- 无标题文档
查看论文信息

论文中文题名:

 充填体壁面辐射供冷模式下工作面降温效应数值模拟    

姓名:

 卜宝芸    

学号:

 19203053005    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 供热 ; 供燃气 ; 通风及空调工程    

研究方向:

 矿井降温    

第一导师姓名:

 张小艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Numerical simulation of working face cooling effect under radiation cooling mode of backfill body wall face    

论文中文关键词:

 工作面降温 ; 充填体 ; 冷壁 ; 温度分布 ; 数值模拟    

论文外文关键词:

 Cooling of working face ; Backfill body ; Cold wall ; Temperature distribution ; Numerical simulation    

论文中文摘要:

矿产资源是人们生存与社会发展的重要物质基础,经过多年的不断开采,浅部资源逐年减少,深部开采已成为我国矿产资源不可避免的发展趋势。随着矿井开采深度的不断增加,随之遇到了一系列的问题,高温环境是其中的难题之一。为了使开采工作顺利进行,必须采取有效措施降低开采环境的温度,矿井的高温环境主要是由于高温围岩造成的,地热对于矿井开采环境产生了负面影响,而对于其他用热领域则是有利的。基于以上考虑,将深部矿井降温与地热开发相结合,从而实现更经济有效的矿井降温。
本文基于充填采矿法、辐射供冷与传热学原理,在充填体内部布置冷水管道,应用Ansys模拟软件建立充填体冷壁降低工作面温度的三维换热模型,以充填体冷壁面和工作面风流为研究对象,利用Fluent软件模拟不同工况对冷壁温度的影响以及不同热环境对工作面降温效果的影响,分析了管间距、冷流体进口温度与进口速度、充填体导热系数等因素对冷壁温度分布和冷壁释冷量的影响,以及工作面辐射供冷模式下送风温度、送风速度、围岩温度、冷壁温度等参数对工作面风流温度沿程变化的影响,并将本文的充填体冷壁降温与传统的空冷器降温方式进行对比。
对不同工况下充填体冷壁的研究表明:在管道中流动的冷流体可以有效降低充填体温度而形成冷壁,冷壁释冷量在初期显著增加,后期缓慢增加并逐渐趋于稳定。释冷量随管间距的增大稳定下降,当管间距从0.5m增大到1.5m时,释冷量从11.72 kW减小到4.16 kW,管间距越小,相邻管间的传热相互影响越明显。冷流体入口温度越低,释冷量越大,冷流体入口温度每降低4℃,释冷量增加2.06 kW。冷流体的入口速度对释冷量的影响不明显。随着充填体导热系数的增加,释冷量明显增加,当导热系数以增量0.5 W/(m•℃)从0.5 W/(m•℃)增加到2.0 W/(m•℃),在20-60天内,释冷量平均增加3.22kW、2.17kW和1.52kW。
对不同热环境下工作面风流的研究表明:充填体冷壁降温措施的采用,使得测点温度明显降低,距离入风口越远,降温效果越为明显;在工况3中工作面各截面沿程风流温度增量分别降低了0.94℃,0.71℃,0.63℃,0.59℃,0.55℃,0.52℃;送风温度、围岩温度与冷壁温度对风流温度的影响为正相关,送风速度为负相关,送风温度降低2℃风流温度降低1.52℃,送风速度增加0.5m/s风流温度降低范围在0.40℃以内,围岩温度在35-55℃之间时风流温度均低于28℃,冷壁温度降低1℃风流温度降低0.12℃。
综合分析结果显示对冷壁温度和释冷量影响程度最大的是管间距,对工作面风流温度影响最大的是入口温度与围岩温度。不同降温条件的对比表明,在没有冷却措施的情况下,风流温度沿程升高明显,在充填体内置管道中通入冷流体时,充填体壁面温度明显降低并迅速形成冷壁。冷壁的冷量迅速释放到风流中,利用辐射供冷原理有效地实现了风流的冷却。充填体冷壁与空冷器降温方式的对比结果显示两种方式均能很好的达到降温效果,其中冷壁降温不仅能有效解决矿井高温问题,同时也为地热能提取创造了有利条件。本研究不仅为深部矿井工作面降温与地热能协同开采提供了很好的解决思路,同时研究结果为深部矿井热害防治中的充填体辐射供冷技术的应用及冷却效果分析提供理论依据和基础数据。

 

论文外文摘要:

Mineral resources are the important material basis for people's survival and social development. After years of continuous mining, shallow resources have been reduced year by year, and deep mining has become an inevitable development trend of mineral resources in China. With the continuous increase of mining depth, a series of problems are encountered, among which high temperature environment is one of the difficult problems. In order to make the mining work go on smoothly, it is necessary to take effective measures to reduce the temperature of the mining environment. The high temperature environment of the mine is mainly caused by the high temperature surrounding rock, and geothermal has a negative impact on the mining environment, but it is beneficial to other areas using heat. Based on the above considerations, the deep mine cooling is combined with geothermal development, so as to achieve more economic and effective mine cooling.
Based on the backfill mining method, radiant cooling and heat transfer principle, the cold-water pipes are arranged inside the backfill body, and the three-dimensional heat transfer model of the backfill body cold wall to reduce the airflow temperature of working face is established by using Ansys simulation software. This paper takes the cold wall of backfill body and the airflow of working face as the research objects. Fluent software is used to simulate the influence of different working conditions on the cold wall temperature and the influence of different thermal environments on the cooling effect of working face. The influences of pipe spacing, the inlet temperature and inlet velocity of cold fluid, and the thermal conductivity of backfill body on the temperature distribution and cooling capacity of cold wall are analyzed. And the influence of the inlet temperature and inlet velocity of airflow, the surrounding rock temperature,the cold wall temperature and other parameters on the temperature distribution of airflow along the working face under the radiation cooling mode also are analyzed. Then, the cold wall cooling method of backfill body in this paper is compared with the traditional air cooler cooling method. 
The results on the backfill body cold wall under different working conditions show that the cold fluid in embedded pipe can effectively reduce the temperature of backfill body and form the cold wall, the cooling capacity of cold wall increases significantly in the initial period, and then increases slowly and gradually tends to stable in the later period. The cooling capacity decreases steadily with the increase of pipe spacing, when the pipe spacing increases from 0.5m to 1.5m, the cooling capacity deceases from 11.72 kW to 4.16 kW, while the smaller the pipe spacing, the more obvious the heat transfer interaction between adjacent pipes. The lower the inlet temperature of cold fluid, the greater the cooling capacity, the cooling capacity increases by 2.06 kW when the inlet temperature of cold fluid decreases by 4℃. The inlet velocity of cold fluid has a little obvious effect on the cooling capacity, the cooling capacity obviously increases with the increase of the thermal conductivity of backfill body, when the thermal conductivity increases from 0.5 W/(m•℃) to 2.0 W/(m•℃) in increments of 0.5W/(m•℃), the increment of cooling capacity is about 3.22 kW, 2.17 kW and 1.52 kW respectively on average in 20-60 days. 
The results on airflow of working face under different thermal environment show that the temperature of measuring point is significantly reduced with the adoption of cooling measures of backfill body cold wall, and the farther away from the airflow inlet, the more obvious the cooling effect. The increment of airflow temperature in several sections along the working face decreases by 0.94℃, 0.71℃, 0.63℃, 0.59℃, 0.55℃, 0.52℃ respectively in working condition 3. The airflow temperature of working face is positively correlated with the airflow inlet temperature, surrounding rock temperature and cold wall temperature, and negatively correlated with the airflow inlet velocity. The airflow temperature decreases by 1.52℃ when the airflow inlet temperature decreases by 2℃, the airflow temperature decreases within 0.40℃ when the airflow velocity increases by 0.5m/s, the airflow temperature is lower than 28℃ when surrounding rock temperature is between 35-55℃, the airflow temperature decreases by 0.12℃ when the cold wall temperature decreases by 1℃.
The comprehensive analysis results show that the pipe spacing has the greatest influence on the temperature of the cold wall and cooling capacity, and the inlet temperature of airflow and surrounding rock temperature have the greatest influence on the airflow temperature of working face. Comparison of different cooling conditions shows that the airflow temperature increases significantly along the working face in the absence of cooling measures, and when cold fluid is passed through the pipe in backfill body, the temperature of the backfill body wall decreases significantly and the cold wall forms rapidly. The cold will be released rapidly from the cold wall to the airflow, effectively realizing the cooling of airflow by radiant cooling principle. Through the comparison of backfill body cold wall and air cooler cooling method, the results show that both methods can achieve good cooling effect, which cold wall cooling can not only effectively solve the mine high temperature problem, but also create favorable conditions for geothermal energy extraction. The research results not only provide a good solution for collaborative mining of deep mine working face cooling and geothermal energy, but also provides theoretical basis and basic data for the application of radiation cooling technology of backfill body and analysis of cooling effect in deep mine thermal hazard prevention.

 

参考文献:

[1] 张永生, 董舵, 肖逸,等. 我国能源生产,消费,储能现状及碳中和条件下变化趋势[J]. 科学通报, 2021, 66(34):11.

[2] Chen X, Li L, Wang L, et al. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in china[J]. Safety Science, 2019, 115: 229–236.

[3] 冯培荣. 浅谈煤矿深部开采中存在的问题与对策[J]. 2022(2).

[4] 蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(04): 417–426.

[5] Cai M, Li P, Tan W, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in china[J]. Engineering, 2021: S2095809921003313.

[6] 古德生, 周科平. 现代金属矿业的发展主题[J]. 金属矿山, 2012(07): 1–8.

[7] Liu P, Cui S, Li Z, et al. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel[J]. Construction and Building Materials, 2019, 207: 329–337.

[8] 赵文彬, 管清向, 柳俊仓, 等. 深部矿井地温梯度规律分析[J]. 煤矿安全, 2015, 46(08): 188–191.

[9] 刘凯, 朱兆文, 朱万成, 等. 新城金矿深部热环境分析及围岩温度测试[J]. 金属矿山, 2016(06): 157–161.

[10] 王大威, 宋选民, 罗威, 等. 姚家山千米深井工作面降温研究[J]. 煤炭技术, 2015, 34(11): 173–175.

[11] 蒋胜文, 郭子源, 彭东, 等. 张庄铁矿地温监测技术及地温分布规律研究[J]. 现代矿业, 2015, 31(05): 128–131.

[12] Zhang W, Wang T, Zhang D, et al. A comprehensive set of cooling measures for the overall control and reduction of high temperature-induced thermal damage in oversize deep mines: a case study[J]. Sustainability, 2020, 12(6): 2489.

[13] Guo P, Zhu G, He M. HEMS technique for heat-harm control and geo-thermal utilization in deep mines[J]. International Journal of Coal Science & Technology, 2014, 1(3): 289–296.

[14] 孟繁华, 石长岩. 金属矿山深部开采若干问题及思考[J]. 有色矿冶, 2017, 33(05): 11-13+18.

[15] 吴兆吉, 周秀隆, 张世良. 加大矿井高温热害治理力度提高千米深井煤矿安全生产水平[C/OL]. 中国煤炭工业协会, 2013: 313–318.

[16] Greth A V. A thesis submitted in partial fulfillment of the requirements for the degree of master of science in mining engineering[J].

[17] MT/T 1136-2011, 矿井降温技术规范[S].

[18] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[J]. 中华人民共和国国务院公报, 2020(28): 5–7.

[19] 《新时代的中国能源发展》白皮书_白皮书_中国政府网[EB/OL][2021–12–14].

[20] 孙希奎. 矿山绿色充填开采发展现状及展望[J]. 煤炭科学技术, 2020, 48(09): 48–55.

[21] 郭家能. 金属非金属地下开采矿山存在的主要安全技术问题及对策建议[J]. 世界有色金属, 2020(14): 47–48.

[22] Tu R, Huang L, Jin A, et al. Characteristic studies of heat sources and performance analysis of free-cooling assisted air conditioning and ventilation systems for working faces of mineral mines[J/OL]. Building Simulation, 2021[2021–07–07].

[23] Nie X, Wei X, Li X, et al. Heat treatment and ventilation optimization in a deep mine[J]. Advances in Civil Engineering, 2018, 2018: 1–12.

[24] 辛嵩. 矿井热害防治[M]. 矿井热害防治, 2011.

[25] Biffi M, Stanton D J. Cooling power for a new age[C]//Third International Platinum Conference" Platinum in Transformation". The Southern African Institute of Mining and Metallurgy. 2008: 239-247.

[26] 王伟, 冯福康, 赵天勇, 等. 秦岭金矿深部探矿中段高温热害治理方案探讨[J]. 黄金, 2021, 42(03): 25–31.

[27] 王万红, 王远, 杜翠凤, 等. 基于多目标决策的深井降温方法优选[J]. 矿业研究与开发, 2021, 41(03): 154–158.

[28] Zhang Y, Guo D M, Han Q Y. Research of the best combination of cooling parameters in high temperature work deep stope[J]. Advanced Materials Research, 2011, 255–260: 3832–3838.

[29] 中国法制出版社. 煤矿安全规程[M]. 中国法制出版社, 2016.

[30] Trapani K, Romero A, Millar D. Deep mine cooling, a case for northern ontario: part ii[J]. International Journal of Mining Science and Technology, 2016, 26(6): 1033–1042.

[31] 王万红, 王远, 杜翠凤, 等. 基于多目标决策的深井降温方法优选[J]. 矿业研究与开发, 2021, 41(03): 154–158.

[32] 姚韦靖, 庞建勇. 我国深部矿井热害控制措施研究现状与进展[J]. 2017.

[33] 高志鹏. 矿井降温技术研究现状及展望[J]. 应用能源技术, 2014(11): 38–43.

[34] 王树刚, 迟子豪, 张腾飞, 等. U型通风采场的温度场相似实验模型[J]. 中国矿业大学学报, 2012, 41(01): 31–36.

[35] Guo P, Su Y, Pang D, et al. Numerical study on heat transfer between airflow and surrounding rock with two major ventilation models in deep coal mine[J]. Arabian Journal of Geosciences, 2020, 13(16): 756.

[36] 吕卫军. 通风系统与机械降温的合理配置研究[J]. 机械管理开发, 2015, 30(10): 21–23.

[37] 聂晓邺. 基于FLUENT的掘进作业面通风降温数值模拟研究[J]. 采矿技术, 2015, 15(06): 29-31+35.

[38] 岳高伟, 岳凯磊, 李敏敏, 等. 深部开采煤巷预冷风流降温模拟测试研究[J]. 煤炭技术, 2017, 36(03): 171–173.

[39] Feng X-P, Jia Z, Liang H, et al. A full air cooling and heating system based on mine water source[J]. Applied Thermal Engineering, 2018, 145: 610–617.

[40] Zhang Y, Huang P. Influence of mine shallow roadway on airflow temperature[J]. Arabian Journal of Geosciences, 2020, 13(1): 12.

[41] 张睿冲, 谢承煜, 周科平. 高温深井通风降温技术的适用条件研究[J]. 黄金科学技术, 2019, 27(06): 888–895.

[42] Zhu S, Cheng J, Song W, et al. Using seasonal temperature difference in underground surrounding rocks to cooling ventilation airflow: a conceptual model and simulation study[J]. Energy Science & Engineering, 2020, 8(10): 3457–3475.

[43] Huang R, Shen X, Wu E, et al. Study on the influence law of ventilation conditions on heat loss in a roadway of high altitude mine[J]. Numerical Heat Transfer, Part A: Applications, 2020, 77(1): 69–79.

[44] 张瑞明, 魏丁一, 杜翠凤, 等. 水平巷道通风降温适用风量的研究[J]. 矿业研究与开发, 2020, 40(07): 96–99.

[45] Sasmito A P, Kurnia J C, Birgersson E, et al. Computational evaluation of thermal management strategies in an underground mine[J]. Applied Thermal Engineering, 2015, 90: 1144–1150.

[46] Xin S, Wang W, Zhang C, et al. Effects of rock-airflow conjugated heat transfer in development headings: a numerical study[J]. International Journal of Thermal Sciences, 2022, 172: 107301.

[47] Chen W, Liang S, Liu J. Proposed split-type vapor compression refrigerator for heat hazard control in deep mines[J]. Applied Thermal Engineering, 2016, 105: 425–435.

[48] 陈密武. 深井矿井热害治理技术[J]. 煤矿安全, 2017, 48(02): 131–134.

[49] Crawford J A, Joubert H P R, Mathews M J, et al. Optimised dynamic control philosophy for improved performance of mine cooling systems[J]. Applied Thermal Engineering, 2019, 150: 50–60.

[50] Zhang C. Dust-suppression and cooling effects of spray system installed between hydraulic supports in fully mechanized coal-mining face[J]. Building and Environment, 2021: 17.

[51] Zhang C, Zhang N, Sun X. Numerical simulation of cooling effect of different spray water temperature on coal face based on cfd[J]. IOP Conference Series: Earth and Environmental Science, 2021, 714(2): 022035.

[52] Zhai X, Xu Y, Yu Z. Design and performance simulation of a novel liquid co2 cycle refrigeration system for heat hazard control in coal mines[J]. Journal of Thermal Science, 2019, 28(3): 585–595.

[53] Li X, Fu H. Development of an efficient cooling strategy in the heading face of underground mines[J]. Energies, 2020, 13(5): 1116.

[54] Huang P, Huang W, Zhang Y, et al. Simulation study on sectional ventilation of long-distance high-temperature roadway in mine[J]. Arabian Journal of Geosciences, 2021, 14(16): 1674.

[55] Xin S, Wang W, Zhang N, et al. Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems[J]. Journal of Building Engineering, 2021, 38: 102227.

[56] Wu G, Liu H, Wu S, et al. A study on the capacity of a ventilation cooling vest with pressurized air in hot and humid environments[J]. International Journal of Industrial Ergonomics, 2021, 83: 103106.

[57] Sunkpal M, Roghanchi P, Kocsis K C. A method to protect mine workers in hot and humid environments[J]. Safety and Health at Work, 2018, 9(2): 149–158.

[58] Su Z, Jiang Z, Sun Z. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index[J]. Procedia Earth and Planetary Science, 2009, 1(1): 414–419.

[59] Guo P, Wang Y, Duan M, et al. Research and application of methods for effectiveness evaluation of mine cooling system[J]. International Journal of Mining Science and Technology, 2015, 25(4): 649–654.

[60] 郝明奎. 徐州矿区深井热能利用和热害治理的研究[J]. 煤炭科技, 2012(02): 1–4.

[61] Guo P. Field experimental study on the cooling effect of mine cooling system acquiring cold source from return air[J]. International Journal of Mining Science and Technology, 2013: 4.

[62] Niu Y. Research on thermal energy recycling utilization in high temperature mines[J]. Procedia Engineering, 2015, 121: 389–395.

[63] Guo P, He M, Zheng L, et al. A geothermal recycling system for cooling and heating in deep mines[J]. Applied Thermal Engineering, 2017, 116: 833–839.

[64] Feng X-P, Jia Z, Liang H, et al. A full air cooling and heating system based on mine water source[J]. Applied Thermal Engineering, 2018, 145: 610–617.

[65] Rhee K-N, Olesen B W, Kim K W. Ten questions about radiant heating and cooling systems[J]. Building and Environment, 2017, 112: 367–381.

[66] Yuan Y, Zhou X, Zhang X. Numerical and experimental study on the characteristics of radiant ceiling systems[J]. Building Research & Information, 2019, 47(8): 912–927.

[67] Cheng S, Chen Z. Study on indoor comfort of floor radiant cooling and displacement ventilation system in large space[J]. IOP Conference Series: Earth and Environmental Science, 2019, 238: 012078.

[68] Li N, Chen Q. Study on dynamic thermal performance and optimization of hybrid systems with capillary mat cooling and displacement ventilation[J]. International Journal of Refrigeration, 2020, 110: 196–207.

[69] Yang Y, Wang Y, Yuan X, et al. Simulation study on the thermal environment in an office with radiant cooling and displacement ventilation system[J]. Procedia Engineering, 2017, 205: 3146–3153.

[70] Liu J, Dalgo D A, Zhu S, et al. Performance analysis of a ductless personalized ventilation combined with radiant floor cooling system and displacement ventilation[J]. Building Simulation, 2019, 12(5): 905–919.

[71] Su X. A computational model of an improved cooling radiant ceiling panel system for optimization and design[J]. Building and Environment, 2019: 11.

[72] Zhang C, Pomianowski M, Heiselberg P K, et al. A review of integrated radiant heating/cooling with ventilation systems- thermal comfort and indoor air quality[J]. Energy and Buildings, 2020, 223: 110094.

[73] Tian Z, Yang L, Wu X, et al. A field study of occupant thermal comfort with radiant ceiling cooling and overhead air distribution system[J]. Energy and Buildings, 2020, 223: 109949.

[74] Liu J, Li Z, Kim M K, et al. A comparison of the thermal comfort performances of a radiation floor cooling system when combined with a range of ventilation systems[J]. Indoor and Built Environment, 2020, 29(4): 527–542.

[75] Kang Z, Peng X, Cheng X, et al. Analysis of condensation and thermal comfort of two kinds of compound radiant cooling air conditioning systems based on displacement ventilation[J]. Procedia Engineering, 2017, 205: 1529–1534.

[76] 周峰. 煤矿深井开采低温辐射降温技术问世[J]. 煤矿机械, 2005(10): 134.

[77] 孙希奎, 李学华, 程为民. 矿井冰水冷辐射降温技术研究[J]. 采矿与安全工程学报, 2009, 26(01): 105–109.

[78] 凡雨杰. 壁面贴附水膜板换热器降温实验与数值模拟研究[D/OL]. 中国矿业大学, 2017.

[79] 倪路. 冷壁降温系统热力学参数及降温效果的研究[D/OL]. 中国矿业大学, 2019.

[80] Ji J, Li N, Chang Z, et al. Study on heat transfer characteristic parameters and cooling effect of cold wall cooling system in coal mines[J]. Experimental Heat Transfer, 2020, 33(2): 179–196.

[81] Chang Z Y , Ji J W , Wang K Y , et al. Heat absorption control equation and its application of cool-wall cooling system in mines[J]. Journal of Central South University, 2021, 28(9):2735-2751.

[82] 杨明军. 充填采矿法的优势及应用[J]. 科学技术创新, 2018(22): 36–37.

[83] Yin S, Shao Y, Wu A, et al. A systematic review of paste technology in metal mines for cleaner production in china[J]. Journal of Cleaner Production, 2020, 247: 119590.

[84] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(07): 1811–1820.

[85] Templeton J D , SA Ghoreishi‐Madiseh, Hassani F P , et al. Numerical and experimental study of transient conjugate heat transfer in helical closed‐loop geothermal heat exchangers for application of thermal energy storage in backfill bodyed mine stopes[J]. International Journal of Energy Research, 2020, 44(12).

[86] 陈柳, 刘浪, 张波, 等. 基于蓄热充填体深井吸附降温机理[J]. 煤炭学报, 2018, 43(02): 483–489.

[87] Wang M , Liu L , Zhang X Y , et al. Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill body with PCM[J]. Applied Thermal Engineering, 2018, 150.

[88] Zhang X, Jia Y, Wang M, et al. Experimental research on heat transfer and strength analysis of backfill body with ice grains in deep mines[J]. Sustainability, 2019, 11(9): 2486.

[89] 韩萍. 含冰充填材料相变行为与采场降温的数值模拟研究[D/OL]. 西安科技大学, 2018.

[90] Wang M, Liu L, Chen L, et al. Cold load and storage functional backfill body for cooling deep mine[J]. Advances in Civil Engineering, 2018, 2018: 1–8.

[91] 张小艳, 王杰, 韩子怡, 等. 添加石蜡的复合充填材料热学性能实验研究[J]. 山西建筑, 2019, 45(09): 95–97.

[92] 张小艳, 赵成林, 刘利, 等. 添加石蜡的复合充填材料流变性能实验研究[J]. 山西建筑, 2019, 45(08): 87–88.

[93] 程海勇, 吴爱祥, 吴顺川,等. 金属矿山固废充填研究现状与发展趋势[J]. 工程科学学报, 2022, 44(1):15.

[94] Wang M, Liu L, Wang S, et al. Numerical investigation of heat transfer and phase change characteristics of cold load and storage functional cpb in deep mine[J]. Frontiers in Earth Science, 2020, 8: 31.

[95] 张波, 薛攀源, 刘浪,等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报, 2021, 46(9):14.

[96] 何中凯, 焦家海, 王得水. 毛细管网辐射空调系统供冷能力优化与应用研究[J]. 建设科技, 2018(21): 68-72+80.

[97] Ručevskis S, Akishin P, Korjakins A. Parametric analysis and design optimisation of pcm thermal energy storage system for space cooling of buildings[J]. Energy and Buildings, 2020, 224: 110288.

[98] Jin W, Ma J, Jia L, et al. Dynamic variation of surface temperatures on the radiant ceiling cooling panel based on the different supply water temperature adjustments[J]. Sustainable Cities and Society, 2020, 52: 101805.

[99] 杨世铭, 陶文铨. 传热学(第4版) [heat transfer][M]. 传热学(第4版) [Heat Transfer], 2006.

[100]欧聪颖, 刘何清. 深部矿井热环境评价指标研究[J]. 采矿技术, 2019, 19(03): 90–93.

[101]中国法制出版社. 煤矿安全规程[M]. 煤矿安全规程, 2016.

[102]中钢集团马鞍山矿山研究院. 金属非金属地下矿山通风技术规范.通风系统[J/OL]. 2008.

[103]Belle B, Biffi M. Cooling pathways for deep australian longwall coal mines of the future[J]. International Journal of Mining Science and Technology, 2018, 28(6): 865–875.

[104]高雅. 毛细管网辐射供冷与独立新风复合系统性能研究[D/OL]. 重庆大学, 2017.

[105]Jing Z, Jiayu L. Study on heat transfer delay of exposed capillary ceiling radiant panels (e-ccrp) system based on cfd method[J]. Building and Environment, 2020, 180: 106982.

[106]张小艳, 文德, 赵玉娇,等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报.

[107]殷超, 霍伟业, 余赟, 等. 地埋管周围土壤冻结传热特性的实验研究[J]. 建筑热能通风空调, 2020, 39(06): 11–16.

中图分类号:

 TD727    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式