论文中文题名: | 常见木质板材燃烧特性与火灾危险性评价研究 |
姓名: | |
学号: | 20220226108 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防科学与工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Research on combustion characteristics and fire hazard evaluation of common wood panels |
论文中文关键词: | |
论文外文关键词: | Wood panels ; Combustion characteristics ; Fire spreading characteristics ; Pyrolysis characteristics ; Fire hazard assessment |
论文中文摘要: |
木质板材因具有良好的结构稳定性、环保性能和装饰效果而被广泛使用。但木质板材是可燃材料,燃烧时会释放出大量热和有害气体,往往是影响室内火灾剧烈程度的重要因素之一。对木质板材进行研究旨在初步掌握其燃烧特性,提高人们对木质板材火灾危险性的认识,为木质板材的选择和建筑火灾防护提供理论指导。选取了六种常见且应用广泛的木质板材(杉木板、松木板、榆木板、密度板、胶合板、欧松板)作为研究对象。基于热解、燃烧、火蔓延特性实验,综合分析评价了不同板材的火灾危险性。主要结论如下: (1)利用自主设计搭建的热解实验系统研究六种木质板材的质量损失特性和热解生成气体种类及浓度。发现六种木质板材的热解过程均可分为轻微热解、急剧热解和高温煅烧三个阶段。测得杉木板、松木板、榆木板、胶合板、密度板的总质量损失率分别为92.25 %、91 %、76.03 %、81.7 %、80.36 %、80.58 %。可初步判断杉木板和松木板的热稳定性相对较差,榆木板的热稳定性相对较好,胶合板、密度板和欧松板的热稳定性介于杉木板和松木板与榆木板之间。当温度升高至500 ℃时,六种木质板材热解产生的气体有CO、CO2、CH4、C2H6、C2H4。其中CO、CO2、CH4产量较多,浓度分别在0.056 %~0.067 %、0.049 %~0.053 %,0.019 %~0.046 %之间,C2H6、C2H4含量较少,浓度分别在12.8 ppm~30.2 ppm、11.8 ppm~26.7 ppm之间。 (2)利用锥形量热仪开展了不同热辐射强度下(20 kW/m2、35 kW/m2、50 kW/m2)木质板材燃烧实验。结果表明,杉木板、松木板、榆木板三种实木板材密度越小点燃时间越短,密度越大则越不易点燃;当热辐射强度从35 kW/m2增大到50 kW/m2,杉木板、松木板和欧松板的火势增长指数(FGI)分别扩大了50倍、5倍、9倍,密度板的火势增长指数与热释放指数(HRI)分别降低了30%和2%。产烟特性方面,欧松板和松木板燃烧时的烟气因子(SF)较高分别达到104.34 kW/m2和95.32 kW/m2;杉木板和松木板的烟气释放速率(SGI)较大分别达到了1.69×10-3和3.22×10-4。 (3)利用自行搭建的小尺寸火蔓延实验开展了不同热辐射强度下(0 kW/m2、1.5 kW/m2、2.5 kW/m2、3 kW/m2)的水平方向火蔓延实验。研究发现,随外加热辐射强度的增大,六种木质板材的平均火焰高度增加,其中欧松板的增长幅度最大,在3 kW/m2热辐射强度作用下的平均火焰高度是无热辐射强度作用下的2.2倍;而在同一热辐射强度作用下,不同材质的板材平均火焰高度有较大差异,在3 kW/m2热辐射强度作用下六种试样中欧松板的火焰平均高度最大达到了10.66 cm,密度板的火焰平均高度最小为2.79 cm;杉木板、松木板、榆木板三种实木板材的密度越大火蔓延速度越小;六种木制板材的水平方向火焰蔓延过程表现为匀速传播,材料热解前锋距离随时间的变化满足线性函数关系;当外界热辐射强度增加,六种材料的火蔓延速度呈指数增加趋势。 (4)为对不同木质板材的火灾危险性开展评价,基于改进灰色关联法以TTI为引燃危险性指标,以FGI、HRI为热危险性指标,以SF、SGI等四个指标为烟气危险性指标,以火蔓延速度为火蔓延危险性指标构建火灾危险性评价模型,综合定量地比较了六种木质板材的火灾危险性。最终计算火灾危险性从低到高依次为胶合板、密度板、榆木板、松木板、欧松板和杉木板。从整体来看人造板材的火灾危险性低于实木板材,表明了人造板材在阻燃市场的优越性。 |
论文外文摘要: |
Wooden boards are widely used due to their good structural stability, environmental performance, and decorative effect. However, as combustible materials, wooden boards release a large amount of heat and harmful gases during combustion. Once ignited, they are often an important factor affecting the severity of indoor fires. The research on wooden boards aims to preliminarily understand their combustion characteristics, improve people's awareness of the fire hazard posed by wooden boards, and provide theoretical guidance for the selection of wooden boards and building fire protection. Six common and widely used wooden boards (fir board, pine board, elm board, density board, plywood and oriented strand board) were selected as the research objects. Based on the characteristics of pyrolysis, combustion, and fire spread, the fire hazard of different boards was comprehensively analyzed and evaluated. The main conclusions are as follows: (1) The loss characteristics and types and concentrations of generated gases of the six wooden boards were studied using a self-designed pyrolysis experimental system. The pyrolysis process of different wooden boards can be divided into three stages: mild pyrolysis, rapid pyrolysis, and high-temperature calcination. The measured mass loss rates of fir board, pine board, elm board, plywood, density board, and oriented strand board are 92.25%, 91%, 76.03%, 81.7%, 80.36%, and 80.58%, respectively. It can be preliminarily judged that the thermal stability of fir board and pine board is relatively poor, while the thermal stability of elm board is relatively good. The thermal stability of plywood, density board, and oriented strand board is between that of fir board, pine board and elm board. The gases generated by the pyrolysis of the six wooden boards included CO, CO2, CH4, C2H6, and C2H4. Among them, CO, CO2, and CH4 had higher yields, with concentrations between 0.051 % and 0.067 %, 0.049 % and 0.057 %, and 0.019 % and 0.046 %, respectively, while the contents of ethane and ethylene were relatively low, with concentrations between 0.0013 % and 0.0019 % and between 0.0012 % and 0.0027 %, respectively. (2) Combustion experiments of different wooden boards were conducted using a cone calorimeter under various heat fluxes (20 kW/m2, 35 kW/m2, and 50 kW/m2). The results showed that the smaller the density of solid wood boards such as fir board, pine board, elm board, the shorter the ignition time and the more difficult it was to ignite with higher density. When the heat flux increased from 35 kW/m2 to 50 kW/m2, the fire growth index (FGI) of fir board, pine board, and oriented strand board increased by 50 times, 5 times, and 9 times, respectively, while the FGI and heat release index (HRI) of density board decreased by 30 % and 2 %, respectively. In terms of smoke production characteristics, the smoke factor (SF) of oriented strand board and pine board during combustion was relatively high, reaching 104.34 kW/m2 and 95.32 kW/m2, respectively, while the smoke generation rate index (SGI) of fir board, pine board was relatively high, reaching 1.69×10-3 and 3.22×10-4, respectively. (3) Horizontal flame spread experiments under different thermal radiation intensities (0 kW/m2、1.5 kW/m2、2.5 kW/m2、3 kW/m2) were carried out using a self-built small-scale fire spread apparatus. It was found that as the external thermal radiation intensity increased, the average flame height of the material increased. The oriented strand board had the largest increase, and its average flame height under a thermal radiation intensity of 3 kW/m2 was 2.2 times that under no thermal radiation. Under the same thermal radiation intensity, there was a large difference in the average flame height of different materials. Among the six samples tested, the average flame height of the oriented strand board reached 10.66 cm, while the density board had the smallest average flame height of 2.79 cm. The flame spread speed of solid wood boards was positively correlated with material density. During the horizontal flame spread experiment, the flame spread process of the samples showed uniform propagation, and the thermal decomposition front of the material changed linearly with time. With the increase of external thermal radiation intensity, the flame spread speed of the six materials increased exponentially. (4) To evaluate the fire hazard of different wooden boards, a fire hazard evaluation model was constructed based on the improved grey correlation method, with the TTI as the ignition hazard index, FGI and HRI as the thermal hazard indices, and SF, SGI and other four indices as the smoke hazard indices, and the flame spread speed as the flame spread hazard index. The fire hazard of the six wooden boards was compared quantitatively. The fire hazard was calculated from low to high as plywood, density board, elm board, pine board, oriented strand board, and fir board. Overall, the fire hazard of engineered wood boards was lower than that of solid wood boards, indicating the superiority of engineered wood boards in the flame retardant market. |
参考文献: |
[3] 薄涛. 地下建筑的火灾特点及防排烟设计要求[J]. 科技与创新, 2014(08): 117-118. [4] 李国翔. 木质纤维素类生物质热裂解机理研究[D]. 浙江大学, 2020. [5] 李承宇, 张军, 袁浩然, 等. 纤维素热解转化的研究进展[J]. 燃料化学学报, 2021, 49(12): 1733-1751. [6] 杨华美, 蒋菊, 刘望, 等. 纤维素/木质素共热解过程中的气相反应[J]. 河北大学学报(自然科学版), 2022, 42(03): 273-280. [7] 韩望, 白崇彪, 燕文静, 等. 木质材料热解与阻燃技术研究进展[J]. 西部林业科学, 2022, 51(04): 154-160. [13] 彭锦星, 陈冠益, 王德芹, 等. 木质材料热解动力学及典型气体产物分析[J]. 太阳能学报, 2011, 32(12): 1719-1724. [14] 沈德魁, 余春江, 方梦祥, 等. 热辐射下常用木材热解的动力学与燃烧特性[J]. 燃烧科学与技术, 2008(05): 446-452. [15] 杜洪双, 常建民, 李瑞, 等. 落叶松木材的热解特性[J]. 东北林业大学学报, 2009, 37(12): 25-29. [16] 殷飞, 朱国庆. 常用实木家具木质类生物质的热重分析[J]. 消防科学与技术, 2014, 33(09): 995-998. [22] 刘杰, 陆守香, 陈潇. 常用木板材料的燃烧特性研究[J]. 消防科学与技术, 2016, 35(09): 1197-1200. [25] 岳孔, 程秀才, 王磊磊, 等. 改性处理对杨木力学和燃烧性能的影响[J]. 燃烧科学与技术, 2016, 22(05): 426-432. [26] 胡云楚, 冯斯宇, 田梁才, 等. APP硅化泡桐木的制备及其燃烧特性研究[J]. 建筑材料学报, 2017, 20(04): 651-655. [27] 邢东, 李坚, 王思群. 基于CONE法的热处理杨木燃烧特性研究[J]. 林产工业, 2020, 57(03): 15-18+24. [28] 叶颖. 树脂漆对木材燃烧特性与烟气毒性的影响[J]. 消防科学与技术, 2016, 35(07): 913-916. [29] 杨森, 王灵玺, 张静, 等. 五种木质地板阻燃性能的测试方法比较[J]. 木材工业, 2015, 29(01): 31-34. [30] 阚强, 倪照鹏, 崔海浩. 自行车馆木赛道的燃烧特性试验研究[J]. 安全与环境学报, 2019, 19(04): 1247-1251. [32] 袁利萍, 黄自知, 胡云楚. 木材试样形态对CONE热释放特性参数的影响[J]. 林业科学, 2016, 52(03): 75-81. [34] 徐青峰. 胡桃木板材下表面火蔓延过程研究[D]. 西安科技大学, 2018. [35] 彭磊, 邱培芳, 蒋邓睿. 轻型木结构建筑外墙火灾蔓延试验研究[J]. 消防科学与技术, 2020, 39(03): 340-344. [36] 陈方,钟波.胶合木结构受火响应规律研究[J].消防科学与技术,2021,40(02):180-183. [37] 张英, 郭贤, 毛少华, 等. 宽度与角度耦合作用下固体表面火蔓延加速特性[J]. 工程热物理学报, 2020, 41(05): 1239-1246. [39] 王思官, 唐凯旋, 牛忠臣, 等. 辐射和倾角耦合作用下火蔓延行为特性[J]. 工业安全与环保, 2017, 43(05): 53-55+71. [40] 王喜世, 廖光煊, 范维澄, 等. 木材表面火蔓延特性的动态测量研究[J]. 火灾科学, 2000(01): 8-12. [41] 李贤斌, 濮凡, 邹丽, 等. 古建筑木板壁结构对室内火蔓延过程影响研究[J]. 中国安全科学学报, 2019, 29(11):45-50. [42] 薛伟, 张德新. 贮木场木材剩余物燃烧蔓延模型的研究[J]. 西部林业科学, 2010, 39(04): 30-33. [43] 王红双, 李莉, 朱龙龙, 等. 基于锥形量热仪的典型软垫座椅材料燃烧特性研究[J]. 安全与环境学报, 2018, 18(01): 79-84. [44] 刘术敬, 朱鹏, 汪东东, 等. 基于锥形量热仪的锂离子电池电解液火灾危险性研究[J].消防科学与技术, 2020, 39(10): 1459-1461. [45] 陈松华, 徐艳英, 王志, 等. 通用航空碳纤维复合材料火灾危险性评价[J]. 消防科学与技术, 2019, 38(12): 1645-1648. [46] 刘立宪. 聚苯乙烯泡沫芯材火灾危险性模糊层次分析研究[J]. 轻工科技, 2013, 29(07): 33-34. [47] 高飞, 王康康, 田宝贵, 等. 不同衰退状态磷酸铁锂动力电池组件的燃烧性及危险性研究[J]. 储能科学与技术, 2019, 8(06): 1176-1181. [48] 王文和, 何腾飞, 米红甫, 等. 18650型锂离子电池燃烧特性及火灾危险性评估[J]. 安全与环境学报, 2019, 19(03): 729-736. [49] 李晖. 改性竹丝装饰材性能研究及综合评价[D]. 中国林业科学研究院, 2017. [50] 张丁然, 陈磊. 基于神经网络的聚合物火灾危险性预测[J]. 消防科学与技术, 2021, 40(03): 360-364. [51] 付钧泽, 姜红, 孙振文. 不同阻燃剂阻燃聚丙烯的火灾危险性分析[J]. 工程塑料应用, 2021, 49(08): 105-112. [52] 苑春苗, 贺曹迪, 原琪, 等. 典型织物覆盖下软质聚氨酯泡沫火焰蔓延特性研究[J]. 安全与环境学报, 2022, 22(05): 2352-2357. [53] 钟小璇, 陈曦. 基于灰色关联分析法的电缆火灾危险性分析[J]. 安全与环境工程, 2010, 17(04): 60-63+68. [54] 周慧婷, 尤飞, 胡源, 等. HIPS阻燃复合材料三元潜在火灾危险性评价[J]. 安全与环境学报, 2017, 17(03): 868-872. [55] 张娜. 基于视频图像的火灾危险性评价研究[D]. 西安建筑科技大学, 2017. [56] 周巍,姚斌.基于锥形量热仪的几种防火布燃烧性能研究[J].火灾科学,2018,27(01):23-29. [62] 朱超, 张英, 孙金华. 试样放置角度与外加辐射强度对可碳化固体表面火蔓延的影响[J]. 火灾科学, 2010, 19(04): 232-238. [64] 沈德魁, 方梦祥, 李社锋, 等. 热辐射下木材热解与着火特性实验[J]. 燃烧科学与技术, 2007(04): 365-369. [65] 赵恒. 灰色关联法在工程安全领域的应用浅谈与建议[J]. 四川建筑, 2022, 42(02): 336-338. [66] 王清源, 潘旭海. 熵权法在重大危险源应急救援评估中的应用[J]. 南京工业大学学报(自然科学版), 2011, 33(03): 87-92. [67] 王明霞, 单延龙, 尹赛男, 等. 11种树种的树皮抗火性[J]. 应用生态学报, 2020, 31(01): 65-71. [68] 冯卫, 唐亚明, 马红娜, 等. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质, 2021, 54(02): 282-288. [69] 程静, 石必明, 班鸿榆. 玻璃纤维网与XPS复合层火灾危险性分析[J]. 消防科学与技术, 2022, 41(07): 895-898. [70] 赵震, 于全蕾, 李旭光, 等. 轨道车辆用高分子保温材料燃烧行为研究与火灾危险性评价[J]. 工程塑料应用, 2022, 50(03): 125-129. [71] 宋凡超, 顾平, 王姝涵, 等. 熵权法在农村饮用水安全评价中的局限性[J]. 南昌大学学报(工科版), 2021, 43(04): 380-383. [72] 李芳,李东坪.基于熵权法的组合评价模型[J].信息技术与信息化,2021(09):148-150. [73] 邓拓宇, 田伯尧. 基于CRITIC权重法和多级模糊综合评判的燃烧状态诊断[J]. 华北电力大学学报(自然科学版), 2022, 49(06): 20-27. [74] 曲娜, 郑天芳, 张帅, 等. 基于权重博弈层次分析法的火灾参量评价[J]. 沈阳航空航天大学学报, 2022, 39(03): 72-80. [75] 范晨, 王斌. 基于灰色关联法的森林火灾危险性风险评价[J]. 测绘科学, 2010, 35(S1): 110-112. [76] 凤四海, 李枣, 贺元骅. 基于灰色关联法的飞机火灾事故统计分析与启示[J]. 安全与环境工程, 2017, 24(03): 138-143+149. |
中图分类号: | TU998.1 |
开放日期: | 2024-06-20 |