- 无标题文档
查看论文信息

论文中文题名:

 瓦斯抽采钻孔动态密封粘液材料研究    

姓名:

 延婧    

学号:

 18220214059    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤与瓦斯安全共采    

第一导师姓名:

 张超    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Study on dynamic sealing mucilage material for gas extraction borehole    

论文中文关键词:

 抽采钻孔 ; 漏气通道 ; 注浆参数 ; 粘液材料    

论文外文关键词:

 Drainage Borehole ; Air leakage passage ; Grouting parameters ; Mucus material     

论文中文摘要:

随着煤矿开采深度增加、地应力增高、煤层透气性降低,致使瓦斯事故频发,严重威胁着煤矿安全生产。当前治理瓦斯的根本方法是瓦斯抽采,而决定抽采效果的关键环节之一是钻孔密封。本课题以瓦斯抽采钻孔漏气通道发育演化及封堵材料为研究背景,采用力学分析、数值模拟、配比实验、性能测试及现场试验等研究方法,对瓦斯抽采钻孔动态密封粘液材料进行了深入研究,具体内容如下:

(1)开展了原煤试样单轴压缩-声发射实验,采集煤样受压过程中的声发射信息,建立原煤试样压缩破坏过程损伤演化模型,分析煤样在受压情况下的破坏特征;利用自制的钻孔密封注浆三维模拟试验平台,对钻孔钻进过程中及钻孔钻进完成后受压情况下漏气通道演化形态进行模拟,得到了含孔型煤试样的漏气通道发育演化规律。

(2)考虑瓦斯抽采钻孔孔周漏气通道形态,借助COMSOL Multiphysics模拟软件,对不同注浆压力下不同粘度密封浆液渗流距离进行模拟,确定了合适的浆液粘度范围。

(3)对研制新型密封粘液材料的组成成分进行筛选,分析了材料的可行性;进行了单因素实验,探究了各组分掺量对粘液材料性能的影响;通过设计多组不同掺量的正交实验,从而剔选出一组最优配合比,并对其膨胀性、保水性及密封性能进行实验室测试。

(4)在理论研究、实验研究的基础上,选取潞安集团漳村煤矿2802工作面回风顺槽为试验地点,设置试验孔与对比孔分别使用新型粘液材料与传统粘液材料密封,通过观测瓦斯抽采浓度及瓦斯抽采混量来验证新型粘液材料的优越性。

研究结果揭示了瓦斯抽采钻孔漏气通道的发育演化规律,研制了“强弱强”动态密封方法中需要的密封粘液材料,并对其性能进行研究,在一定程度上提高了动态密封方法的密封效果,对钻孔密封现场作业具有重要意义,有助于提高矿井瓦斯抽采效率。

论文外文摘要:

With the increase in coal mining depth and ground stress, and the decrease in coal seam permeability, gas accidents occur frequently, which seriously threatens coal mine safety production. The current fundamental method of gas management is gas drainage, and one of the key links that determines the effect of gas drainage is drilling and sealing. This subject is based on the research background of the development and evolution of gas leakage passages in gas drainage boreholes and plugging materials, and adopts research methods such as mechanical analysis, numerical simulation, ratio experiment, performance test and field test to dynamically seal mucus in gas drainage boreholes. The materials have been studied in depth, and the details are as follows:

(1) The uniaxial compression-acoustic emission experiment of the raw coal sample was carried out, the acoustic emission information of the coal sample was collected during the compression process, the damage evolution model of the compression failure process of the raw coal sample was established, and the failure characteristics of the coal sample under compression were analyzed; Using the self-made hole-sealing grouting three-dimensional simulation test platform to simulate the evolution of the air leakage channel under pressure during the drilling process and after the drilling is completed, and obtain the leakage of the hole-bearing coal sample The development and evolution of air channels.

(2) Considering the shape of the gas leakage channel around the gas drainage borehole, with the help of COMSOL Multiphysics simulation software, the seepage distance of the sealing slurry with different viscosity under different grouting pressures is simulated, and the appropriate viscosity range of the slurry is determined.

(3) The composition of the new type of sealing slime material was screened, and the feasibility of the material was analyzed; single factor experiments were carried out to explore the influence of the content of each component on the performance of the slime material; through the design of multiple sets of orthogonal experiments with different dosages , So as to select a set of optimal mix ratios, and conduct laboratory tests on its expansion, water retention and sealing performance.

(4) On the basis of theoretical research and experimental research, the return airflow trough of 2802 working face of Zhangcun Coal Mine of Lu'an Group is selected as the test site, and the test hole and the contrast hole are sealed with new and traditional viscous materials, respectively, and gas drainage is observed. Concentration and mixing amount of gas drainage to verify the superiority of the new slime material.

The research results revealed the development and evolution of gas leakage channels in gas drainage boreholes, and developed the sealing mucus materials needed in the "strong-weak-strong" dynamic sealing method, and studied its performance, which improved the dynamic sealing method to a certain extent. The sealing effect is of great significance to the drilling and sealing field operations, and helps to improve the efficiency of mine gas drainage.

参考文献:

[1]袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016,41(01):1-6.

[2]中华人民共和国2020年国民经济和社会发展统计公报~([1])[N]. 人民日报.

[3]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018,43(01):1-13.

[4]钱鸣高. 煤炭的科学开采[J]. 煤炭学报, 2010,35(04):529-534.

[5]袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020,46(01):6-12.

[6]Fu F, Liu H, Polenske K R, et al. Measuring the energy consumption of China's domestic investment from 1992 to 2007[J]. Applied Energy, 2013,102(FEB.):1267-1274.

[7]Wang K, Wei Y M, Zhang X. Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis[J]. Applied Energy, 2013,104(APR.):105-116.

[8]李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014,39(08):1455-1462.

[9]薛俊华. 近距离高瓦斯煤层群大采高首采层煤与瓦斯共采[J]. 煤炭学报, 2012,37(10):1682-1687.

[10]周世宁, 林柏泉, 李增华. 高瓦斯煤层开采的新思路及待研究的主要问题[J]. 中国矿业大学学报, 2001(02):3-5.

[11]Zhang K, Sun K, Yu B, et al. Determination of sealing depth of in-seam boreholes for seam gas drainage based on drilling process of a drifter[J]. Engineering Geology, 2016,210:115-123.

[12]Shengli K, Yuanping C, Ting R, et al. A sequential approach to control gas for the extraction of multi-gassy coal seams from traditional gas well drainage to mining-induced stress relief[J]. Applied Energy, 2014,131.

[13]刘洪永, 程远平, 周红星, 等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报, 2015,40(04):809-815.

[14]刘恺德, 侯晨, 姜在炳, 等. 采动区综采工作面地面“L”型钻井瓦斯抽采技术[J]. 采矿与安全工程学报, 2018,35(06):1284-1292.

[15]张超. 钻孔封孔段失稳机理分析及加固式动态密封技术研究[D]. 中国矿业大学, 2014.

[16]周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016,45(03):433-439.

[17]巴全斌. 瓦斯抽采钻孔漏气通道检测装置研制及应用[J]. 工矿自动化, 2021,47(01):9-14.

[18]Wang H, Wang E, Li Z, et al. Study on sealing effect of pre-drainage gas borehole in coal seam based on air-gas mixed flow coupling model[J]. Process Safety and Environmental Protection, 2020,136:15-27.

[19]杨伟东. 顺层瓦斯抽采钻孔密封段异质结构损伤机制研究[D]. 煤炭科学研究总院, 2020.

[20]王志明, 孙玉宁, 王永龙, 等. 瓦斯抽采钻孔动态漏气圈特性及漏气处置研究[J]. 中国安全生产科学技术, 2016,12(05):139-145.

[21]马智会, 潘荣锟, 马智勇, 等. 顺层钻孔瓦斯抽采漏气规律及封孔技术研究[J]. 煤炭科学技术, 2020,48(08):90-96.

[22]王新伟, 李辉. 瓦斯抽采钻孔漏气机理及新型封孔技术试验研究[J]. 煤炭技术, 2015,34(03):121-123.

[23]Hu S, Liu H. Leakage mechanism of coal seam gas drainage borehole and its application research progress[J]. Saf. Coal Mines, 2016,47:170-173.

[24]王振锋, 周英, 孙玉宁, 等. 新型瓦斯抽采钻孔注浆封孔方法及封堵机理[J]. 煤炭学报, 2015,40(03):588-595.

[25]Zhang J, Li B, Sun Y. Dynamic leakage mechanism of gas drainage borehole and engineering application[J]. International Journal of Mining ence & Technology, 2018,28(3):505-512.

[26]Wang Z, Sun Y, Wang Y, et al. A coupled model of air leakage in gas drainage and an active support sealing method for improving drainage performance[J]. Fuel, 2019,237(FEB.1):1217-1227.

[27]齐黎明, 张旭锟, 王国玺. 含水率对钻孔裂隙发育的影响[J]. 华北科技学院学报, 2018,15(01):32-35.

[28]齐黎明, 张旭锟, 王国玺, 等. 型煤钻孔裂隙发育的数值模拟研究[J]. 华北科技学院学报, 2018,15(02):16-18.

[29]白明锴. 穿层钻孔抽采分离式封孔工艺研究[J]. 煤炭工程, 2018,50(04):62-65.

[30]李邵军, 冯夏庭, 张春生, 等. 深埋隧洞TBM开挖损伤区形成与演化过程的数字钻孔摄像观测与分析[J]. 岩石力学与工程学报, 2010,29(06):1106-1112.

[31]高旭. 基于深度学习的围岩钻孔裂隙识别技术研究及应用[D]. 中国矿业大学, 2020.

[32]李全贵. 脉动载荷下煤体裂隙演化规律及其在瓦斯抽采中的应用研究[D]. 中国矿业大学, 2015.

[33]邓兆鹏, 曹茂永, LAXMISHA Rai. 基于改进的区域生长和Hough变换的钻孔图像水平裂隙识别[J]. 科学技术与工程, 2019,19(31):239-245.

[34]Zheng W, Yang S, Tang Z, et al. Evolutionary Laws and Preventative Measures for the Coal and Rock Dynamic Disasters Around the Boreholes During Coal Bed Methane Extraction in Low-Temperature Oxidation Conditions: A Case Study of the No. $ $8 _ {2} $$8 2 Reservoir of the Yangliu Coal Mine[J]. Arabian Journal for Science and Engineering, 2018,43(7):3647-3657.

[35]郭海龙. 抽采钻孔孔周煤岩体变形破坏规律及其漏气位置检测研究[D]. 西安科技大学, 2020.

[36]马智会, 潘荣锟, 马智勇, 等. 顺层钻孔瓦斯抽采漏气规律及封孔技术研究[J]. 煤炭科学技术, 2020,48(08):90-96.

[37]孙玉宁, 王永龙, 翟新献, 等. 松软突出煤层钻进困难的原因分析[J]. 煤炭学报, 2012,37(01):117-121.

[38]Zhaolong G, Xudong M, Yuyi L. Drilling sealed parame⁃ ters and optimization of a new type sealing material for hydraulic fracturing in underground coalmines[J]. Journal of Basic Science and Engineering, 2014,22(6):1128-1138.

[39]Liu Z, Cheng Y, Jiang J, et al. Interactions between coal seam gas drainage boreholes and the impact of such on borehole patterns[J]. Journal of Natural Gas Science and Engineering, 2017,38:597-607.

[40]Jun H, Kaiyuan D. Research on rational sealing depth of gas drainage borehole in large section roadway[J]. China Coal, 2014:2.

[41]葛兆龙, 梅绪东, 卢义玉, 等. 煤矿井下水力压裂钻孔封孔力学模型及试验研究[J]. 岩土力学, 2014,35(07):1907-1913.

[42]熊佩, 胡艾国. 射孔关键参数对水平井产能的影响[J]. 石油化工应用, 2013,32(04):78-81.

[43]Liu Q, Cheng Y, Yuan L, et al. A new effective method and new materials for high sealing performance of cross-measure CMM drainage boreholes[J]. Journal of Natural Gas Science and Engineering, 2014,21:805-813.

[44]王强, 冯志强, 王理想, 等. 裂隙岩体注浆扩散范围及注浆量数值模拟[J]. 煤炭学报, 2016,41(10):2588-2595.

[45]武炜, 王兆丰. 钻孔封孔注浆压力及封孔深度数值模拟研究[J]. 煤炭科学技术, 2015,43(11):68-72.

[46]王志明, 封海鹏, 陈兵. 基于钻屑法顺层钻孔合理封孔深度的研究[J]. 煤炭技术, 2015(2015 年 05):164-165.

[47]刘少伟, 常建超, 张辉, 等. 巷道底板预应力锚索注浆封孔机理及新型封孔装置设计[J]. 采矿与安全工程学报, 2015,32(05):753-759.

[48]王成, 洪紫杰, 熊祖强. 基于瓦斯抽采关键封孔参数及新型封孔材料应用研究[J]. 中国安全生产科学技术, 2016,12(09):65-70.

[49]程桦, 彭世龙, 荣传新, 等. 千米深井L型钻孔预注浆加固硐室围岩数值模拟及工程应用[J]. 岩土力学, 2018,39(S2):274-284.

[50]王洪波, 张庆松, 刘人太, 等. 恒压群孔注浆浆液压力分布理论模型与现场试验[J]. 中国公路学报, 2018,31(10):266-273.

[51]张聪, 梁经纬, 张箭, 等. 基于脉动注浆的宾汉流体渗透扩散机制研究[J]. 岩土力学, 2018,39(08):2740-2746.

[52]张聪, 阳军生, 张贵金, 等. 充填注浆浆液稳定性能试验研究与工程应用[J]. 岩石力学与工程学报, 2018,37(S1):3604-3612.

[53]赵庆彪, 毕超, 虎维岳, 等. 裂隙含水层水平孔注浆“三时段”浆液扩散机理研究及应用[J]. 煤炭学报, 2016,41(05):1212-1218.

[54]王麒翔, 梁军, 岳俊, 等. 抽采钻孔封孔参数影响特性数值模拟[J]. 煤矿机械, 2018,39(10):163-167.

[55]林柏泉, 张建国. 矿井瓦斯抽放理论与技术[M]. 中国矿业大学出版社, 2007.

[56]林柏泉. 矿井瓦斯防治理论与技术[M]. 中国矿业大学出版社, 2010.

[57]用聚氨酯封孔[J]. 煤矿安全, 1982(03):28-34.

[58]李敏. 煤矿聚氨酯封孔的实验研究[D]. 中国地质大学(北京), 2011.

[59]李国法, 郑化安, 付东升, 等. 煤矿瓦斯抽采钻孔封孔聚氨酯材料研究进展[J]. 洁净煤技术, 2014,20(02):94-98.

[60]张英华, 梁铜柱, 崔景昆. 高水材料在“三软”煤层注水、防尘、封孔技术中的应用研究[J]. 煤炭学报, 2003(01):46-49.

[61]宋吴兵, 林柏泉, 郝志勇, 等. 瓦斯抽采钻孔新型高水材料封孔性能的研究与应用[J]. 煤炭工程, 2015,47(09):94-96.

[62]Zhai C, Hao Z, Lin B. Research on a New Composite Sealing Material of Gas Drainage Borehole and Its Sealing Performance[J]. Procedia Engineering, 2011,26(4):1406-1416.

[63]Cheng Z, Xu Y, Guanhua N, et al. Microscopic properties and sealing performance of new gas drainage drilling sealing material[J]. International Journal of Mining Science and Technology, 2013,23(4):475-480.

[64]Zhai C, Xu J, Xiang X, et al. Flexible gel (FG) for gas-drainage drilling sealing material based on orthogonal design[J]. International Journal of Mining Science and Technology, 2015,25(6):1031-1036.

[65]倪冠华, 林柏泉, 翟成, 等. 钻孔密封材料的微观特性及其对密封性能的影响[J]. 工程科学学报, 2013,35(005):572-579.

[66]Zou Q, Lin B, Zheng C, et al. Novel integrated techniques of drilling–slotting–separation-sealing for enhanced coal bed methane recovery in underground coal mines[J]. Journal of Natural Gas Science and Engineering, 2015.

[67]Xiang X, Zhai C, Xu Y, et al. A flexible gel sealing material and a novel active sealing method for coal-bed methane drainage boreholes[J]. Journal of natural gas science and engineering, 2015,26:1187-1199.

[68]Zhou A, Wang K. A new inorganic sealing material used for gas extraction borehole[J]. Inorganic Chemistry Communications, 2019,102:75-82.

[69]Ni G, Dong K, Li S, et al. Development and performance testing of the new sealing material for gas drainage drilling in coal mine[J]. Powder Technology, 2020,363.

[70]Bo T Q, Yi L. Experimental research on inorganic solidified foam for sealing air leakage in coal mines[J]. International Journal of Mining Science and Technology, 2013,23(01):151-155.

[71]Ge Z, Mei X, Lu Y, et al. Optimization and application of sealing material and sealing length for hydraulic fracturing borehole in underground coal mines[J]. Arabian Journal of Geosciences, 2015.

[72]Zhaolong G, Xudong M, Yuyi L. Drilling sealed parame⁃ ters and optimization of a new type sealing material for hydraulic fracturing in underground coalmines[J]. Journal of Basic Science and Engineering, 2014,22(6):1128-1138.

[73]李树刚, 张静非, 张超, 等. 新型CF封孔材料的膨胀作用机理及其关键影响因素实验研究[J]. 采矿与安全工程学报, 2018.

[74]张天军, 包若羽, 李树刚, 等. 新型CF封孔材料膨胀及蠕变特性试验研究[J]. 采矿与安全工程学报, 2019,36(01):175-183.

[75]Zhiming W, Yuning S, Yonglong W, et al. A coupled model of air leakage in gas drainage and an active support sealing method for improving drainage performance[J]. Fuel, 2019,237.

[76]Wang K, Lou Z, Wei G, et al. A novel anti-air-leakage method and an organic polymer material for improving methane drainage performance[J]. Elsevier, 2019,129.

[77]左建平, 裴建良, 刘建锋, 等. 煤岩体破裂过程中声发射行为及时空演化机制[J]. 岩石力学与工程学报, 2011,30(08):1564-1570.

[78]韩立亭. GB 474—2008《煤样的制备方法》修订说明[J]. 煤质技术, 2009(04):26-27.

[79]程爱平, 舒鹏飞, 张玉山, 等. 充填体-围岩组合体声发射特征与损伤本构研究[J]. 采矿与安全工程学报, 2020,37(06):1238-1245.

[80]边利恒. 煤层气井酸化解堵先导性试验[J]. 煤炭技术, 2018,37(02):101-103.

[81]Zhang X, Zhang S, Li P, et al. Investigation on solubility of multicomponents from semi-anthracite coal and its effect on coal structure by Fourier transform infrared spectroscopy and X-ray diffraction[J]. Fuel Processing Technology, 2018,174:123-131.

[82]王祖洸, 高保彬, 吕蓬勃. 单轴压缩条件下含瓦斯煤样力学性质研究[J]. 中国科技论文, 2017,12(15):1764-1769.

[83]胡松, 单联莹, 徐博洋, 等. 煤块受载破碎过程中的细观力学特性演变研究[J]. 煤炭学报, 2018,43(03):855-861.

[84]刘长武,余建.三维采矿物理模拟实验装置主要设计参数研究[J].岩土力学,2003(S2):325-328.

[85]郝志勇. 材料复合技术及其在钻孔密封中的应用研究[D].中国矿业大学,2010.

[86]周冬. 大直径抽采钻孔非凝固膏体封孔技术研究[D]. 中国矿业大学, 2020.

[87]陶青林. 钻孔裂隙发育特征及粘液自适应封堵关键技术研究[D]. 中国矿业大学, 2019.

[88]龙剑英. 淀粉接枝共聚物的合成及性能研究[D]. 中国林业科学研究院, 2003.

[89]李仲谨, 蔡京荣, 王磊, 等. 黄原胶接枝丙烯酸高吸水性树脂的制备及性能研究[J]. 陕西科技大学学报, 2007(02):1-4.

[90]孙宾宾, 杨博. 高吸水树脂产品吸水保水性能测试方法综述[J]. 化学工程师, 2013,27(10):30-33.

[91]张庆贺, 王汉鹏, 李术才, 等.煤与瓦斯突出物理模拟试验中甲烷相似气体的探索[J].岩土力学, 2017, 38 (2) :479-486.

[92]李术才,李清川,王汉鹏,袁亮,张玉强,薛俊华,张冰,王静.大型真三维煤与瓦斯突出定量物理模拟试验系统研发[J].煤炭学报,2018,43(S1):121-129.

中图分类号:

 TD712    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式