件的频数有所增加。

论文外文摘要:

The solid Earth undergoes elastic deformation in response to changes in the environmental quality loads of the surface atmosphere, oceans and land water. The huge water mass changes generated by the periodic storage and release of water from the Three Gorges Reservoir lead to large deformation of the earth's crust in the Three Gorges Reservoir area and the surrounding areas. At present, the Global Navigation and Positioning System (GNSS) can accurately monitor the surface deformation caused by changes in environmental loads such as terrestrial water and the atmosphere, but it is limited by the number of stations, and the GNSS time series are also interfered by tectonic movements, thermal expansion, and other factors; the GRACE gravity satellite provides a new way of thinking for the study of load deformation, and it can continuously monitor the quality changes in all areas of the earth, including It can continuously monitor the quality changes in all regions of the Earth, including the polar ice caps, mountain glaciers, surface runoff and soil water, etc. According to the theory of load deformation, we can calculate the surface deformation caused by the change of environmental quality load; in addition, through the technical means of satellite altimetry, remote sensing satellites, ground monitoring stations, etc., we can obtain the global changes of the environment, such as the sea level anomalies, soil water, and surface atmospheric pressure, etc., and construct an environmental load quality model to study the load deformation by modeling the load quality change of the environmental variables that cause the load deformation respectively. We can construct the environmental load quality change model to study the problem of load deformation for various environmental variables that cause load deformation. Therefore, this paper takes the complex hydrological environment change of Three Gorges Reservoir as the research background, constructs the quality change model of environmental loads of river and lake water, soil water, snow and ice, vegetation canopy water, non-tidal atmosphere and ocean in Three Gorges area, combines the GNSS and GRACE-FO data to study the surface deformation caused by the environmental load change in Three Gorges area, and discusses the advantages of GNSS, GRACE-FO and the environmental quality change model in monitoring the surface deformation. environmental quality change models in monitoring surface load deformation, and analyzed the response relationship between the storage process of the Three Gorges Reservoir and seismic activities by combining seismic catalog data. The main contents and results are as follows:

(1) Vertical deformation of land water load in the Three Gorges area was calculated based on GRACE-FO data. The spatial distribution and trend of vertical deformation calculated by GRACE-FO GSM and Mascon products are generally consistent in most areas, but the results of Mascon have higher spatial resolution, more obvious local details, and larger magnitude because the Mascon product better recovers the spatial distribution and trend of vertical deformation caused by the processing of GSM data. of recovering the signal attenuation and leakage caused by GSM data processing.

(2) The surface deformation caused by various environmental loads is calculated separately by using the environmental quality change model, and it is found that the contributions of different environmental loads to the vertical deformation of the surface in the Three Gorges area are: nontidal atmospheric load > soil water load > nontidal oceanic load > ice, snow and vegetation canopy water load, while the water load of the rivers and lakes is greater than the atmospheric load in the area within 5 km of the reservoir area, and less than the nontidal oceanic load in the area outside of the reservoir area 200 km away from the reservoir area. is smaller than the non-tidal ocean load. Vertical deformation of river and lake water load is negatively correlated with the water level, and the largest deformation area is near Zhongxian County, which reaches 23mm; the decrease of water level of Three Gorges Reservoir will lead to horizontal deformation of the land surface on both sides of the reservoir area toward the center of the reservoir area, and the horizontal (northward/eastward) deformation ranges from -2~2mm; and the vertical deformation of atmospheric load, which has a greater impact on the land surface, varies by about 15mm per year.

(3) Based on the measured data from 14 GNSS stations in the Three Gorges area, we quantitatively analyzed the differences between GRACE-FO and the mass change model in calculating the vertical deformation of the total environmental load, and the results showed that: the four types of data products, namely, the GRACE-FO GSM+GAC, the GRACE-FO Mascon+GAC, the mass change model with CPC soil water, and the mass change model with GLDAS soil water, were used to calculate the vertical deformation of the atmospheric load. The average values of the correlation coefficients between the vertical deformation of the total environmental load calculated by these four types of data products and the GNSS measured results are 0.71, 0.68, 0.70, and 0.65, respectively. Although the overall accuracy of the results from GRACE-FO is higher, the correlation of the results from the mass change model is higher for the CQWZ and HBZG stations, which are located near the reservoir area.

(4) The temporal and spatial correlation between seismicity and reservoir water level near the Badong to Zigui section of the Three Gorges Reservoir area is analyzed with the seismic catalog data to explore the impact of reservoir storage on seismicity in the reservoir area, and it is found that: the distribution of the epicenters of Three Gorges Reservoir-induced earthquakes mainly occurs in two regions, the first is the area between the Badong Fracture, the Gaoqiao Fracture, and the Niukou Fracture, and the second is the area close to the reservoir area where the Xianmuoshan Fracture and Jiuwanshi Fracture are located. The distribution of seismic epicenters in this region during the pre-storage period of the reservoir is scattered, and the intensity of seismic activity is low. When the water was stored up to 135 m in June 2003 and during the storage of water up to 156 m in September 2006, the rapid rise of the water level within a short period of time led to a significant enhancement of the seismic activity but the magnitude was generally low, and after the reservoir reached the maximum water level of about 175 m in September 2008, the seismic activity frequency declined but the The intensity of the earthquakes increased slightly, and the frequency of seismic events of magnitude 4 or higher.

参考文献:

[1] 许厚泽.固体地球潮汐[M].湖北科学技术出版社,2010.

[2] Farrell W E .Deformation of the Earth by surface loads[J].Reviews of Geophysics, 1972, 10.

[3] 盛传贞.中国大陆非构造负荷地壳形变的区域性特征与改正模型[J].国际地震动态,2014,(11):45-48.

[4] 甘卫军,李强,张锐,等.中国大陆构造环境监测网络的建设与应用[J].工程研究-跨学科视野中的工程,2012,4(04):324-331.

[5] 姜卫平,夏传义,李昭,等.环境负载对区域GPS基准站时间序列的影响分析[J].测绘学报,2014,43(12):1217-1223.

[6] 姜卫平,李昭,刘鸿飞,等.中国区域IGS基准站坐标时间序列非线性变化的成因分析[J].地球物理学报,2013,56(07):2228-2237.

[7] Longman I M .A Green's function for determining the deformation of the Earth under surface mass loads: 1. Theory[J].Journal of Geophysical Research, 1962, 68(2):485-496.

[8] Vandam T M , Blewitt G , Heflin M B .Atmospheric pressure loading effects on Global Positioning System coordinate determinations[J].Journal of Geophysical Research Solid Earth, 1994, 99(B12):23939-23950.

[9] Wahr J, Molenaar M, Bryan F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.

[10] Syed T H , Famiglietti J S , Rodell M ,et al.Analysis of terrestrial water storage changes from GRACE and GLDAS[J].Water Resources Research, 2008, 44(2).

[11] Feng W , Shum C , Zhong M ,et al.Groundwater Storage Changes in China from Satellite Gravity: An Overview[J].Remote Sensing, 2018, 10(5).

[12] Chen J L, Wilson C R, Tapley B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B5).

[13] Chang L ,Sun W .Consistency analysis of GRACE and GRACE-FO data in the study of global mean sea level change[J].Geodesy and Geodynamics,2022,13(04):321-326.

[14] Yi S , Wang Q , Chang L ,et al.Changes in mountain glaciers, lake levels, and snow coverage in the Tianshan monitored by GRACE, ICESat, altimetry, and MODIS[J].Remote Sensing, 2016, 8(10):798.

[15] Wen Z, Rao W, Sun W. Contribution of Loading Deformation to the GNSS Vertical Velocity Field in the Chinese Mainland[J]. Geophysical Journal International, 2023, 233(3): 1 655-1 670.

[16] 尹财,章传银,王伟,等.三峡水库蓄水对地壳形变及大地水准面的影响[J].测绘工程,2017,26(05):46-51.

[17] Mccarthy D D , Petit G .IERS conventions[J].Highlights of Astronomy, 2004, 13.

[18] Dai,Aiguo,Wang,et al.Diurnal and Semidiurnal Tides in Global Surface Pressure Fields.[J].Journal of the Atmospheric Sciences, 1999, 56(22):3874-3874.

[19] Madden R A ,Harald Lejenäs, Hack J .Semidiurnal Variations in the Budget of Angular Momentum in a General Circulation Model and in the Real Atmosphere[J].Journal of the Atmospheric ences, 1998, 55(15):2561-2575.

[20] Van Dam T M, Wahr J M. Displacements of the Earth's surface due to atmospheric loading: Effects on gravity and baseline measurements[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B2): 1281-1286.

[21] 姜卫平, 周伯烨, 李昭. 大气负载效应对不同纬度 IGS 测站的影响[J]. 测绘科学, 2016, 41(4): 28-32

[22] Zhang S , Zhong M , Tang S .Vertical crustal displacements due to atmospheric loading effects at GPS fiducial stations in China[J].Geomatics and Information Science of Wuhan University, 2006, 31(12):1090-1093.

[23] Boy, Jean-Paul, et al. "Atmospheric, Non-Tidal Oceanic and Hydrological Loading Effects Observed with GPS Measurements." AGU Fall Meeting Abstracts. Vol. 2014. 2014.

[24] 罗少聪,孙和平,徐建桥.大气负荷引起的重力与位移变化理论计算的精度估计[J].测绘学报,2001,(04):309-315.

[25] 李英冰,黄勇,郭俊义,等.大气引力负荷格林函数[J].武汉大学学报:信息科学版, 2003, 28(4):435-439.

[26] 王伟,章传银,杨强,等.大气负荷对区域地壳形变和重力变化的影响分析[J].武汉大学学报(信息科学版),2018,43(09):1302-1308.

[27] Boy J P , Longuevergne L , Boudin F ,et al.Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements[J].Journal of Geodynamics, 2012, 48(3-5):182-188.

[28] Williams S D P , Penna N T .Non-tidal ocean loading effects on geodetic GPS heights[J].Geophysical Research Letters, 2011, 38(9).

[29] 周伯烨,姜卫平,李昭.非潮汐海洋负载效应对近海岸IGS测站坐标时间序列的影响[J].大地测量与地球动力学,2016,36(11):1008-1013.

[30] Xu X , Yuan L , Jiang Z ,et al.Lake level changes determined by Cryosat-2 altimetry data and water-induced loading deformation around Lake Qinghai[J].Advances in Space Research, 2020, 66(11).

[31] Linsong WangShfaqat A. KhanMichael BevisMichiel R. van den BroekeMikhail K. KabanMaik ThomasChao Chen.Downscaling GRACE Predictions of the Crustal Response to the Present-Day Mass Changes in Greenland[J].Journal of geophysical research. Solid earth: JGR, 2019, 124(5).

[32] Rao W, Sun W. Uplift of the Tibetan Plateau: How to Accurately Compute the Hydrological Load Effect?[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(1): e2021JB022475

[33] Duan H R, Guo J G, Chen L K, et al. Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data[J]. Earth and Planetary Physics, 2022, 6(4): 366-377.

[34] Yuanjin P , Wen-Bin S , Shum C K ,et al.Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J].Earth and Planetary ence Letters, 2018, 502:12-22.

[35] Heki K, Arief S. Crustal response to heavy rains in Southwest Japan 2017-2020[J]. Earth and Planetary Science Letters, 2022, 578: 117325.

[36] Li W, Dong J, Wang W, et al. Regional Crustal Vertical Deformation Driven by Terrestrial Water Load Depending on CORS Network and Environmental Loading Data: A Case Study of Southeast Zhejiang[J]. Sensors, 2021, 21(22): 7699.

[37] Su G, Zhan W. Seasonal and long-term vertical land motion in Southwest China determined using GPS, GRACE, and surface loading model[J]. Earth, Planets and Space, 2021, 73: 1-14.

[38] A S K , B P K G , A P K C R ,et al.Contribution of seasonal hydrological loading in the variation of seismicity and geodetic deformation in Garhwal region of Northwest Himalaya[J].Quaternary International, 2021, s 575–576:62-71.

[39] Zhang K F , Featherstone W , Bian S F ,et al.Time variations of the Earth's gravity field and crustal deformation due to the establishment of the Three Gorges reservoir[J].Journal of Geodesy, 1996, 70(7):440-449.

[40] 马险.三峡库区高精度库水模型构建及其重力效应研究[D].中国地质大学,2021.

[41] 杜瑞林,乔学军,邢灿飞,等.三峡二期工程蓄水后的垂直形变场[J].大地测量与地球动力学, 2004(01):43-47.

[42] 胡腾,杜瑞林,张振华,等.三峡库区蓄水后地壳垂直变形场的模拟与分析[J].武汉大学学报(信息科学版),2010,35(01):33-36+2.

[43] 王林松,陈超,马险,等.基于SRTM-DEM数据的三峡库区蓄水负荷模型及其地表重力与形变响应模拟[J].测绘学报, 2016, 45(10):1148-1156,1191.

[44] 王伟,党亚民,章传银,等.三峡库水位变化过程中的地壳垂直形变与重力变化监测[J].测绘学报,2017,46(06):671-678.

[45] 王伟,党亚民,章传银,等.基于CORS站网监测三峡地区陆地水负荷对地壳形变和重力变化的影响[J].地球物理学报,2017,60(03):962-971.

[46] 章传银,王伟,甘卫军,等.利用CORS站网监测三峡地区环境负荷引起的地壳形变与重力场时空变化[J].武汉大学学报(信息科学版), 2018, 043(009):1287-1294.

[47] 党亚民,王伟,章传银,等.综合GNSS和重力数据定量评价三峡地区地质环境稳定性[J].武汉大学学报(信息科学版),2020,45(07):1052-1057.

[48] Wang W , Zhang C , Hu M ,et al.Monitoring and analysis of geological hazards in Three Gorges area based on load impact change[J].Natural Hazards, 2019, 97(5550).

[49] Lai Y, Zhang B, Yao Y, et al. Quantitatively analyzing the impacts of seasonal water storage changes in the Three Gorges Reservoir on nearby crust[J]. Pure and Applied Geophysics, 2022, 179(2): 817-831.

[50] Han D , Wahr J .The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound[J].Geophysical Journal of the Royal Astronomical Society, 2010, 120(2):287-311.

[51] 朱钰.江河湖库水负荷对地壳形变和重力场变化影响研究[D].兰州交通大学,2018.

[52] 孙文科.Love函数与地球内部的潮汐形变[J].地球物理学报,1991,(03):318-328.

[53] 沈迎春,闫昊明,彭鹏等.质量负荷引起地表形变的格林函数和球谐函数方法对比研究[J].武汉大学学报(信息科学版),2017,42(07):1008-1014.

[54] Wahr J , Molenaar M , Bryan F .Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J].Journal of Geophysical Research, 1998, 103.

[55] Kornfeld R P , Arnold B W , Gross M A ,et al.GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission[J].Journal of Spacecraft and Rockets, 2019, 56(3):931-951.

[56] Dahle C, Flechtner F, Murböck M, et al. GRACE-FO D-103919 (gravity recovery and climate experiment follow-on), GFZ level-2 processing standards document for level-2 product release 06 (rev. 1.0, June 3, 2019)[J]. 2019.

[57] Swenson S , Chambers D , Wahr J .Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output[J].Journal of Geophysical Research Atmospheres, 2008, 113(8).

[58] Sun Y , Riva R , Ditmar P .Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models[J].Journal of Geophysical Research Solid Earth, 2016, 121(11).

[59] Loomis B D , Rachlin K E , Wiese D N ,et al.Replacing GRACE/GRACE‐FO With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change[J].Geophysical Research Letters, 2020, 47(3).

[60] Swenson S , Wahr J .Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity[J].Journal of Geophysical Research Solid Earth, 2002, 107(B9).

[61] Swenson S, Wahr J. Post‐processing removal of correlated errors in GRACE data[J]. Geophysical research letters, 2006, 33(8).

[62] Chen J L , Wilson C R , Famiglietti J S ,et al.Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity[J].Journal of Geodesy, 2007, 81(4):237-245.

[63] 汪汉胜,WU Patrick,许厚泽.冰川均衡调整(GIA)的研究[J].地球物理学进展,2009,24(06):1958-1967.

[64] 汪汉胜,李国营,许厚泽.SNRVEI地球模型连续分布的简正模及其意义[J].地球物理学报,1997,(01):78-84.

[65] 贾路路,汪汉胜,相龙伟.冰川均衡调整重力与径向位移近似关系的不确定性[J].地球科学(中国地质大学学报),2014,39(07):905-914.

[66] Swenson S , Wahr J .Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity[J].Journal of Geophysical Research Solid Earth, 2002, 107(B9).

[67] Khan S A, Wahr J, Stearns L A, et al. Elastic uplift in southeast Greenland due to rapid ice mass loss[J]. Geophysical Research Letters, 2007, 34(21).

[68] Landerer F W,Swenson S C. Accuracy of scaled GRACE terrestrial water storage estimates[J].Water Resources Research,2012,48( 4) : 531-541.

[69] 李婉秋, 王伟, 章传银, 等.利用Forward-Modeling方法反演青藏高原水储量变化[J]. 武汉大学学报(信息科学版),2020, 45(01): 141-149.

[70] 李嘉,唐河,饶维龙,等.南水北调工程对华北平原水储量变化的影响[J].中国科学院研究生院学报, 2020, 037(006):775-783.

[71] 陆家驹,李士鸿.TM资料水体识别技术的改进[J].环境遥感,1992,(01):17-23.

[72] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,(05):589-595.

[73] McFEETERS, S. K .The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J].International Journal of Remote Sensing, 1996, 17(7):1425-1432.

[74] Yu D H, Deng Z D, Long F, et al. Study on shallow groundwater information extraction technology based on multi-spectral data and spatial data[J]. Science in China Series E: Technological Sciences, 2009, 52: 1420-1428.

[75] Yang X, Qin Q, Grussenmeyer P, et al. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery[J]. Remote sensing of environment, 2018, 219: 259-270.

[76] 刘宇晨,高永年.Sentinel时序影像的长江流域地表水体提取[J].遥感学报,2022,26(02):358-372.

[77] Congalton R G. Remote sensing and image interpretation[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(8): 615-616.

[78] Li Y , Niu Z , Xu Z ,et al.Construction of High Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives and GEE[J].Remote Sensing, 2020, 12(15):2413.

[79] Yang X , Chen Y , Wang J .Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine[J].Remote Sensing Letters, 2020, 11(7):687-696.

[80] 毛卫华,李婉秋,李爱勤,等.利用CORS站网监测温州-丽水区域环境负荷对地壳垂直形变和重力变化的影响[J].武汉大学学报(信息科学版),2020,45(10):1508-1516.

[81] Kuang S C .A MATLAB-based Kriged Kalman Filter software for interpolating missing data in GNSS coordinate time series[J].GPS Solutions, 2018, 22(1).

[82] 陈俊华,王秋良,廖武林,等.丹江口水库二期蓄水初期地震活动特征[J].大地测量与地球动力学,2017,37(02):137-141.

[83] 常廷改,胡晓.水库诱发地震研究进展[J].水利学报,2018,49(09):1109-1122.

[84] 李春宏.蓄水前白鹤滩水库及附近地区地震活动特征研究[D].中国地震局地震预测研究所,2018.

[85] 潘建雄,肖安予.新丰江水库区地震构造及其活动特征的初步研究[J].地震地质, 1982, 4(2):53-58.

[86] Gupta H K .A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India[J].Earth-Science Reviews, 2002, 58(3-4):279-310.

[87] 陈蜀俊,姚运生,吴建超,等.巴东Ms5.1地震——一种新的水库地震类型[J].大地测量与地球动力学,2014,34(03):1-5.

[88] 孟庆筱,姚运生,廖武林等.三峡蓄水进程中库首区地震活动与库水位的关联性研究[J].大地测量与地球动力学,2021,41(07):714-720.

[89] 童思陈,唐小娅,辛鑫.三峡水库运行初期库区糙率特性分析[J].水电能源科学,2017,35(07):33-36.

[90] 王孔伟,路永强,聂进等.三峡库区仙女山和九畹溪断裂带水库地震变化规律[J].吉林大学学报(地球科学版),2021,51(02):624-637.

中图分类号:

 P223    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式