- 无标题文档
查看论文信息

论文中文题名:

 余吾煤矿高应力工作面顶板覆岩破断规律研究    

姓名:

 靳高汉    

学号:

 18220214066    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 李树刚    

第一导师单位:

  西安科技大学    

第二导师姓名:

 张超    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-05-30    

论文外文题名:

 Research on the breaking law of the overlying rock in the high-stress working face of Yuwu Coal Industry    

论文中文关键词:

 顶板破断 ; 微震监测 ; 覆岩活动规律 ; 周期来压 ; 基本顶    

论文外文关键词:

 Roof breakage ; microseismic monitoring ; movement behavior of mined overlying strata ; periodic weighting ; basic roof     

论文中文摘要:

      目前,我国大部分矿区已经进入深部开采,然而,由于深部区域煤层埋深大,地应力较高、顶板运动规律不清楚、覆岩运移活跃等因素对煤矿开采造成了严重影响。以山西潞安集团余吾煤矿为例,该矿区煤层开采深度多处于500 m以上,采场应力高,围岩控制难度大,且缺乏对采场顶板覆岩活动过程的全面认识。因此,本文基于余吾煤矿高应力工作面地质条件,采用调研分析、物理实验、理论分析、数值计算和现场实测相结合的方法,对余吾高应力工作面顶板覆岩破断规律进行了研究。主要研究成果如下:
(1)在现场实地调研的基础上,分析总结了余吾煤矿的地质条件,并开展了煤岩体物理力学参数测试,分别得到煤样、砂质泥岩、粉砂岩等不同岩试样的物理力学参数,为后续的理论计算与数值模拟提供数据支撑。
(2)基于梁力学模型计算得到余吾煤矿目标工作面的初次来压步距与周期来压步距长度,基于基本顶厚板模型理论对工作面上方基本顶的初次破断应力状态进行了分析。并根据厚板模型理论,分析得到工作面基本顶初次破断时应力与挠度分布状态,在此基础上,对顶板覆岩的关键层所处层位进行了分析判别。
(3)借助3DEC数值模拟软件对工作面回采过程中的覆岩破断特征进行了研究,分析了不同回采阶段覆岩应力、应变及裂隙发育程度等相关参量的变化特征。
(4)基于微震监测技术建立微震监测系统,对工作面回采过程中的覆岩活动展开监测,得到采场不同时间段内微震事件的分布情况,并分析了微震事件整体在监测期间的空间分布状态。
(5)综合分析监测结果中的微震数据,得到工作面采动对顶板覆岩稳定性影响的超前范围和滞后影响范围分布,并基于垂直方向微震事件的分布特点,结合工作面地质赋存情况判断得到工作面裂隙带发育高度。研究了工作面两侧巷道顶板覆岩的相对活跃程度。
(6)通过分析采动影响下基于微震事件和位置分布的覆岩裂隙周期演化机理、微震事件的空间动态演化特征,总结了工作面覆岩裂隙周期性破断规律,得到了工作面的周期来压步距及冒落带高度。根据周期来压前后微震事件的分布特征,综合整个走向长度微震事件分布特点,对周期来压期间前后顶板的活跃程度进行了分析,并运用分形维数对断层稳定性规律进行了研究。
       本文通过综合运用现场调研、实验室实验、理论分析、数值模拟、现场实测等分析方法,从多个角度对潞安集团余吾煤矿高应力工作面顶板的覆岩破断规律进行了研究,得到了工作面顶板覆岩中关键层位置、基本顶初次垮落步距、周期垮落步距、采场裂隙带高度等对工作面安全回采具有关键意义的特征参数,研究成果将有助于进一步深化对高应力工作面采场覆岩运动规律的认识,推动余吾煤矿顶板灾害防治工作的发展,完善余吾煤矿高应力工作面覆岩运动理论,为顶板管理、围岩控制、矿井防突等措施提供科学支撑,对保障矿井的安全高效开采,防止顶板事故的发生具有很积极的实际意义。

 

论文外文摘要:

At present, with the gradual depletion of shallow coal resources, most of Chinese coal mines have gradually entered the deep mining stage. However, due to the complex geological conditions of coal mines, the difference in coal seam depths is large, the ground stress is high, the roof movement law is unclear, and the overlying strata are transported. Factors such as migration activity have had a serious impact on coal mining. Taking Yuwu Coal Industry of Shanxi Lu'an Group as an example, the buried depth of the coal mining in this mining area is generally more than 500 m, and the stope stress is high, and there is a lack of comprehensive understanding of the process of overburden rock activity on the roof of the stope. Therefore, based on the mining geological conditions of Yuwu coal mining face, this paper uses a comprehensive research method combining field investigation, laboratory experiment, theoretical analysis, numerical simulation, and field measurement to study the breaking law of the overburden of Yuwu high-stress roof. The main research results of this paper are as follows:

(1) Analyzed and summarized the geological conditions of Yuwu Coal Industry, and carried out physical and mechanical parameter tests of coal and rock masses to obtain the uniaxial compressive strength, tensile strength, and shear strength of coal, sandy mudstone, and siltstone. Parameters provide basic data for mechanical calculations and numerical simulations.

(2) Based on the calculation of beam mechanics model, the initial pressing step distance and the periodic pressing step length of the target working face of Yuwu Coal Industry are calculated. Based on the basic roof thickness plate model theory, the initial breaking stress state of the basic roof above the working face is analyzed. According to the theory of the thick plate model, the initial breaking step of the basic roof of the working face is obtained by analysis. On this basis, the layer position of the key layer of the roof overburden is analyzed and judged.

(3) With the aid of 3DEC numerical simulation software, the fracture characteristics of the overburden rock during the mining face were studied, and the change characteristics of related parameters such as the stress, strain and crack development degree of the overburden rock in different stages were analyzed.

(4) Establish a microseismic monitoring system based on the microseismic monitoring technology to monitor the overlying rock activity during the mining face, obtain the distribution of microseismic events in different time periods of the stope, and analyze the overall spatial distribution of microseismic events during the monitoring period status.

(5) Comprehensively analyze the microseismic data in the monitoring results to obtain the leading and lagging impact range distributions of the impact of mining on the roof overlying rock. Based on the distribution characteristics of microseismic events in the vertical direction, combined with the geological occurrence of the working face The development height of the fissure zone in the working face. The relative active degree of the overlying rock on the sides of the two roadways in the working face is studied.

(6) By analyzing the periodic evolution mechanism of overburden cracks based on microseismic events and location distribution and the spatial dynamic evolution characteristics of microseismic events under the influence of mining, the periodic breaking laws of overburden cracks in the working face are summarized, and the periodicity of the working face is obtained. Pressure step and height of caving zone. Combined with the distribution characteristics of microseismic events over the entire strike length, the activity level of the roof before and after the periodic compression is analyzed.

The subject comprehensively uses analysis and research methods such as field investigation, laboratory experiment, theoretical analysis, numerical simulation, field measurement, etc., to investigate the breaking law of overlying strata in the high-stress roof face of Yuwu Coal Industry of Lu'an Group from multiple angles. The research has obtained the key layer position in the overburden of the working face, the initial collapse step of the basic roof, the periodic collapse step, the height of the stope fissure zone and other characteristic parameters that have key significance for the safe mining of the working face. The research results can be used for the guidance and reference of measures such as roof management, surrounding rock control, mine outburst prevention, have very positive practical significance for ensuring safe and efficient mining of mines and preventing roof accidents.

参考文献:

[1] 李树刚, 常心坦, 林海飞. 西北矿区安全生产存在问题及对策研究[J]. 采矿与安全工程学报, 2006(01):52-55.

[2] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1):44-46.

[3] 李树刚, 魏宗勇, 林海飞, 等. 煤与瓦斯共采三维大尺度物理模拟实验系统的研制与应用[J]. 煤炭学报, 2019,44(01):236-245.

[4] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020(2):11-16.

[5] 袁亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报:社会科学版, 2018,v.20;No.80(01):3-12.

[6] 袁亮. 我国煤炭工业高质量发展面临的挑战与对策[J]. 中国煤炭, 2020,v.46;No.522(01):10-16.

[7] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021,46(01):1-15.

[8] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报, 2020,45(07):2331-2345.

[9] 2020煤炭行业发展年度报告[R].煤炭工业协会, 2021.

[10] 国家统计局:2020年煤炭消费量占能源消费总量的56.8% 比上年下降0.9%[EB/OL]. (2021-02-28)[2-29]. http://www.stcn.com/kuaixun/egs/202102/t20210228_2864788.html.

[11] 张宏. 煤炭行业“十四五”发展面临的形势与任务[J]. 企业观察家, 2020(11):56-60.

[12] Jiang F C, Lai E, Shan Y X, et al. A Set Theory-Based Model for Safety Investment and Accident Control in Coal Mines[J]. Process Safety and Environmental Protection, 2020,136(3).

[13] Bo C, Shuai Z, Wang S, et al. Lightweight Mashup Middleware for Coal Mine Safety Monitoring and Control Automation[J]. IEEE Transactions on Automation Science and Engineering, 2017,14(2):1-11.

[14] 周福宝, 魏连江, 夏同强, 等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报, 2020,45(06):2225-2235.

[15] Li D, Zhang J, Sun Y, et al. Evaluation of Rockburst Hazard in Deep Coalmines with Large Protective Island Coal Pillars[J]. Natural Resources Research, 2021,30(2):1835-1847.

[16] 王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021,46(01):57-64.

[17] Kong X, Li S, Wang E, et al. Experimental and numerical investigations on dynamic mechanical responses and failure process of gas-bearing coal under impact load[J]. Soil Dynamics and Earthquake Engineering, 2021,142:106579.

[18] 杨铭扬. 抽采钻孔密封浆液流动轨迹三维磁性成像物理实验研究[D]. 西安科技大学, 2019.

[19] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015,34(11):2161-2178.

[20] 齐庆新, 潘一山, 李海涛, 等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报, 2020,45(05):1567-1584.

[21] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019,44(05):1283-1305.

[22] Qi W, Zhenhua J, Bei J, et al. Research on an automatic roadway formation method in deep mining areas by roof cutting with high-strength bolt-grouting[J]. International Journal of Rock Mechanics and Mining Sciences, 2020,128.

[23] 袁亮, 姜耀东, 何学秋, 等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报, 2018,43(02):306-318.

[24] 姜耀东, 赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报, 2015,34(11):2188-2204.

[25] 齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018,43(07):1801-1810.

[26] 王超杰, 杨胜强, 蒋承林, 等. 煤巷工作面突出预测钻孔动力现象演化机制及关联性探讨[J]. 煤炭学报, 2017,42(09):2327-2336.

[27] 王汉鹏, 李清川, 袁亮, 等. 煤与瓦斯突出模拟试验型煤相似材料研发与特性分析[J]. 采矿与安全工程学报, 2018,35(06):1277-1283.

[28] 薛俊华, 刘超, 王龙. 组合串联煤岩冲击倾向性影响因素数值模拟[J]. 西安科技大学学报, 2016,36(01):65-69.

[29] 康红普, 张镇, 黄志增. 我国煤矿顶板灾害的特点及防控技术[J]. 煤矿安全, 2020,51(10):24-33.

[30] 姜福兴, 成功, 冯宇, 等. 两侧不规则采空区孤岛工作面煤体整体冲击失稳研究[J]. 岩石力学与工程学报, 2015,34(S2):4164-4170.

[31] 程利兴, 姜鹏飞, 杨建威, 等. 深井孤岛工作面巷道围岩采动应力分区演化特征[J]. 岩土力学, 2020(12):1-8.

[32] Sitao Z, Yu F, Fuxing J, et al. Mechanism and risk assessment of overall-instability-induced rockbursts in deep island longwall panels[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,106.

[33] SHEN R, WANG E, XU W, et al. Outburst prevention and control technology of thin coal zone in island coal face with potential outburst[J]. Procedia Engineering, 2011,26.

[34] 冯宇, 姜福兴, 李京达. 孤岛工作面围岩整体失稳冲击危险性评估方法[J]. 煤炭学报, 2015,40(05):1001-1007.

[35] 张东升, 李文平, 来兴平, 等. 我国西北煤炭开采中的水资源保护基础理论研究进展[J]. 煤炭学报, 2017,42(01):36-43.

[36] 徐刚, 于健浩, 范志忠, 等. 国内典型顶板条件工作面矿压显现规律研究[J]. 煤炭学报, 2021:1-10.

[37] Chen D X, Sun C, Wang L G. Collapse behavior and control of hard roofs in steeply inclined coal seams[J]. BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2021,80(2):1489-1505.

[38] Lv W Y, Wu Y P, Ming L, et al. Migration Law of the Roof of a Composited Backfilling Longwall Face in a Steeply Dipping Coal Seam[J]. Minerals, 2019,9(3).

[39] 张伟胜. 葫芦素煤矿厚砂岩顶板中厚煤层综采覆岩活动规律研究[D]. 中国矿业大学, 2020.

[40] 李鹏. 沟谷地形厚煤层开采覆岩裂隙发育特征与径流水害防治机理研究[D]. 中国矿业大学, 2019.

[41] 曹孜. 煤炭城市转型与可持续发展研究[D]. 中南大学, 2013.

[42] 钱鸣高. 20年来采场围岩控制理论与实践的回顾[J]. 中国矿业大学学报, 2000(01):1-4.

[43] 钱鸣高. 采场围岩控制理论与实践[J]. 矿山压力与顶板管理, 1999(Z1):12-15.

[44] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994(06):557-563.

[45] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(03):2-7.

[46] 许家林, 钱鸣高. 岩层控制关键层理论的应用研究与实践[J]. 中国矿业, 2001(06):56-58.

[47] 钱鸣高, 茅献彪, 缪协兴. 采场覆岩中关键层上载荷的变化规律[J]. 煤炭学报, 1998(02):25-29.

[48] 许家林, 钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报, 2000(05):21-25.

[49] 许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000(02):122-126.

[50] 赵晓东, 宋振骐. 岩层移动复合层板模型的系统方法解析[J]. 岩石力学与工程学报, 2001(02):197-201.

[51] 宋振骐, 宋扬, 刘义学, 等. 内外应力场理论及其在矿压控制中的应用: 中国北方岩石力学与工程应用学术会议, 中国河南郑州, 1991[C].

[52] 宋振骐, 邓铁六, 宋扬, 等. 采场矿山压力和顶板运动的预测预报[J]. 煤矿安全, 1988(05):42-43.

[53] 宋振骐, 刘义学, 陈孟伯, 等. 岩梁裂断前后的支承压力显现及其应用的探讨[J]. 山东矿业学院学报, 1984(01):27-39.

[54] 王金安, 尚新春, 刘红, 等. 采空区坚硬顶板破断机理与灾变塌陷研究[J]. 煤炭学报, 2008(08):850-855.

[55] 柏建彪, 侯朝炯. 深部巷道围岩控制原理与应用研究[J]. 中国矿业大学学报, 2006(02):145-148.

[56] Tian C, Wang A, Liu Y, et al. Study on the Migration Law of Overlying Strata of Gob-Side Entry Retaining Formed by Roof Cutting and Pressure Releasing in the Shallow Seam[J]. Shock and Vibration, 2020,2020:8821160.

[57] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994(01):21-32.

[58] 侯朝炯, 李学华. 综放沿空掘巷围岩大、小结构的稳定性原理[J]. 煤炭学报, 2001(01):1-7.

[59] 孙晓明, 何满潮. 深部开采软岩巷道耦合支护数值模拟研究[J]. 中国矿业大学学报, 2005(02):37-40.

[60] 张农, 韩昌良, 阚甲广, 等. 沿空留巷围岩控制理论与实践[J]. 煤炭学报, 2014,39(08):1635-1641.

[61] Wang Q, Qin Q, Jiang B, et al. Geomechanics model test research on automatically formed roadway by roof cutting and pressure releasing[J]. International Journal of Rock Mechanics and Mining Sciences, 2020,135:104506.

[62] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008(08):1545-1553.

[63] 康红普. 深部煤矿应力分布特征及巷道围岩控制技术[J]. 煤炭科学技术, 2013,41(09):12-17.

[64] 伍永平. “顶板-支护-底板”系统动态稳定性控制模式[J]. 煤炭学报, 2007(04):341-346.

[65] 邵小平, 石平五, 贺桂成. 急斜放顶煤开采顶板卸载拱结构分析[J]. 北京科技大学学报, 2007(05):447-451.

[66] 黄克军, 黄庆享, 王苏健, 等. 浅埋煤层群采场周期来压顶板结构及支架载荷[J]. 煤炭学报, 2018,43(10):2687-2693.

[67] 宁静, 徐刚, 张春会, 等. 综放工作面多区支撑顶板的力学模型及破断特征[J]. 煤炭学报, 2020,45(10):3418-3426.

[68] 宋高峰, 王振伟, 钟晓勇. 坚硬顶板破断冲击机理及支架与围岩“收敛-约束”耦合机制研究[J]. 采矿与安全工程学报, 2020,37(05):951-959.

[69] 杨科, 刘文杰, 焦彪, 等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报, 2021,43(01):85-93.

[70] Li M, Wang H, Wang D, et al. Experimental study on characteristics of surface potential and current induced by stress on coal mine sandstone roof[J]. Engineering Geology, 2020,266(C).

[71] Yuting X, Brijes M, Danqing G. Using the Relaxation Test to Study Variation in the Time-Dependent Property of Rock and the Consequent Effect on Time-Dependent Roof Failure[J]. Rock Mechanics and Rock Engineering, 2017,50(9).

[72] Qing M, Yunliang T, Xuesheng L, et al. Effect of coal thicknesses on energy evolution characteristics of roof rock-coal-floor rock sandwich composite structure and its damage constitutive model[J]. Composites Part B, 2020,198.

[73] 黄庆享. 浅埋煤层的矿压特征与浅埋煤层定义[J]. 岩石力学与工程学报, 2002(08):1174-1177.

[74] 郝海金, 吴健, 张勇, 等. 大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J]. 煤炭学报, 2004(02):137-141.

[75] 弓培林, 靳钟铭. 大采高综采采场顶板控制力学模型研究[J]. 岩石力学与工程学报, 2008(01):193-198.

[76] 谢广祥. 综放工作面及其围岩宏观应力壳力学特征[J]. 煤炭学报, 2005(03):309-313.

[77] Behera B, Yadav A, Singh G S P, et al. A numerical modeling approach for evaluation of spalling associated face instability in longwall workings under massive sandstone roof[J]. Engineering Failure Analysis, 2020,117:104927.

[78] 窦林名, 何学秋. 煤矿冲击矿压的分级预测研究[J]. 中国矿业大学学报, 2007(06):717-722.

[79] 王新丰, 高明中. 不规则采场应力分布特征的面长效应[J]. 煤炭学报, 2014,39(S1):43-49.

[80] 白锦文, 冯国瑞, 章敏, 等. 上下柱式开采对中部残煤采场岩层应力分布时空演化的影响[J]. 煤炭学报, 2016,41(08):1896-1904.

[81] 王连国, 韩猛, 王占盛, 等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报, 2013,30(03):317-322.

[82] Zhao Y, Lin B, Liu T, et al. Mechanism of multifield coupling-induced outburst in mining-disturbed coal seam[J]. Fuel, 2020,272:117716.

[83] Cai W, Dou L, Si G, et al. Fault-Induced Coal Burst Mechanism under Mining-Induced Static and Dynamic Stresses[J]. Engineering, 2020.

[84] Gao R, Yang J, Kuang T, et al. Investigation on the Ground Pressure Induced by Hard Roof Fracturing at Different Layers during Extra Thick Coal Seam Mining[J]. GEOFLUIDS, 2020,2020(8834235).

[85] 韩宇峰, 王兆会, 唐岳松. 综放工作面临空开采顶煤主应力旋转特征[J]. 煤炭学报, 2020,45(S1):12-22.

[86] 张国军. 工作面端部三维采动应力与煤岩动态损伤研究[D]. 中国矿业大学(北京), 2019.

[87] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(05):20-23.

[88] 翟成. 近距离煤层群采动裂隙场与瓦斯流动场耦合规律及防治技术研究[D]. 中国矿业大学, 2008.

[89] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011,28(02):298-303.

[90] 涂敏, 桂和荣, 李明好, 等. 厚松散层及超薄覆岩厚煤层防水煤柱开采试验研究[J]. 岩石力学与工程学报, 2004(20):3494-3497.

[91] Chao L, Junhua X, Guofeng Y, et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology[J]. International Journal of Mining Science and Technology, 2016,26(2).

[92] Qing Y, Geoff W, Zhenzhen J, et al. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip[J]. Journal of Petroleum Science and Engineering, 2018,165.

[93] Feng X, Hao X, Jiang Q, et al. Rock Cracking Indices for Improved Tunnel Support Design: A Case Study for Columnar Jointed Rock Masses[J]. ROCK MECHANICS AND ROCK ENGINEERING, 2016,49(6SI):2115-2130.

[94] Jianguo N, Jun W, Yunliang T, et al. Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining[J]. International Journal of Mining Science and Technology, 2020,30(02):207-215.

[95] Hongqing Z, Shuhao F, Yujia H, et al. Study of the Dynamic Development Law of Overburden Breakage on Mining Faces[J]. Scientific Reports, 2020,10(1).

[96] Dongming Z, Xiaohan Q, Guangzhi Y, et al. Coal and rock fissure evolution and distribution characteristics of multi-seam mining[J]. International Journal of Mining Science and Technology, 2013,23(6).

[97] Cheng Z, Liu B, Zou Q, et al. Analysis of Spatial–Temporal Evolution of Mining-Induced Fracture Field: A Case Study Using Image Processing in the Shaqu Coal Mine, China[J]. Natural Resources Research, 2019(1–4).

[98] 国家质量监督检验检疫总局. 煤和岩石物理力学性质测定方法[S]. 2009.

[99] 胡洪旺, 叶义成, 赵祖炜, 等. 基于Ressiner厚板理论的采空区顶板稳定性研究[J]. 矿业研究与开发, 2018,38(07):66-70.

[100] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 中国矿业大学出版社, 2010.

[101] 谢和平. 分形一岩石力学导论[M]. 北京:科学出版社, 1996.

中图分类号:

 TD327.2    

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式