- 无标题文档
查看论文信息

论文中文题名:

 基于生态系统服务的陕北地区景观生态风险评价    

姓名:

 王江涛    

学号:

 20210010008    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0705    

学科名称:

 理学 - 地理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 地理空间信息技术与应用    

第一导师姓名:

 郭岚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Landscape ecological risk assessment based on ecosystem services in northern Shaanxi Province    

论文中文关键词:

 陕北地区 ; 生态系统服务 ; 景观生态风险 ; 影响因素    

论文外文关键词:

 Northern Shaanxi region ; Ecosystem services ; Landscape ecology risk ; influence factor    

论文中文摘要:

随着城市化进程的加快,人类活动对景观格局空间分布的作用逐渐增强。频繁的人类活动对景观生态风险构成一定的威胁,景观生态风险的科学评价可为区域生态风险预测与防范、景观格局监管与优化提供科学依据,同时也可以为生态环境可持续发展提供一定的参考依据。研究选取植被净初级生产力、产水深度、土壤保持能力、生境质量来改进景观脆弱度,并结合景观格局指数,评价2000-2020年陕北地区景观生态风险空间分布及其时空变化特征。运用地理探测器分析影响陕北地区景观生态风险空间异质性的主要驱动力和影响因素,研究结论如下:

从土地利用时空变化分析来看:草地在陕北地区土地利用类型中占主体位置,占研究区总面积的64.7%,林地主要分布在延安南部地区,面积占研究区总面积的18.21%。2000-2020年间耕地、未利用地面积呈减少趋势。林地、草地和建设用地面积呈增加趋势。在土地利用变化中,净转出量较高的是耕地和林地,净转入量较高的是草地和林地。建设用地变化动态度最高为6.69%,说明陕北地区城镇化速度较高。

从生态系统服务时空变化分析来看:(1)陕北地区植被净初级生产力空间分布南北差异较大,总体呈现南高北低的特点,低值区面积约占总面积的40.3%,主要分布在榆林地区的风沙滩地,高值区主要分布在延安南部的黄陵县和黄龙县;时间变化上来看,陕北地区大部分地区植被NPP呈显著增加,显著增加区域占总面积的98.2%。(2)陕北地区多年产水深度为251 mm,低值区主要集中在定边县的西部以及府谷县;高值区主要分布在研究区的最南部洛川县。近年来陕北地区产水深度增长速度较快,呈波动式变化。(3)研究区的南部黄龙县和西南部富县为土壤保持量高值区,榆阳区和定边县等地是土壤保持量低值区;从时间尺度方面来看,陕北地区土壤保持能力一直处于不断增加的趋势。(4)生境质量分布较高的地区主要分布在黄龙县和黄陵县,低值区分布在榆林地区的横山区和榆阳区,生境质量指数呈波动增长趋势。(5)陕北地区各生态系统相关性较高,尤其是植被NPP、产水深度以及土壤保持量这三者处于强相关性,相关性均大于0.55。说明陕北地区在实施退耕还林还草后,各生态系统均处于逐步协同增强的趋势。

从景观生态风险时空变化分析来看:2000-2020年,陕北景观生态风险在空间上呈现出南高北低的特征,中等生态风险等级的面积较大,整体风险指数由2000年的0.3247下降至2020年的0.3040。高、较高生态风险区的面积持续减少,中等生态风险区变化最大,主要以风险降低为主,低生态风险区相对稳定,变化较少。总体来看,研究区生态风险呈现向良性发展趋势。从空间相关分析方面来讲,五期Moran’s I分别为0.888、0.891、0.884、0.892和0.893,景观生态风险呈现空间正相关;从局部自相关结果来看景观生态风险空间分布主要以“高-高”和“低-低”两种聚集方式为主,其中“高-高”聚集分布在榆林地区西北部,“低-低”聚集分布在延安地区南部。

从景观生态风险驱动因素分析来看:自然因素和人为因素对景观生态风险造成的影响不一,自然因子对生态风险起到主要影响作用,人为因子起到控制作用。其中降水和土壤类型对景观生态风险的解释力最大,分别为53.25%和25.76%,夜间灯光和人口密度对生态风险的解释力最小。从交互探测结果可以看出,任意两种因子交互作用对生态风险的解释力起到增强作用。年均降水量与人为干扰度两者的交互解释力达到最大值,为65.97%。研究表明年均降水量是解释生态风险动态变化的关键因素,而人为干扰是影响景观生态风险的重要因素,两者之间的相互作用是对生态风险的影响最大。

论文外文摘要:

With the acceleration of urbanization, the effect of human activities on the spatial distribution of landscape pattern is gradually enhanced, and the frequent human activities pose a certain threat to the landscape ecological risk. The scientific assessment of landscape ecological risk can provide a scientific basis for the prediction and prevention of regional ecological risk, as well as the regulation and optimization of landscape pattern. In this study, vegetation net primary productivity, water yield depth, soil conservation ability and habitat quality were selected to improve the landscape vulnerability. Combined with landscape pattern index, the spatial distribution and spatio-temporal changes of landscape ecological risks in northern Shaanxi were evaluated during 2000-2020. The main driving forces and influencing factors affecting spatial heterogeneity of landscape ecological risk in northern Shaanxi were analyzed by using geographic detector. The research conclusions were as follows:

From the analysis of temporal and spatial changes of land use, grassland occupies the main position of land use types in northern Shaanxi, accounting for 64.7% of the total area of the study area, while woodland is mainly distributed in southern Yan 'an, accounting for 18.21% of the total area of the study area. The arable land and unused land area showed a decreasing trend from 2000 to 2020. The area of forest land, grassland and construction land showed an increasing trend. In the land use change, the net transfer amount is higher in cultivated land and forest land, while the net transfer amount is higher in grassland and forest land. The highest change attitude of construction land is 6.69%, indicating that the urbanization speed is relatively high in northern Shaanxi.

From the analysis of temporal and spatial changes of ecosystem services: (1) The spatial distribution of net primary productivity of vegetation in northern Shaanxi has a great difference between north and south, with the overall characteristics of high in the south and low in the north. The low-value area accounts for about 40.3% of the total area, and the low-value area is mainly distributed in the sandy beach in Yulin, while the high-value area is mainly distributed in Huangling and Huanglong counties in the south of Yan 'an. NPP of vegetation increased significantly in most areas of northern Shaanxi, accounting for 98.2% of the total area. (2) The annual water depth in northern Shaanxi is 251mm, and the low value areas are mainly concentrated in the west of Dingbian County and Fugu County; The high value area of water production depth is mainly distributed in Luochuan County, the southernmost part of the study area. In recent years, the water yield depth in northern Shaanxi increased rapidly and in the form of fluctuation growth. (3) Huanglong County in the south and Fuxian County in the southwest of the study area were the areas with high soil conservation values, while Yuyang District and Dingbian County were the areas with low soil conservation values. From the perspective of time scale, soil conservation ability in northern Shaanxi has been increasing. (4) The areas with high habitat quality distribution were mainly distributed in Huanglong County and Huangling County, while the areas with low habitat quality were distributed in Hengshan District and Yuyang district of Yulin area, and the habitat quality index showed a trend of fluctuating growth. (5) The ecosystems in northern Shaanxi are highly correlated, especially the NPP of vegetation, water yield depth and soil conservation, which are strongly correlated, and the correlation is all greater than 0.55. After the implementation of the conversion of farmland to forest and grassland in northern Shaanxi, all the ecosystems are in a trend of gradual synergistic enhancement.

From the analysis of spatial and temporal changes of landscape ecological risk, from 2000 to 2020, the landscape ecological risk in the study area presented the characteristics of high in the south and low in the north, and the area of medium ecological risk grade was large, and the overall risk index decreased from 0.3247 in 2000 to 0.3040 in 2020. The area of high and high ecological risk areas continued to decrease, the medium ecological risk areas changed the most, mainly with risk reduction, and the low ecological risk areas were relatively stable with little change. In general, the ecological risk in the study area presents a benign development trend. In terms of spatial correlation analysis, Moran's I in the five phases were 0.888, 0.891, 0.884, 0.892 and 0.893, respectively, showing a spatial positive correlation between landscape ecological risks. According to the local autocorrelation results, the spatial distribution of landscape ecological risk is mainly divided into "high-high" and "low-low" clustering modes, among which "high-high" clustering is distributed in the northwest of Yulin region, and "low-low" clustering is distributed in the south of Yan 'an region.

From the analysis of driving factors of landscape ecological risk, natural factors and human factors have different impacts on landscape ecological risk, in which natural factors play a major role in influencing ecological risk, while human factors play a controlling role. Precipitation and soil type have the greatest explanatory power to landscape ecological risk, which are 53.25% and 25.76% respectively, while night light and population density have the least explanatory power to landscape ecological risk. It can be seen from the interactive detection results that the interaction of any two factors enhances the explanatory power of ecological risk. The interactive explanatory power of average annual precipitation and human disturbance degree reached the maximum, which was 65.97%. It is found that average annual precipitation is the key factor to explain the dynamic change of ecological risk, while human disturbance is the important factor to affect the ecological risk of landscape, and the interaction between the two is the biggest influence on ecological risk

参考文献:

[1]DU J Q, SHU J M, WANG Y H, et al. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau] [J]. Ying Yong Sheng Tai Xue Bao, 2014, 25(2): 533-44.

[2]常青, 邱瑶, 谢苗苗, 等. 基于土地破坏的矿区生态风险评价:理论与方法 [J]. 生态学报, 2012, 32(16): 5164-74.

[3]刘焱序, 王仰麟, 彭建, 等. 基于生态适应性循环三维框架的城市景观生态风险评价 [J]. 地理学报, 2015, 70(07): 1052-67.

[4]张文静, 孙小银, 单瑞峰, 等. 1975—2018年南四湖流域景观生态风险时空变化及其驱动因素研究 [J]. 生态科学, 2020, 39(03): 172-81.

[5]阳紫怡, 罗松, 吴天振, 等. 基于土地利用的杭州湾滨海湿地景观生态风险评价 [J]. 杭州师范大学学报(自然科学版), 2023, 22(01): 36-44.

[6]赵彩霞. 甘肃白龙江流域生态风险评价 [D]; 兰州大学, 2013.

[7]李鑫, 杨朝现, 信桂新, 等. 基于地形梯度的三峡库区景观生态风险特征 [J]. 水土保持研究, 2023, 30(02): 156-64.

[8]彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望 [J]. 地理学报, 2015, 70(04): 664-77.

[9]王军辉. 陕西北部地区旱涝灾害时空组合风险综合评价 [D]; 东北师范大学, 2022.

[10]彭茹燕, 张慧芝, 哈斯, 等. 陕北风沙区景观格局分析 [J]. 干旱区研究, 2005, (01): 51-6.

[11]杜文涛, 李新萍, 宋佳伟, 等. 黄河流域景观生态风险分析及预测 [J]. 水土保持通报, 2022, 42(05): 105-13.

[12]尉芳, 刘京, 夏利恒, 等. 基于LUCC的陕西渭北旱塬区景观生态风险评价 [J]. 中国环境科学, 2022, 42(04): 1963-74.

[13]蔡超琳. 基于多源数据的中国生态系统研究网络(CERN)典型生态系统植被变化趋势及其影响因素识别[D].华东师范大学,2021.

[14]Yang Lei,Liu Fenglian. Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan[J]. Sustainability,2022,14(17):101-112.

[15]LAWTON J H. Daily, G. C. (Ed.). 1997. Nature's services. Societal dependence on natural ecosystems. Island Press, Washington, DC. 392 pp. ISBN 1-55963-475-8 (hbk), 1 55963 476 6 (soft cover) [J]. Cambridge University Press, 1998.

[16]COSTANZA R, D'ARGE R, GROOT R D, et al. The value of the world's ecosystem services and natural capital [J]. Ecological Economics, 1998, 25(1).

[17]谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估 [J]. 自然资源学报, 2003, (02): 189-96.

[18]肖寒, 欧阳志云, 赵景柱, 等. 森林生态系统服务功能及其生态经济价值评估初探——以海南岛尖峰岭热带森林为例 [J]. 应用生态学报, 2000, (04): 481-4.

[19]李文华, 张彪, 谢高地. 中国生态系统服务研究的回顾与展望 [J]. 自然资源学报, 2009, 24(01): 1-10.

[20]王丹君, 万军, 吴秀芹. 区域尺度生态服务评估方法与应用研究 [J]. 安徽农业科学, 2011, 39(03): 1633-5+8.

[21]高雅. 三江源区草原生态系统生态服务价值的能值评价 [D]; 兰州大学, 2014.

[22]赵海溶, 莫宏伟. 长株潭城市群生态系统服务价值时空变化分析 [J]. 测绘科学, 2022, 47(12): 206-15.

[23]武燕, 吴映梅, 高彬嫔, 等. 成渝城市群生态系统服务价值与人类活动强度空间关系 [J]. 水土保持研究, 2023, 30(01): 173-82.

[24]张娜丽. 2000~2020年阿尔泰山土地利用与生态系统服务价值的动态变化 [J]. 土壤通报, 2022, 53(06): 1286-94.

[25]陈琴. 重庆市石柱县生态系统服务功能时空格局研究 [J]. 重庆师范大学学报(自然科学版), 2021, 38(06): 30-44.

[26]柴慧霞, 饶胜, 牟雪洁, 等. 基于灾后重建的国土空间生态优化——以芦山地震灾区灾后重建为例 [J]. 北京大学学报(自然科学版), 2016, 52(06): 1068-76.

[27]黄从红, 杨军, 张文娟. 生态系统服务功能评估模型研究进展 [J]. 生态学杂志, 2013, 32(12): 3360-7.

[28]谢余初. 基于InVEST模型的甘肃白龙江流域生态系统服务时空变化研究 [D]; 兰州大学, 2015.

[29]徐涵. 基于InVEST的泰山区小流域土壤保持与水源供给功能评估 [D]; 山东农业大学, 2022.

[30]肖晴川. 基于InVEST模型的生态系统服务评估及影响因素分析 [D]; 江西财经大学, 2022.

[31]刘洋. 基于InVEST模型的疏勒河流域生态系统服务功能时空演变 [D]; 甘肃农业大学, 2020.

[32]赵欣悦, 王金凤, 李庆, 等. 基于InVEST模型的北三河流域土壤保持功能研究 [J]. 石河子大学学报(自然科学版), 2022, 40(04): 487-96.

[33]赵筱青, 石小倩, 李驭豪, 等. 滇东南喀斯特山区生态系统服务时空格局及功能分区 %J 地理学报 [J]. 2022, 77(03): 736-56.

[34]KAPUSTKA, LA, GALBRAITH, et al. Using landscape ecology to focus ecological risk assessment and guide risk management decision-making [J]. TOXICOL IND HEALTH, 2001.

[35]HEGGEM D T, EDMONDS C M, NEALE A C, et al. A landscape ecology assessment of the Tensas River Basin; proceedings of the Monitoring Ecological Condition in the Western United States: Proceedings of the Fourth Symposium on the Environmental Monitoring and Assessment Program (EMAP), San Franciso, CA, April 6–8, 1999, F, 2000 [C]. Springer.

[36]王洁. 青藏高原土地利用与景观生态风险评价 [D]; 河南农业大学, 2020.

[37]李琛, 高彬嫔, 吴映梅, 等. 基于PLUS模型的山区城镇景观生态风险动态模拟 [J]. 浙江农林大学学报, 2022, 39(01): 84-94.

[38]马骏, 裴燕如, 王慧媛, 等. 鄂尔多斯—榆林地区景观生态风险评价及其驱动因子分析 [J]. 水土保持通报, 2022, 42(02): 275-83.

[39]熊 星,唐晓岚,叶海跃, 等.基于“源汇”格局的传统乡村景观保护与导控策略[J].地域研究与开发,2019,38(06):120-125.

[40]钟祺康, 王志一, 王娜, 等. 陕北干旱区景观生态风险空间分异特征及驱动因素分析 [J]. 测绘通报, 2022, (07): 100-6.

[41]谢丽霞. 黄河上游生态功能区土地利用变化及其景观生态风险评价 [D]; 西北师范大学, 2021.

[42]蒋蕾, 杜明月. 基于生态系统服务的农安县景观生态风险评价 [J]. 环境生态学, 2019, 1(03): 39-45.

[43]刘珍环, 张国杰, 付凤杰. 基于景观格局-服务的景观生态风险评价——以广州市为例 [J]. 生态学报, 2020, 40(10): 3295-302.

[44]郎睿婷. 基于生态系统服务的生态风险评估及景观格局优化 [D]; 陕西师范大学, 2021.

[45]程静, 王鹏, 陈红翔, 等. 半干旱区生态风险时空演变及其影响因素的地理探测——以宁夏盐池县为例 [J]. 干旱区地理, 2022, 45(05): 1637-48.

[46]程严, 李伊黎, 常中兵, 等. 基于土地利用变化的景观生态风险评价——以广东省海岸带为例 [J]. 环境生态学, 2022, 4(11): 23-33.

[47]邸晓慧, 苏英慧, 明弘, 等. 重庆市江津区土地利用景观干扰度时空变化 [J]. 西北林学院学报, 2021, 36(01): 11491-8.

[48]杜嵩. 基于土地利用变化的西安市景观生态风险评价研究 [D]; 西安科技大学, 2021.

[49]郭云, 李鹏, 程维金, 等. 洞庭湖土地利用和生态服务功能时空变化及其耦合效应分析 [J]. 环境科学学报, 2022, 42(01): 121-30.

[50]李胜鹏, 柳建玲, 林津, 等. 基于1980—2018年土地利用变化的福建省生境质量时空演变 [J]. 应用生态学报, 2020, 31(12): 4080-90.

[51]张自正, 梁思源, 熊玉晴. 多情景土地利用变化下武汉城市圈生态系统服务权衡协同研究 [J]. 农业资源与环境学报: 1-16.

[52]JIANG W. Ecosystem services research in China: A critical review [J]. Ecosystem Services, 2017, 26: 10-6.

[53]易秋松. 吉安市生态系统服务功能与景观生态风险关联性及空间对策研究 [D]; 江西财经大学, 2022.

[54]陈峰, 李红波, 张安录. 基于生态系统服务的中国陆地生态风险评价 [J]. 地理学报, 2019, 74(03): 432-45.

[55]张师赫, 李宝银, 林玉英, 等. 基于生态系统服务的景观生态风险评价及其驱动因素研究——以福建省为例 [J]. 水土保持研究, 2022, 29(06): 174-82.

[56]曹祺文, 张曦文, 马洪坤, 等. 景观生态风险研究进展及基于生态系统服务的评价框架:ESRISK [J]. 地理学报, 2018, 73(05): 843-55.

[57]郑可君, 李琛, 吴映梅, 等. 云南边境山区景观生态风险时空演变及其影响因素 [J]. 生态学报, 2022, 42(18): 7458-69.

[58]李承航. 吉林省景观生态风险评价与影响因素研究 [D]; 吉林建筑大学, 2022.

[59]WOBUS C, PRUCHA R, ALBERT D, et al. Hydrologic alterations from climate change inform assessment of ecological risk to pacific salmon in Bristol Bay, Alaska [J]. PLoS One, 2015, 10(12): e0143905.

[60]LIU R, DONG X, WANG X, et al. Relationship and driving factors between urbanization and natural ecosystem health in China [J]. Ecological Indicators, 2023, 147: 109972.

[61]KARIMIAN H, ZOU W, CHEN Y, et al. Landscape ecological risk assessment and driving factor analysis in Dongjiang river watershed [J]. Chemosphere, 2022, 307: 135835.

[62]常铮, 李崇贵, 张家政, 等. 基于GEE云平台的陕北黄土高原生态修复前后植被变化及原因 [J]. 西安理工大学学报, 2022, 38(03): 337-45.

[63]张博, 刘长星, 王璇. 陕北黄土高原植被覆盖时空变化及其归因分析 [J]. 测绘通报, 2022, (08): 22-9.

[64]赵昆昆, 周宝同, 王晓喆, 等. 全球气候变化下陕北黄土地貌的环境演变 [J]. 安徽农业科学, 2011, 39(24): 14788-90.

[65]叶璇, 康帅直, 赵永华, 等. 陕北黄土高原植被恢复与生态系统服务的时空关系 [J]. 应用生态学报, 2022, 33(10): 2760-8.

[66]李侠. 陕北黄土高原区地质灾害发育特征及防治对策 [J]. 安徽农业科学, 2010, 38(20): 10889-90.

[67]时亚坤, 张瑞. 陕北地区退耕还林对大气湿度和地表温度的影响研究 [J]. 环境科学与管理, 2021, 46(06): 155-9.

[68]曾全超, 李鑫, 董扬红, 等. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征 [J]. 自然资源学报, 2015, 30(05): 870-9.

[69]周宏阳. 陕北黄土高原地区城镇发展格局研究 [D]; 西北大学, 2022.

[70]夏兴生, 朱秀芳, 潘耀忠, 等. 基于年内尺度的中国大陆地区Angstrom公式参数校正与优选 [J]. 灌溉排水学报, 2020, 39(01): 123-30.

[71]XIAO X, HOLLINGER D, ABER J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest [J]. Remote Sensing of Environment, 2004, 89(4): 519-34.

[72]孟现勇, 王浩. 基于世界土壤数据库(HWSD)土壤数据集(v1.2) [DS]. 2018,

[73]YAN F, SHANGGUAN W, ZHANG J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters [J]. Scientific Data, 2020, 7(1): 2.

[74]李贝, 于莉, 郭硕, 等. 县域尺度植被净初级生产力遥感估算及时空变化特征 [J]. 江苏农业科学, 2017, 45(12): 246-9.

[75]王江涛, 杨永崇, 杨梅焕. 基于地理探测器的黄土高原NPP时空变化及驱动力研究 [J]. 西安理工大学学报: 1-10.

[76]李传华, 曹红娟, 范也平, 等. 基于校正的CASA模型NPP遥感估算及分析——以河西走廊为例 [J]. 生态学报, 2019, 39(05): 1616-26.

[77]郭丽洁, 尹小君, 苟贞珍, 等. 基于InVEST模型的阿克苏河流域产水量评估及环境因素影响研究 %J 石河子大学学报(自然科学版) [J]. 2020, 38(02): 216-24.

[78]包玉斌. 基于InVEST模型的陕北黄土高原生态服务功能时空变化研究 [D]; 西北大学, 2015.

[79]杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应 [J]. 应用生态学报, 2020, 31(08): 2731-9.

[80]MATTEO G, MARGHERITA B, MARCO M, et al. Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy [J]. Geosciences, 2021, 11(8).

[81]CHANG-GUANG W, SHENG L, HUA-DONG R, et al. [Quantitative estimation of vegetation cover and management factor in USLE and RUSLE models by using remote sensing data: a review] [J]. Ying yong sheng tai xue bao = The journal of applied ecology, 2012, 23(6).

[82]蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究 [J]. 水土保持学报, 2000, (02): 19-24.

[83]蒋刚, 康金莲, 曹广超, 等. 基于RUSLE模型的青海澜沧江流域土壤侵蚀研究 [J]. 高原科学研究, 2022, 6(04): 1-13.

[84]李天宏, 郑丽娜. 基于RUSLE模型的延河流域2001—2010年土壤侵蚀动态变化 [J]. 自然资源学报, 2012, 27(07): 1164-75.

[85]刘英, 魏嘉莉, 岳辉, 等. 神东矿区土壤侵蚀时空特征及驱动力分析 [J]. 测绘科学, 2022, 47(01): 142-53.

[86]尹作堂, 常军. 2000-2020年黄河流域土壤侵蚀及其驱动因素分析 [J]. 西安理工大学学报: 1-10.

[87]ZHANG H, YANG Q, LI R, et al. Extension of a GIS procedure for calculating the RUSLE equation LS factor [J]. Computers & Geosciences, 2013, 52: 177-88.

[88]包玉斌, 刘康, 李婷, 等. 基于InVEST模型的土地利用变化对生境的影响——以陕西省黄河湿地自然保护区为例 [J]. 干旱区研究, 2015, 32(03): 622-9.

[89]古圳威, 刘京, 陈怡, 等. 陕西渭北旱塬区生境质量及碳储量时空演变分析与模拟 [J]. 环境科学: 1-18.

[90]黄木易, 岳文泽, 冯少茹, 等. 基于InVEST模型的皖西大别山区生境质量时空演化及景观格局分析 [J]. 生态学报, 2020, 40(09): 2895-906.

[91]周德志, 关颖慧, 张冰彬, 等. 基于土地利用变化的陕北地区生境质量时空演变及其驱动因素 [J]. 北京林业大学学报, 2022, 44(06): 85-95.

[92]杨海娟, 孙来玎, 周美君, 等. 黄土高原粮食生产空间重构过程中的生态系统服务权衡——以陕北榆林市为例 [J]. 干旱区地理, 2022, 45(01): 226-36.

[93]王修文, 于书霞, 史志华, 等. 南方红壤区生态系统服务权衡与协同关系演变对退耕还林的响应 [J]. 生态学报, 2021, 41(17): 7002-14.

[94]RUNMIAO Z, SONGLIN C. [Spatial relationship between landscape ecological risk and ecosystem service value in Fujian Province, China during 1980-2020] [J]. Ying yong sheng tai xue bao = The journal of applied ecology, 2022, 33(6).

[95]王鹏, 王亚娟, 刘小鹏, 等. 基于景观结构的生态移民安置区生态风险评价——以宁夏红寺堡区为例 [J]. 生态学报, 2018, 38(08): 2672-82.

[96]田鹏, 李加林, 史小丽, 等. 浙江省土地利用格局时空变化及生态风险评价 [J]. 长江流域资源与环境, 2018, 27(12): 2697-706.

[97]谢花林. 基于景观结构和空间统计学的区域生态风险分析 [J]. 生态学报, 2008, (10): 5020-6.

[98]李辉辉, 杨永崇, 杜嵩, 等. 沿海资源富集区景观格局脆弱度的时空演变特征分析 [J]. 安全与环境工程, 2022, 29(02): 221-9+47.

[99]REN D, CAO A. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and Geodetector model [J]. Ecological Indicators, 2022, 144: 109568.

[100]YANG Z, LIU Y, SU H, et al. Exploring complex place-based coevolution of ecosystem and human activities: A case study of Qilian Mountain area in China [J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103091.

[101]YI L, YU Z, QIAN J, et al. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study [J]. Ecological Indicators, 2021, 122: 107243.

[102]奚世军. 喀斯特山区流域综合生态风险评估及其驱动力分析 [D]; 贵州师范大学, 2020.

[103]燕玲玲. 基于生态系统服务的黄土塬区生态风险时空变化与管控对策 [D]; 兰州大学, 2021.

中图分类号:

 P208. 2    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式