论文中文题名: | 鸽群优化算法的改进研究及应用 |
姓名: | |
学号: | 19201103014 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070104 |
学科名称: | 理学 - 数学 - 应用数学 |
学生类型: | 硕士 |
学位级别: | 理学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 数据挖掘 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-09 |
论文外文题名: | Research and Application of Improvement of Pigeon-inspired Optimization Algorithm |
论文中文关键词: | |
论文外文关键词: | Pigeon-inspired optimization ; Fuzzy crossover mutation operators ; Inertial weight ; Learning factors ; Traveling salesman problem |
论文中文摘要: |
鸽群优化(Pigeon-Inspired Optimization,PIO)算法是一种通过研究鸽群归巢行为总结出的新型仿生智能优化算法,具有原理简单、调参少、易于实现等优点,故而受到国内外学者的广泛关注。虽然鸽群优化算法有其自身的优势,但是也存在易于早熟收敛,陷入局部最优和求解精度低的不足。本文针对鸽群优化算法存在的问题,提出了基于模糊交叉变异算子和基于正态分布衰减惯性权重的两种改进鸽群优化算法,并将改进算法应用到旅行商问题中,具体研究工作如下: (1) 在对传统鸽群优化算法进行深入研究的基础上,针对鸽群信息之间交互不足且易于早熟收敛、过早陷入局部最优等不足,考虑到模糊交叉变异算子有利于种群之间的信息交换,提高鸽子的种群多样性,扩展种群的全局搜索范围等优势,提出了一种基于模糊交叉变异算子的改进鸽群优化算法。仿真实验表明:改进算法在求解精度和收敛速度方面均有了很大改进,算法的有效性和全局寻优能力也得到相应的提高,同时,有效地避免了传统鸽群过早陷入局部最优的状况。 (2) 考虑到传统鸽群优化算法更易在大范围内搜索解的优势,为平衡局部搜索能力和全局搜索能力,引入正态分布衰减惯性权重,同时通过加入非线性衰减学习因子来调节鸽群向全局优秀鸽子学习的能力,减少算法因局部极值对优化解的干扰。进而提出了一种基于正态分布衰减惯性权重的改进鸽群优化算法。仿真实验表明:改进算法在求解精度、跳出局部最优等方面都优于其他3种算法。 (3) 利用测试函数对两种改进算法进行验证,结果表明两种算法都具有很好的寻优能力,基于模糊交叉变异算子的改进鸽群优化算法和基于正态分布衰减惯性权重的改进鸽群优化算法对于不同的问题有不同的适用性。其次,将两种改进算法应用于求解旅行商问题中,仿真实验表明两种改进算法比其他3种算法在克服早熟现象和寻优结果的精度以及时间效率方面显示出相对较好的优越性,充分论证了改进算法的有效性和可行性。 |
论文外文摘要: |
Pigeon-inspired Optimization (PIO) algorithm is a new bionic intelligent optimization algorithm summarized by studying the homing behavior of pigeons, which has the advantages of simple principle, few parameters and easy to implement, so it has been widely concerned by scholars at home and abroad. Although the pigeon-inspired optimization algorithm has its own advantages, there are still problems such as tending to converge early, falling into local optimization, and low solution accuracy. In this paper, aiming at the existing problem that pigeon-inspired optimization algorithm, two improved pigeon-inspired algorithms based on crossover mutation operators and normal distribution decay inertial weight, and the improved algorithms were applied to TSP problems. The specific research work is as follows: (1) On the basis of the in-depth exploration of the traditional pigeon herd optimization algorithm, aiming at the insufficient interaction of information between pigeons, and the inability to converge prematurely and fall into local optimization too early, etc., considering that the crossover mutation operators is conducive to information exchange between populations, improving the population diversity of pigeons, and expanding the global search range of the population, Fuzzy crossover mutation operators pigeon-inspired optimization (FCMPIO) algorithm based on crossover mutation operators was proposed. Simulation experiments show that the improved algorithm has greatly improved in terms of solution precision and convergence speed, the effectiveness of the algorithm and global search ability of the algorithm have also been correspondingly improved, at the same time, the traditional pigeons has been effectively avoided from falling into the local optimal condition prematurely. (2) Considering the advantages of the traditional pigeon herd optimization algorithm to search for solutions in a small range, in order to balance the local search ability and the global search ability, the normal distribution decay inertial weight is introduced, and the learning ability of the pigeons to the global optimal pigeon is adjusted by adding a nonlinear decay learning factor, which reduces the interference of the algorithm on the optimized solution due to local extremums, an improved pigeon herd optimization (NDWPIO) algorithm based on normal distribution decay inertial weight was proposed. Simulation experiments show that the improved algorithm is better than the other three algorithms in terms of solving accuracy and jumping out of local optimization. (3) The test functions were used to test the two improved algorithms, and the results show that both algorithms have well optimization ability, FCMPIO and NDWPIO have different applicability to different problems. Secondly, the two improved algorithms were applied to solve TSP problems, and simulation experiments show that the two improved algorithms are better than the other three algorithms in overcoming precocious puberty and the accuracy of the optimization results and time efficiency. The effectiveness and feasibility of the improved algorithms are fully demonstrated. |
参考文献: |
[7] 范林飞. 基于鸽群算法的多无人机协同编队[D]. 南京: 南京航空航天大学, 2020. [11] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2019, 41(1): 1-11. [12] 胡耀龙, 冯强, 海星朔, 等. 基于自适应学习策略的改进鸽群优化算法[J]. 北京航空航天大学学报, 2020, 46(12): 2348-2356. [13] 李霜琳, 何家皓, 敖海跃, 等. 基于鸽群优化算法的实时避障算法[J]. 北京航空航天大学学报, 2021, 47(2): 359-365. [15] 未建英, 张丽娜, 付发. 混合模拟退火和教与学的鸽群优化算法[J]. 科技经济导刊, 2019, 27(12): 153-155. [16] 韩锟, 张赫. 基于鸽群优化改进的粒子滤波算法[J]. 传感器与微系统, 2018, 37(11): 139-141. [17] 顾清华, 孟倩倩. 优化复杂函数的粒子群-鸽群混合优化算法[J]. 计算机工程与应用, 2019, 55(22): 46-52. [18] 霍梦真, 段海滨. 基于自适应变异的多目标鸽群优化的无人机目标搜索[J]. 控制理论与应用, 2020, 37(3): 584-591. [19] 陶国娇, 李智. 带认知因子的交叉鸽群算法[J]. 四川大学学报(自然科学版), 2018, 55(2): 295-300. [20] 凌文通, 倪建军, 陈颜, 等. 基于改进鸽群优化算法的多无人机目标搜索[J]. 计算机工程与科学, 2022, 44(3): 530-535. [27] 马龙, 卢才武, 顾清华, 等. 引入改进鸽群搜索算子的粒子群优化算法[J]. 模式识别与人工智能, 2018, 31(10): 909-920. [28] 勾青超, 李庆奎. 基于离散鸽群算法的无人机任务分配[J]. 北京信息科技大学学报(自然科学版), 2020, 35(6): 37-42. [29] 马龙, 王春嬉, 张正义, 等. 多目标多时间窗车辆路径问题的鸽群-水滴算法[J]. 计算机工程与应用, 2021, 57(2): 237-250. [32] 刘昂, 蒋近, 许迪文. 基于A*和鸽群算法的快递无人机航路规划[J]. 飞行力学, 2020(3): 34-40. [33] 谢聪. 求解TSP问题的改进离散蝴蝶优化算法[J]. 数学的实践与认识, 2020, 50(1): 173-182. [37] 郑娟毅, 程秀琦, 付姣姣. 改进蚁群算法在TSP中的应用研究[J]. 计算机仿真, 2021, 38(5): 126-130. [38] 陈天, 闫雨寒, 徐达伟, 等. 基于改进双流算法的矿工行为识别方法研究[J]. 河南科技大学学报(自然科学版), 2021, 42(4): 47-53. [39] 王康, 霍朝宾, 李青旭. 一种基于鸽群优化算法的入侵检测技术[J]. 电子技术应用, 2021, 47(2): 11-15. [41] 何庆, 吴意乐, 徐同伟. 改进遗传模拟退火算法在TSP优化中的应用[J]. 控制与决策, 2018, 033(2): 219-225. [42] 陈斌, 刘卫国. 基于SAC模型的改进遗传算法求解TSP问题[J]. 计算机科学与探索, 2021, 15(9): 1680-1693. [43] 董明刚, 刘宝, 敬超. 模糊自适应排序变异多目标差分进化算法[J]. 计算机科学, 2019,46(7): 242-232. [47] 徐浩天, 季伟东, 孙小晴, 等. 基于正态分布衰减惯性权重的粒子群优化算法[J]. 深圳大学学报(理工版), 2020, 37(2): 208-213. [48] 董红斌, 李冬锦, 张小平. 一种动态调整惯性权重的粒子群优化算法[J]. 计算机科学, 2018, 45(2): 99-103. [49] 赵远东, 方正华. 带有权重函数学习因子的粒子群算法[J]. 计算机应用, 2013, 33(8): 2265-2268. |
中图分类号: | TP18 |
开放日期: | 2022-06-22 |