论文中文题名: | 基于InSAR技术的矿区地表沉降监测研究 |
姓名: | |
学号: | 18210062028 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081601 |
学科名称: | 工学 - 测绘科学与技术 - 大地测量学与测量工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | InSAR数据处理及应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-18 |
论文答辩日期: | 2021-06-04 |
论文外文题名: | Study on surface subsidence monitoring in mining area based on InSAR technology |
论文中文关键词: | |
论文外文关键词: | Surface Subsidence ; Mining Area ; DEM ; DInSAR ; Time Series InSAR |
论文中文摘要: |
我国是世界上煤炭资源最丰富的国家之一,煤炭资源的开采推动了我国经济的快速发展。然而大量井工开采引起的煤矿地表沉降对矿区环境有着严重的影响和危害。因而,开展矿区地表沉降监测研究对于“三下采煤”及制定科学合理的环境保护措施具有重要的理论和应用价值。 传统的矿区地表沉降监测方法虽然测量精度较高,但通过布设观测线进行测量的方法对于大范围的形变监测需要耗费大量的人力、物力,并且对于测点的长期维护较为困难。合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)技术因其具有全天时、全天候、精度高、范围广等特点,已经成为监测地表沉降的常用方法之一,在世界范围内得到普遍应用。通过InSAR技术进行干涉测量的结果具有高时空分辨率,可以达到厘米甚至毫米级精度,能够满足矿区地表沉降监测的精度要求。 本文针对InSAR技术在矿区地表沉降监测中的相关问题开展研究,主要研究内容和成果如下: (1)探讨DEM(Digital Elevation Model)对DInSAR(Differential InSAR)地表沉降监测的影响。以彬长矿区为研究对象,选取4种DEM为参考高程数据,分别基于DInSAR技术对两组Sentinel-1A数据进行处理。对不同DEM数据、DInSAR监测结果、GPS(Global Positioning System)实测数据与监测结果进行对比分析,结果表明,NASA DEM作为参考高程数据,DInSAR监测结果的精度最高。 (2)探讨不同时序InSAR在矿区地表沉降监测中的适用性。以彬长矿区孟村煤矿为研究对象,分别采用PS DInSAR(Persistent Scatterers DInSAR)、SBAS DInSAR(Small Baseline Subset DInSAR)、优化GCP(Ground Control Point)点选取的SBAS DInSAR共3种时序InSAR技术对研究区2018年1月11日至2018年12月25日的30景Sentinel-1A数据进行处理。通过对不同时序InSAR技术的监测结果进行分析,并选取时间跨度为2018年6月9日至2018年11月29日的5个GPS实测数据对不同时序InSAR方法的监测结果进行验证。结果表明,优化GCP点选取的SBAS DInSAR技术监测结果的精度最高。 (3)深入探讨基于优化GCP点选取的SBAS DInSAR矿区地表沉降监测方法。基于优化GCP点选取的SBAS DInSAR对彬长矿区2014年10月23日至2019年5月6日的98景Sentinel-1A数据进行处理,获取了研究区的年平均沉降速率图及时间序列累积沉降量。选取时间跨度为2018年6月29日至2019年3月9日共6个GPS实测数据与对应时段的监测结果进行对比。结果显示:矿区的最大年平均沉降速率和最大累积沉降量分别为-97 mm/a和-387 mm;GPS与监测结果的平均均方根误差(Root Mean Squared Error, RMSE)和平均相关性系数(correlation coefficient, r)分别为2.3 cm和0.944,验证了优化GCP点选取的SBAS DInSAR技术在研究区应用的可行性及监测结果的准确性。 |
论文外文摘要: |
China is one of the countries with the richest coal resources in the world. The exploitation of coal resources promotes the rapid development of China's economy. However, the surface subsidence caused by a large number of underground mining has a serious impact and harm on the mining environment. Therefore, it is of great theoretical and practical value to carry out the research on surface subsidence monitoring in mining areas for “coal mining under buildings, railways and water-bodies” and to formulate scientific and reasonable environmental protection measures. Although the traditional mining area surface subsidence monitoring method has high measurement accuracy, it needs a lot of manpower and material resources for large-scale deformation monitoring by laying observation lines, and it is difficult for long-term maintenance of measuring points. Interferometric synthetic aperture radar (InSAR) technology has become one of the common methods for monitoring land subsidence because of its all-day, all-weather, high accuracy, and wide range. The results of InSAR interferometry have a high spatial and temporal resolution, which can reach centimeter or even millimeter level accuracy and can meet the accuracy requirements of surface subsidence monitoring in the mining area. In this paper, the related problems of InSAR technology in mining area surface subsidence monitoring are studied. The main research contents and achievements are as follows: (1) Discusses the influence of DEM (Digital Elevation Model) on the surface subsidence monitoring of DInSAR (Differential InSAR). Taking the Binchang mining area as the research object, four kinds of DEM are selected as reference elevation data, and two groups of sentinel-1A data are processed based on DInSAR technology. The comparison and analysis of different DEM data, DInSAR monitoring results, GPS (Global Positioning System) measured data, and monitoring results show that the accuracy of DInSAR monitoring results is the highest when NASA DEM is used as reference elevation data. (2) Discusses the applicability of different time series InSAR in mining area surface subsidence monitoring. Taking Mengcun coal mine in Binchang mining area as the research object, three kinds of time series InSAR technologies including PS DInSAR (Persistent Scatterers DInSAR), SBAS DInSAR (Small Baseline Subset DInSAR), and SBAS DInSAR selected by optimized GCP points were used to process the 30 Sentinel-1A data in the study area from January 11, 2018, to December 25, 2018. Through the analysis of the monitoring results of different time series InSAR technology, five GPS measured data from June 9, 2018, to November 29, 2018, are selected to verify the monitoring results of different time series InSAR methods. The results show that the SBAS DInSAR technology, which optimizes the selection of GCP points, has the highest accuracy. (3) In-depth discussion of the SBAS DInSAR mining area surface subsidence monitoring method based on optimized GCP point selection. SBAS DInSAR based on optimized GCP point selection processed 98 Sentinel-1A data of Binchang mining area from October 23, 2014, to May 6, 2019, and obtained the annual average settlement rate map and time series cumulative settlement of the study area amount. The selected time span is from June 29, 2018, to March 9, 2019, and a total of 6 GPS measured data are compared with the monitoring results of the corresponding time period. The results show that the maximum annual average settlement rate and maximum cumulative settlement of the mining area are -97 mm/a and -387 mm, respectively; the average root means square error (RMSE) and average correlation coefficient(r) between GPS and monitoring results are 2.3 cm and 0.944, respectively. The feasibility of the application of the SBAS DInSAR technology, which optimizes the selection of GCP points, in the study area, and the accuracy of the monitoring results are verified. |
参考文献: |
[7] 张安虎, 张勇. 陕西彬长煤矿区水土流失致因分析与水土保持思路及对策[J]. 陕西水利, 2013, 4: 158-159. [18] 吴一戎, 朱敏慧. 合成孔径雷达技术的发展现状与趋势[J]. 遥感技术与应用, 2000, 15(2): 121-123. [24] 何秀凤, 何敏. InSAR对地观测数据处理方法与综合测量[M]. 科学出版社, 2012. [25] 何琪. 时序 InSAR 技术监测北京市地表形变及其与地下水位变化关系分析[D]. 北京: 中国地质大学, 2020. [26] 张景发, 李发祥, 张世民. InSAR处理算法及理论模型综合研究[J]. 地壳构造与地壳应力文集, 2000, (00): 192-211. [27] 陈基炜. 新技术在城市地面沉降研究中的应用——遥感卫星雷达干涉测量(InSAR)[J]. 上海地质, 2001, (02): 45-50. [28] 刘毅. 地面沉降研究的新进展与面临的新问题[J]. 地学前缘, 2001, (02): 273-278. [29] 焦明连, 高祥伟. 基于InSAR技术的煤矿区数字高程模型的建立[J]. 煤炭工程, 2008, (07): 112-114. [30] 裴旭, 李岩, 王立娜, et al. 基于InSAR技术在山地区域DEM提取及精度评定[J]. 测绘与空间地理信息, 2018, 41(05): 33-36. [42] 王超,杨清友.干涉雷达在地学研究中的应用[J].遥感技术与应用, 1997, (04): 37-46. [43] 吴立新, 高均海, 葛大庆, et al. 基于D-InSAR的煤矿区开采沉陷遥感监测技术分析[J]. 地理与地理信息科学, 2004, (02): 22-25+37. [44] 吴立新, 高均海, 葛大庆, et al. 工矿区地表沉陷D-InSAR监测试验研究[J]. 东北大学学报, 2005, (08): 778-782. [45] 薛跃明, 郭华东, 王长林, et al. 基于D-InSAR技术的矿区地表形变监测研究[J]. 遥感信息, 2008, (05): 33-36. [46] 刘慕溪, 刘冬. D-InSAR技术应用于矿区开采沉陷的监测分析[J]. 江西测绘, 2014, (02): 18-21. [47] 娄明明, 巩华刚, 徐子兴, et al. 基于D-InSAR技术的鄂尔多斯市矿区形变监测与分析[J]. 测绘地理信息, 2021, 1-6. [48] 石晓宇, 魏祥平, 杨可明, et al. 基于D-InSAR技术和改进GM(1,1)模型的矿区沉降监测与预计[J]. 金属矿山, 2020, (09): 173-178. [70] 罗海滨, 赵显富. 基于PS-DInSAR技术监测盐城地面沉降的结果与分析[J]. 测绘通报, 2012, (11): 35-37+46. [71] 刘向铜, 曹秋香, 熊助国, et al. 一种优化的公共主影像选取方法[J]. 测绘科学, 2016, 41(11): 114-117+188. [72] 马飞虎, 姜珊珊, 孙翠羽. PSInSAR在铅山县矿区地表沉降监测中的应用[J]. 应用科学学报, 2018, 36(06): 969-977. [73] 冯小蔓, 张蓓, 任鸿瑞. 基于PS-DInSAR的太原市城市地表形变监测[J]. 陕西师范大学学报(自然科学版), 2020, 48(01): 50-57. [74] 孔祥如, 罗勇, 刘贺, et al. PS-InSAR技术在北京通州区地面沉降监测中的应用[J]. 城市地质, 2021, 16(01): 25-31. [80] 张静, 张勤, 曲菲霏. 运城市地面沉降SBAS-InSAR监测和敏感性GIS分析[J]. 上海国土资源, 2012, 33(01): 58-61. [81] 刘志敏, 李永生, 张景发, et al. 基于SBAS-InSAR的长治矿区地表形变监测[J]. 国土资源遥感, 2014, 26(03): 37-42. [82] 张艳梅, 王萍, 罗想, et al. 利用Sentinel-1数据和SBAS-InSAR技术监测西安地表沉降[J]. 测绘通报, 2017, (04): 93-97. [83] 阎跃观, 代文晨, 赵传武, et al. 基于SBAS-InSAR技术的矿区地表移动规律研究[J]. 中国矿业, 2019, 28(S2): 177-180. [84] 栾元重, 梁耀东, 纪赵磊, et al. 基于SBAS-InSAR技术采动地表沉降监测与分析[J]. 煤炭科学技术, 2020, 48(10): 198-204. [85] 石固林, 徐浪, 张璇钰, et al. 西山村滑坡时序形变的SBAS-InSAR监测[J]. 测绘科学, 2021, 46(02): 93-98+105. [86] 白艳萍. 基于SBAS-InSAR技术的白龙江中游地表变形特征分析与潜在滑坡早期识别[D]. 兰州: 兰州大学, 2020. [87] 常金钟. 基于InSAR技术的矿区开采沉陷研究[D]. 西安: 西安科技大学, 2020. [88] 赵强. 基于 InSAR 时序分析的吉林省地表形变监测研究[D]. 长春: 吉林大学, 2019. [89] 刘文涛. 基于时序InSAR技术的矿区地面沉降监测与分析[D]. 西安: 西安科技大学, 2020. [90] 廖明生, 林珲. 雷达干涉测量:原理与信号处理基础[M]. 测绘出版社, 2003. [94] 王霞迎, 赵超英, 尹慧芳. 地表形变时间序列InSAR监测法综述[J]. 地球物理学进展, 2018, 33(04): 1430-1437. [95] 徐崟尧. 煤矿沉陷治理区土壤—植被特征及其复垦质量评价[D]. 西安: 陕西师范大学, 2018. [97] 杨丹, 周亚男, 杨先增, et al. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12): 2445-2455. [98] 李映辰, 柯樱海, 宫辉力, et al. DEM对PS-InSAR地面沉降监测的影响[J]. 测绘科学, 2018, 43(01): 124-134. [99] 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(08): 1108-1115. |
中图分类号: | P237 |
开放日期: | 2021-06-18 |