- 无标题文档
查看论文信息

论文中文题名:

 气化灰渣凝胶泡沫防治煤自燃特性研究    

姓名:

 岑孝鑫    

学号:

 20220226157    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张铎    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Study on the characteristics of gasification ash gel foam to prevent coal spontaneous combustion    

论文中文关键词:

 煤自燃 ; 气化灰渣 ; 凝胶泡沫 ; 防火性能 ; 泡沫形貌    

论文外文关键词:

 Coal spontaneous combustion ; Gasification ash ; Gel foam ; Fire resistance ; Foam appearance    

论文中文摘要:

煤自燃不仅造成资源浪费,还威胁着矿山安全生产。当前,注浆、喷洒阻化剂和注惰性气体等方法是煤矿常用的防治煤自燃的技术。这些方法对于防治煤自燃发挥着一定的作用,但是各自也存在着一些缺陷。煤化工的蓬勃发展产生的大量固体废弃物没有得到充分利用。因此,为了有效地防治煤自燃,解决煤气化灰渣大量堆积,不能充分利用的现状,结合泡沫材料流动性好、易堆积和凝胶材料保水性好的特点,研制了一种新型气化灰渣凝胶泡沫材料。这种材料兼具泡沫材料和凝胶材料的特点,很大程度上延缓了煤炭氧化进程的速度。本文通过理论分析和实验研究对气化灰渣凝胶泡沫的制备和相关特性进行了系统研究。

分析了气化灰渣凝胶泡沫的形成机理。气化灰渣凝胶泡沫的形成过程包括表面活性剂在气-液界面和固-液界面的吸附,固相颗粒与气泡的碰撞、吸附,胶凝剂和交联剂形成凝胶三个阶段。采用单因素实验法开展了气化灰渣凝胶泡沫的实验制备研究。分析了单一发泡剂的发泡能力和泡沫稳定性,对性能较佳的发泡剂I、II和III进行两两复配,确定最佳的复配组合和配合比,复配方式I:III=8:2。同时,研究了胶凝剂和气化灰渣添加量对泡沫性能的影响,确定了泡沫制备的配比:发泡剂1%,胶凝剂0.6%,交联剂0.5%,水灰比5:1。

为研究气胶凝剂对气化灰渣凝胶泡沫稳定性的影响,通过显微镜观察凝胶泡沫的微观形貌,分析比较了不同时刻泡沫材料的气泡尺寸变化。胶凝剂浓度为0.6%时,初始时刻泡沫456个,最大为0.346 mm,最小仅为0.032 mm,80 min后仍有136个气泡。比较不同类型凝胶泡沫的宏观形貌特征,研究不同类型的泡沫在煤表面覆盖成膜的效果。气化灰渣凝胶泡沫的成膜效果最好,经过7 d在煤表面仍可形成完整的膜。通过测量材料在不同水灰比下的流变特性,分析气化灰渣颗粒对凝胶泡沫的泡沫粘度、剪切应力和屈服应力的影响,分析泡沫流动的难易程度。结果表明,水灰比达到5:1时,凝胶泡沫的屈服应力达到8.082 Pa,凝胶泡沫越难流动。

利用程序升温实验和热重实验(TG)比较了气化灰渣凝胶泡沫和水玻璃凝胶泡沫抑制煤自燃的效果,并通过堵漏风实验分析了泡沫封堵漏风的能力。程序升温实验表明气化灰渣凝胶泡沫可以有效延缓煤的氧化,100 °C时,泡沫的阻化率达到了63.6%;TG实验表明,原煤经气化灰渣凝胶泡沫处理后,临界温度点T1略微提升至72 °C,干裂温度点T2提升至169 °C;堵漏风实验表明,气化灰渣凝胶泡沫能使形成的负压达到-84.29 KPa,封堵效果良好。

论文外文摘要:

Coal spontaneous combustion (CSC) not only causes waste of resources, but also threatens mine safety production. At present, slurry injection, spraying inhibitor and inert gas injection are the commonly used techniques to prevent CSC in coal mines. These methods play a certain role in the prevention and control of CSC, but each of them also has some defects. A large amount of solid waste generated by the booming development of coal chemical industry is not fully utilized. Therefore, in order to effectively prevent CSC and to solve the current situation that a large amount of coal gasification ash is accumulated and cannot be fully utilized, a new gasification ash gel foam material is developed by combining the characteristics of good fluidity of foam material, easy accumulation and good water retention of gel material. This material has the characteristics of both foam and gel material, which largely slows down the rate of coal oxidation process. In this paper, the preparation and related characteristics of the gasified ash gel foam are systematically studied by theoretical analysis and experimental research.

The formation mechanism of the gasified ash gel foam is analyzed. The formation process of gasified ash slag gel foam includes the adsorption of surfactant at the gas-liquid and solid-liquid interfaces, the collision and adsorption of solid-phase particles and bubbles, and the formation of gel by gelling agent and cross-linking agent in three stages. The experimental preparation study of gasified ash gel foam was carried out using the single-factor experimental method. The foaming capacity and foam stability of a single blowing agent were analyzed, and the best combination of blowing agent I, II and III were compounded to determine the best compounding combination and ratio, with compounding method I:III=8:2. Meanwhile, the effect of gelling agent and gasification ash addition on foam performance was studied, and the ratio of foam preparation was determined: 1% of blowing agent, 0.6% of gelling agent, 0.5% of cross-linking agent, and 5:1 of water to ash ratio. The ratio of water to ash is 5:1.

In order to study the effect of gas gelling agent on the stability of gasified ash gel foam, the microscopic morphology of gel foam was observed by microscopy, and the change of bubble size of foam material at different moments was analyzed and compared. At the gelling agent concentration of 0.6%, 456 bubbles were observed at the initial moment, with the maximum being 0.346 mm and the minimum being only 0.032 mm, and 136 bubbles were still present after 80 min. The macroscopic morphological characteristics of different types of gel foams were compared to study the effect of different types of foams in covering the coal surface to form a film. The film-forming effect of gasified ash gel foam was the best, and a complete film could still be formed on the coal surface after 7 d. By measuring the rheological properties of the material at different water-ash ratios, the effect of gasified ash particles on the foam viscosity, shear stress and yield stress of the gel foam was analyzed, and the ease of foam flow was analyzed. The results show that the yield stress of gel foam reaches 8.082 Pa when the water-ash ratio reaches 5:1, the more difficult the gel foam flows.

The effect of gasified ash gel foam and water-glass gel foam in inhibiting CSC was compared by using programmed temperature rise experiment and thermogravimetric experiment (TG), and the ability of foam to seal air leakage was analyzed by air leakage blocking experiment. The programmed warming experiment showed that the gasified ash gel foam could effectively retard the oxidation of coal, and the blocking rate of the foam reached 63.6% at 100 °C; the TG experiment showed that the critical temperature point T1 was slightly raised to 72 °C and the dry cracking temperature point T2 was raised to 169 °C after the raw coal was treated with gasified ash gel foam; the air leakage plugging experiment showed that the gasified ash gel foam could make the formed negative pressure reach - 84.29 KPa, with good sealing effect.

参考文献:

[1] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019, 44(08): 2277-2284.

[2] 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06): 1625-1636.

[3] 韩建国. 能源结构调整“软着陆”的路径探析——发展煤炭清洁利用、破解能源困局、践行能源革命[J]. 管理世界, 2016, (02): 3-7.

[4] 中华人民共和国2022年国民经济和社会发展统计公报[N]. 2023.

[5] Xu X.Y., Liu Y., Zhang F., et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today, 2017, 298: 61-68.

[6] Zhang Y., Yuan Z.W., Margni M., et al. Intensive carbon dioxide emission of coal chemical industry in China[J]. Applied Energy, 2019, 236: 540-550.

[7] 张辛亥, 朱辉, 安启启, 等. 凯达煤矿采空区煤自燃极限参数分析[J]. 中国安全生产科学技术, 2021, 17(05): 86-92.

[8] 冯山. 西北地区侏罗纪煤层采空区自然发火规律的数值模拟研究[D]. 廊坊:华北科技学院, 2016.

[9] 刘竞龙. 新疆米泉火区多源遥感协同探测与分析[D]. 徐州:中国矿业大学, 2020.

[10] 朱红青, 胡超, 张永斌, 等. 我国矿井内因火灾防治技术研究现状[J]. 煤矿安全, 2020, 51(03): 88-92.

[11] 刘大锐, 朱丹丹. 煤气化渣对磷酸根的吸附与解吸性能研究[J]. 无机盐工业, 2021, 53(02): 84-87+104.

[12] 刘奥灏, 张磊, 张贺, 等. 燃煤锅炉掺烧气化灰渣试验研究[J]. 热力发电, 2020, 49(04): 19-24.

[13] 汤云, 袁蝴蝶, 尹洪峰, 等. 几种典型煤气化炉渣的碳热还原氮化过程[J]. 煤炭学报, 2016, 41(12): 3136-3141.

[14] 杭美艳, 吕学涛, 郭艳梅, 等. 煤气化渣微粉胶凝体系水化机理研究[J]. 混凝土与水泥制品, 2019, (02): 94-97.

[15] 关于“十四五”大宗固体废弃物综合利用的指导意见[Z]. 2021

[16] 王立杰, 王继仁, 张勋, 等. 采空区高位钻孔注浆防灭火浆液扩散特性研究[J]. 中国安全科学学报, 2019, 29(10): 71-77.

[17] 戴明颖. 浅埋深易自燃煤层火区注浆灭火技术[J]. 煤矿安全, 2021, 52(03): 112-116+21.

[18] 郭陇飞. 综采工作面新型凝胶阻化剂防灭火技术应用[J]. 能源与节能, 2021, (07): 171-172.

[19] 马旭, 张延松, 李志勇, 等. 南屯煤矿煤层预裂注阻化剂防灭火研究[J]. 煤矿现代化, 2021, 30(03): 138-140+44.

[20] 王毅泽, 董凯丽, 张玉龙, 等. CMC/ZrCit/GDL防灭火凝胶泡沫的制备及特性研究[J]. 煤炭科学技术, 2022: 1-10.

[21] 王建国, 闫涛, 郑晨光. 一种凝胶泡沫的研制及其热稳定性研究[J]. 煤矿安全, 2021, 52(05): 42-46.

[22] 杨暖暖, 高翔宇, 王美君, 等. 发泡温度对常压自发泡煤基泡沫炭结构和机械强度的影响[J]. 煤炭学报, 2022, 47(10): 3812-3821.

[23] 梁择文, 王俊峰, 董凯丽, 等. 高价态金属离子交联体系防灭火性能影响研究[J]. 中国安全科学学报, 2021, 31(07): 113-119.

[24] 任显财. 温敏性水凝胶的制备及其性能研究 [J]. 煤炭科学技术, 2021, 49(S2): 190-195.

[25] 史全林, 秦波涛. 防治煤自燃的弹性水凝胶形成机理及特性研究[J]. 中国矿业大学学报, 2022, 51(06): 1106-1116.

[26] Shi Q.L., Qin B.T., Hao Y.H., et al. Experimental investigation of the flow and extinguishment characteristics of gel-stabilized foam used to control coal fire[J]. Energy, 2022, 247.

[27] Zhang X.Q., Pan Y.Y.. Preparation, Properties and Application of Gel Materials for Coal Gangue Control[J]. Energies, 2022, 15(2).

[28] Wang G., Yan G.Q., Zhang X.H., et al. Research and development of foamed gel for controlling the spontaneous combustion of coal in coal mine[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 474-486.

[29] Guo Q., Ren W.X., Zhu J.T., et al. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines[J]. Process Safety and Environmental Protection, 2019, 128: 176-183.

[30] Shi Q.L., Qin B.T. Experimental research on gel-stabilized foam designed to prevent and control spontaneous combustion of coal[J]. Fuel, 2019, 254.

[31] Fu B., Cheng Z.Y., Wang D.Z., et al. Investigation on the utilization of coal gasification slag in Portland cement: Reaction kinetics and microstructure[J]. Construction and Building Materials, 2022, 323.

[32] Xin J., Liu L., Jiang Q., et al. Early-age hydration characteristics of modified coal gasification slag-cement-aeolian sand paste backfill[J]. Construction and Building Materials, 2022, 322.

[33] 袁蝴蝶, 尹洪峰, 汤云, 等. Texaco气化炉渣制备硅酸盐水泥的研究[J]. 硅酸盐通报, 2017, 36(09): 3053-3056.

[34] Li Z.Z., Zhang Y.Y., Zhao H.Y., et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274.

[35] Aineto M., Acosta A., Iglesias I.. The role of a coal gasification fly ash as clay additive in building ceramic[J]. Journal of the European Ceramic Society, 2006, 26(16): 3783-3787.

[36] 章丽萍, 温晓东, 史云天, 等. 煤间接液化灰渣制备免烧砖研究[J]. 中国矿业大学学报, 2015, 44(02): 354-358.

[37] Yin C.Y., Zhao J., Liu X.Y., et al. Effect of Coal Water Slurry Gasification Slag on Soil Water Physical Characteristics and Properties in Saline-Alkali Soil Improvement[J]. Journal of Sensors, 2022, 2022.

[38] Liu H., Wang J.A., Abiyasi, et al. Effect of Coal Gasification Slag on Improving Physical Properties of Acid Soil[J]. Science of Advanced Materials, 2022, 14(4): 703-709.

[39] Guo Y., Guo F.H., Zhou L., et al. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior[J]. Fuel, 2021, 292.

[40] Dai G.F., Zheng S.J., Wang X.B., et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management, 2020, 271.

[41] 于伟, 王学斌, 刘莉君, 等. 高含碳煤气化细渣浮选行为研究[J]. 煤炭学报, 2022, 47(S1): 265-275.

[42] Gao S.T., Zhang Y.C., Li H.X., et al. The microwave absorption properties of residual carbon from coal gasification fine slag[J]. Fuel, 2021, 290.

[43] Zhu D., Zuo J., Jiang Y., et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Sci Total Environ, 2020, 707: 136102.

[44] Zhang J.P., Zuo J., Ai W.D., et al. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. Journal of Hazardous Materials, 2020, 384.

[45] Wu Y.H., Xue K., Ma Q.L., et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312.

[46] 石怀国. 黄泥灌浆两种特性曲线的测绘及应用[J]. 煤炭科学技术, 1995, (11): 28-30.

[47] 刘英学, 邬培菊. 黄泥灌浆防止采空区遗煤自燃的机理分析与应用[J]. 中国安全科学学报, 1997, (01): 39-42.

[48] 杨胜强, 张人伟, 邸志前, 等. 煤炭自燃及常用防灭火措施的阻燃机理分析[J]. 煤炭学报, 1998, (06): 62-66.

[49] 罗振敏, 刘鑫. 淮南矿区粘土灌浆材料的实验研究[J]. 煤炭工程, 2007, (12): 39-41.

[50] 荆凯. 粉煤灰作为矿井防灭火灌浆材料的可行性[J]. 煤矿设计, 1992, (02): 48-52.

[51] 王慧, 卜祝龙. 矿用粉煤灰防灭火性能研究[J]. 粉煤灰综合利用, 2019, (04): 56-59.

[52] 肖旸, 马砺, 邓军, 等. 粉煤灰资源化利用的矿井防灭火技术[J]. 矿业安全与环保, 2010, 37(06): 29-31.

[53] 郭可, 郭斌. 灌浆防灭火技术在采空区防火方面的应用[J]. 山东煤炭科技, 2022, 40(05): 120-122+5+8.

[54] 李浩, 王洪江. 复合外加剂对充填浆体固化前后性能的影响规律[J]. 复合材料学报, 2022, 39(08): 3940-3949.

[55] 王洪江, 王小林, 吴爱祥, 等. 减水剂对全尾砂膏体屈服应力影响的时间效应[J]. 中南大学学报(自然科学版), 2021, 52(02): 529-534.

[56] 张玉涛, 史学强, 李亚清, 等. 环保型煤自燃阻化剂的阻化特性及机理研究[J]. 中国矿业大学学报, 2018, 47(06): 1224-1232.

[57] Yan B.R., Hu X.M., Cheng W.M., et al. A novel intumescent flame-retardant to inhibit the spontaneous combustion of coal[J]. Fuel, 2021, 297.

[58] Shu P., Zhang Y.N., Deng J., et al. Characteristics and mechanism of modified hydrotalcite for coal spontaneous combustion preventing[J]. Energy, 2023, 265.

[59] 翟小伟, 胡冕, 马博昊, 等. 氯盐阻化剂吸附CO性能的实验研究[J]. 西安科技大学学报, 2021, 41(05): 772-778+62.

[60] 张嬿妮, 侯云超, 刘博, 等. 卤盐载体无机盐阻化煤自燃的机理及性能[J]. 工程科学学报, 2021, 43(10): 1295-1303.

[61] 汪洪斌, 牛永玲, 尹辉晶. 高稳定性泡沫药剂的研究[J]. 煤矿安全, 1998, (06): 9-11.

[62] 张雷林. 防治煤自燃的凝胶泡沫及特性研究[D]. 徐州:中国矿业大学, 2014.

[63] 边云朋, 张雷林. 纳米氢氧化铝三相泡沫制备研究[J]. 中国安全生产科学技术, 2021, 17(09): 59-65.

[64] Tang Z.Q., Xu G, Yang S.Q., et al. Fire-retardant foam designed to control the spontaneous combustion and the fire of coal: Flame retardant and extinguishing properties[J]. Powder Technology, 2021, 384: 258-266.

[65] Wang T.F., Fan H.M., Yang W.P., et al. Stabilization mechanism of fly ash three-phase foam and its sealing capacity on fractured reservoirs[J]. Fuel, 2020, 264.

[66] 张辛亥, 郭戎, 白枫桐, 等. 无机发泡充填材料密闭技术[J]. 煤矿安全, 2015, 46(11): 74-76.

[67] Miron Y. Gel sealants for the mitigation of spontaneous heatings in coal mines[R], 1995.

[68] 徐精彩, 邓军, 文虎, 等. 耐温高水胶体直接灭火技术在煤层自燃火灾中的应用[J]. 矿业安全与环保, 2000, (01): 44-45.

[69] Ren X.F, Hu X.M., Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of Hazardous Materials, 2019, 371: 643-654.

[70] Wang L., Liu Z.Y., Yang H.Y., et al. A novel biomass thermoresponsive konjac glucomannan composite gel developed to control the coal spontaneous combustion: Fire prevention and extinguishing properties[J]. Fuel, 2021, 306.

[71] Fan Y.J., Zhao Y.Y., Hu X.M., et al. A novel fire prevention and control plastogel to inhibit spontaneous combustion of coal: Its characteristics and engineering applications[J]. Fuel, 2020, 263.

[72] Huang Z., Sun C.W., Gao Y.K., et al. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance[J]. Process Safety and Environmental Protection, 2018, 113: 357-368.

[73] 张辛亥, 邢二军, 于志金, 等. 固化凝胶材料在巷道高冒区火灾防治中的应用[J]. 科学技术创新, 2019, (09): 47-48.

[74] 金永飞, 李海涛, 马蓉, 等. 输送稠化胶体管道弯管段流固耦合数值模拟[J]. 煤矿安全, 2015, 46(01): 13-16+21.

[75] 王冰, 王波, 葛树新. 凝胶发泡体系室内实验研究[J]. 大庆石油地质与开发, 2006, (03): 62-63+107.

[76] 于水军, 赵红, 孟国栋, 等. 一种新型泡沫凝胶成胶时间及灭火特性的实验研究[J]. 火灾科学, 2013, 22(04): 219-225.

[77] 田兆君. 煤矿防灭火凝胶泡沫的理论与技术研究[D]. 徐州:中国矿业大学, 2009.

[78] 田兆君, 王德明, 徐永亮, 等. 矿用防灭火凝胶泡沫的研究[J]. 中国矿业大学学报, 2010, 39(02): 169-172+89.

[79] 田兆君, 王德明, 徐永亮, 等. 凝胶泡沫的阻化特性研究[J]. 煤矿安全, 2009, 40(06): 8-10.

[80] Zhang L.L., Qin B.T. Development of a new material for mine fire control[J]. Combustion Science and Technology, 2014, 186(7): 928-942.

[81] Zhang L.L., Qin B.T., Shi B.M., et al. The fire extinguishing performances of foamed gel in coal mine[J]. Natural Hazards, 2016, 81(3): 1957-1969.

[82] 王玚, 邢玉忠. 凝胶N2泡沫灭火新材料的研究[J]. 煤矿安全, 2016, 47(01): 47-50.

[83] 张军委. 防治煤自燃的新型凝胶泡沫材料实验研究[D]. 徐州:中国矿业大学, 2017.

[84] Xi Z.L., Wang X.D., Wang X.L., et al. Polymorphic foam clay for inhibiting the spontaneous combustion of coal[J]. Process Safety and Environmental Protection, 2019, 122: 263-270.

[85] Wang J., Nguyen A.V., Farrokhpay S. A critical review of the growth, drainage and collapse of foams[J]. Adv Colloid Interface Sci, 2016, 228: 55-70.

[86] Drenckhan W., Hutzler S. Structure and energy of liquid foams[J]. Adv Colloid Interface Sci, 2015, 224: 1-16.

[87] Drenckhan W, Saint-Jalmes A. The science of foaming[J]. Advances in Colloid and Interface Science, 2015, 222: 228-259.

[88] Pradhan A., Bhattacharyya A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants[J]. Journal of Cleaner Production, 2017, 150: 127-34.

[89] 魏发林, 张松, 丁彬, 等. 气/液介质对泡沫液膜渗透性的影响规律[J]. 油田化学, 2022, 39(04): 663-667.

[90] Claesson P.M., Kjellin M., Rojas O.J., et al. Short-range interactions between non-ionic surfactant layers[J]. Physical chemistry chemical physics : PCCP, 2006, 8(47): 5501-5514.

[91] 梁洪军. 防治煤自燃的粉煤灰凝胶泡沫实验研究[D]. 徐州:2019.

[92] Bournival G., Ata S., Wanless E.J. The roles of particles in multiphase processes: Particles on bubble surfaces[J]. Adv Colloid Interface Sci, 2015, 225: 114-133.

[93] 王瑞刚, 吴厚政, 陈玉如, 等. 陶瓷料浆稳定分散进展[J]. 陶瓷学报, 1999, (01): 40-45.

[94] Petkova R., Tcholakova S., Denkov N.D. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge[J]. Langmuir : the ACS journal of surfaces and colloids, 2012, 28(11): 4996-5009.

[95] Peng M.S., Duignan T.T., Nguyen A.V. Significant Effect of Surfactant Adsorption Layer Thickness in Equilibrium Foam Films[J]. Journal of Physical Chemistry B, 2020, 124(25): 5301-5310.

[96] Vitasari D., Cox S., Grassia P., et al. Effect of surfactant redistribution on the flow and stability of foam films[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2020, 476(2234).

[97] Yekeen N., Manan M.A., Idris A.K., et al. A comprehensive review of experimental studies of nanoparticles-stabilized foam for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 164: 43-74.

[98] Fameau A.L., Salonen A.. Effect of particles and aggregated structures on the foam stability and aging[J]. Comptes Rendus Physique, 2014, 15(8-9): 748-760.

[99] 钱延龙, 吕家琪, 吕诚炎, 等. 有机钛交联剂与羧甲基纤维素的交联[J]. 油田化学, 1988, (03): 171-176.

[100]郑晨光. 防治煤自燃的新型凝胶泡沫的制备及性能研究[D]. 西安:西安科技大学, 2020.

[101]Petkova R., Tcholakova S., Denkov N.D. Role of polymer–surfactant interactions in foams: Effects of pH and surfactant head group for cationic polyvinylamine and anionic surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 438: 174-185.

[102]郭行. 煤制油气化灰渣凝胶阻化煤自燃性能研究[D]. 西安:西安科技大学, 2021.

[103]Desbordes L., Grandjean A., Frances F., et al. Critical bubble diameters and Plateau border dimensions for drainage in aqueous xanthan foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612.

[104]Martinez K., Baeza R., Millan F., et al. Effect of limited hydrolysis of sunflower protein on the interactions with polysaccharides in foams[J]. Food Hydrocolloids, 2005, 19(3): 361-369.

[105]Pu W.F., Wei P., Sun L., et al. Experimental investigation of viscoelastic polymers for stabilizing foam[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 360-367.

[106]Mao C.F., Zeng Y.C., Chen C.H. Enzyme-modified guar gum/xanthan gelation: An analysis based on cascade model[J]. Food Hydrocolloids, 2012, 27(1): 50-59.

[107]Khouryieh H.A., Herald T.J., Aramouni F., et al. Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect of salt concentration on the polymer interactions[J]. Food Research International, 2007, 40(7): 883-893.

[108]Heyman B., De Vos W.H., Depypere F., et al. Guar and xanthan gum differentially affect shear induced breakdown of native waxy maize starch[J]. Food Hydrocolloids, 2014, 35: 546-556.

[109]Heyman B., De Vos W.H., Van Der Meeren P., et al. Gums tuning the rheological properties of modified maize starch pastes: Differences between guar and xanthan[J]. Food Hydrocolloids, 2014, 39: 85-94.

[110]Petkova R., Tcholakova S., Denkov N.D. Foaming and foam stability for mixed polymer-surfactant solutions: effects of surfactant type and polymer charge[J]. Langmuir, 2012, 28(11): 4996-5009.

[111]Saxena A., Pathak A.K., Ojha K. Synergistic Effects of Ionic Characteristics of Surfactants on Aqueous Foam Stability, Gel Strength, and Rheology in the Presence of Neutral Polymer[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 19184-19191.

[112]Gumati A., Takahshi H. Experimental Study and Modeling of Pressure Loss for Foam-Cuttings Mixture Flow in Horizontal Pipe[J]. Journal of Hydrodynamics, 2011, 23(4): 431-438.

[113]Gajbhiye R.N., Kam S.I. The effect of inclination angles on foam rheology in pipes[J]. Journal of Petroleum Science and Engineering, 2012, 86-87: 246-256.

[114]Yannis M., Katerina K., Georges S. Investigation of neutral polymer−ionic surfactant interactions by fluorescence in conjunction with viscosity measurements[J]. Langmuir, 1998, 14: 6320-6322.

[115]Martin A., Grolle K., Bos M., et al. Network forming properties of various proteins adsorbed at the air/water interface in relation to foam stability[J]. Journal of Colloid and Interface Science, 2002, 254(1): 175-183.

[116]Qin B.T., Lu Y., Li Y., et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology, 2014, 25(5): 1527-1533.

[117]金光日, 马秀清. 高聚物流变学[M]. 上海: 华东理工大学出版社, 2012.

[118]刘伟, 秦跃平, 乔珽, 等. 煤耗氧速率与CO生成速率的计算及实验论证[J]. 中国矿业大学学报, 2016, 45(06): 1141-1147.

[119]Zhao J.Y., Deng J., Chen L., et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation[J]. Energy, 2019, 181: 136-147.

[120]张铎, 唐瑞, 王振, 等. 基于热重分析的红庆河煤自燃热动力学研究[J]. 西安科技大学学报, 2020, 40(06): 974-980.

[121]姬玉成. 抗氧化凝胶泡沫防遗煤自燃机理研究[D]. 北京:北京科技大学, 2022.

[122]张昊, 胡相明, 王伟, 等. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征[J]. 煤炭学报, 2021, 46(06): 1768-1780.

中图分类号:

 TD752.2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式