- 无标题文档
查看论文信息

题名:

 采空区下煤层开采间隔岩层破坏机理及突水预测研究    

作者:

 吴建军    

学号:

 20103077011    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 0819    

学科:

 工学 - 矿业工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

导师姓名:

 张杰    

导师单位:

 西安科技大学    

提交日期:

 2025-01-02    

答辩日期:

 2024-12-04    

外文题名:

 Study on failure mechanism and water inrush prediction of the interval strata between two coal seams in coal seam mining under goaf    

关键词:

 榆神矿区 ; 采空区下开采 ; 间隔岩层 ; 破坏机理 ; 突水预测模型    

外文关键词:

 Yulin-shenmu mining area ; Coal mining under goaf ; The interval strata between two coal seams ; Failure mechanism ; Water inrush prediction model    

摘要:

随着榆神矿区浅部煤炭资源开采殆尽且煤层采深增加,两煤层间间隔岩层受上下煤层开采扰动、破坏,导致上煤层采空区积水向下煤层运动,容易诱发矿井突水灾害发生。因此,受上、下煤层开采扰动间隔岩层破坏机理及突水预测研究至关重要。本文针对上、下煤层开采扰动及水-力耦合作用下,间隔岩层破坏机理、涌突水裂缝扩展规律及发育高度、涌突水预测模型等内容,采用现场调研、理论分析、数值模拟、水-力耦合相似模拟实验、现场监测等方法进行了研究,研究成果为榆神矿区及周边类似矿井突水灾害预测提供了理论基础及科学依据。论文取得的主要研究成果如下:

随着多煤层工作面开采,间隔岩层受上煤层顶板破断动载作用特征明显。分析了上煤层顶板岩梁破断形成固支梁结构、悬臂梁结构、砌体梁结构时,岩梁结构失稳前后对间隔岩层加载、卸载力学模型,构建了上煤层开采扰动下顶板岩梁破断对间隔岩层加载破坏模式和卸荷反弹破坏模式,得到了固支梁结构、悬臂梁结构对间隔岩层动载作用较强。并确定了上位间隔岩层受固支梁结构、悬臂梁结构破断动载作用下能量转化、应力分布特征、裂缝演化规律。

基于断裂力学理论、渗流损伤理论,分析了上煤层开采间隔岩层受水-力耦合作用下裂纹起裂判据及损伤变量,确定了渗透压力作用下上位间隔岩层最大理论损伤深度。采用数值模拟、相似模拟方法,分析了上位间隔岩层受水-力耦合作用下应力场、位移场演化过程,并确定了其上位间隔岩层破坏深度,揭示了上位间隔岩层受加载、卸载作用和水-力耦合作用下损伤破坏规律。

研究了下煤层开采重复扰动下,间隔岩层破坏特征及空间分带特征,根据破坏特征,将其分为完全破碎间隔岩层、破碎-破断叠合间隔岩层及组合间隔岩层,同时将间隔岩层破坏裂缝分为边界涌突水裂缝、网络涌突水裂缝及贴合导水裂缝。基于关键层理论及薄板理论,研究了间隔岩层裂缝发育高度影响因素,确定了研究区域间隔岩层涌突水裂缝发育临界高度,得到了薄板理论对裂缝发育高度预测结果更加准确。

采用理论分析、数值模拟及相似模拟实验方法,分析了上煤层、下煤层开采间隔岩层协同破坏过程、间隔岩层协同破坏特征、间隔岩层破坏裂缝扩展高度,确定了破碎-破断叠合间隔岩层受上煤层、下煤层开采扰动及水-力耦合作用下,间隔岩层破坏过程中应力分布特征、裂缝演化规律、协同破坏特征和不同破坏分带的渗透特性,揭示了上煤层、下煤层开采扰动下间隔岩层破坏机理。

基于间隔岩层破坏特征分类和涌突水裂缝发育高度分类,建立了间隔岩层网络-边界涌突水模型、网络-贴合-边界涌突水模型及保护层涌突水模型。分析了涌突水预测模型特征和裂缝内水运动特征,确定了边界涌突水裂缝内水运动符合平板流流态、网络涌突水裂缝内水运动符合裂缝流流态、贴合导水裂缝内水运动符合孔裂隙流流态。最终,得到了间隔岩层破坏突水判别标准,并对榆阳煤矿、安山煤矿间隔岩层破坏进行了突水预测。

外文摘要:

With the depletion of shallow coal resources in Yushen mining area and the increase of coal seam mining depth, the interval strata between two coal seams are disturbed and destroyed by the mining of upper coal seam and lower coal seam, which leads to the movement of water in goaf of upper coal seam to lower coal seam, and it is easy to induce the occurrence of mine water inrush disaster. Therefore, it is very important to study the failure mechanism and water inrush prediction of the interval strata between two coal seams disturbed by upper coal seam and lower coal seam mining. In this paper, the failure mechanism of the interval strata between two coal seams, the propagation law and development height of water inrush cracks, and the prediction model of water inrush under the mining disturbance and water-force coupling of upper coal seam and lower coal seam are studied by means of field investigation, theoretical analysis, numerical simulation, water-force coupling similar simulation experiment and field monitoring. The research results provide theoretical basis and scientific basis for the prediction of water inrush disaster in Yushen mining area and similar mines around it. The main achievements of this paper are as follows :

( 1 ) With the mining of multi-coal seam working face, the interval strata between two coal seams are obviously affected by the dynamic load of upper coal seam roof breaking. The mechanical model of loading and unloading of the interval strata between two coal seams before and after the instability of rock beam structure is analyzed when the roof rock beam of upper coal seam breaks to form fixed beam structure, cantilever beam structure and masonry beam structure. The loading failure mode and unloading rebound failure mode of roof rock beam breaking to the interval strata between two coal seams under the disturbance of upper coal seam mining are constructed. It is concluded that the fixed beam structure and cantilever beam structure have strong dynamic load effect on the interval strata between two coal seams. The energy conversion, stress distribution characteristics and crack evolution law of the upper interval strata between two coal seams layer under the action of fixed beam structure and cantilever beam structure breaking dynamic load are determined.

( 2 ) Based on the theory of fracture mechanics and seepage damage theory, the crack initiation criterion and damage variable of the upper coal seam mining the interval strata between two coal seams under the action of water-force coupling are analyzed, and the maximum theoretical damage depth of the upper interval strata between two coal seams under the action of seepage pressure is determined. By using numerical simulation and similar simulation methods, the evolution process of stress field and displacement field of the upper interval strata between two coal seams stratum under the action of water-force coupling is analyzed, and the failure depth of the upper interval strata between two coal seams stratum is determined, and the damage and failure law of the upper interval strata between two coal seams stratum under the action of loading, unloading and water-force coupling is revealed.

( 3 ) The failure characteristics and spatial zoning characteristics of the interval strata between two coal seams under repeated disturbance of lower coal seam mining are studied. According to the failure characteristics, it is divided into completely broken interval rock strata, broken-broken superimposed interval rock strata and combined interval rock strata. At the same time, the failure cracks of the interval strata between two coal seams are divided into boundary water inrush cracks, network water inrush cracks and joint water flowing cracks. Based on the key stratum theory and thin plate theory, the influencing factors of fracture development height of the interval strata between two coal seams are studied, and the critical height of water inrush fracture development at the interval strata between two coal seams in the study area is determined. It is concluded that the thin plate theory is more accurate in predicting the fracture development height.

( 4 ) By means of theoretical analysis, numerical simulation and similar simulation experiment, the synergistic failure process, synergistic failure characteristics and crack propagation height of the interval strata between two coal seams in upper and lower coal seam mining are analyzed. The stress distribution characteristics, crack evolution law, synergistic failure characteristics and permeability characteristics of different failure zones in the failure process of the interval strata between two coal seams under the disturbance of upper and lower coal seam mining and water-force coupling are determined, and the failure mechanism of the interval strata between two coal seams under the disturbance of upper and lower coal seam mining is revealed.

( 5 ) Based on the classification of failure characteristics of the interval strata between two coal seams and the classification of water inrush fracture development height, the network-boundary water inrush model, network-fitting-boundary water inrush model and protective layer water inrush model of the interval strata between two coal seams are established. The characteristics of the prediction model of water inrush and the characteristics of water movement in the fracture are analyzed. It is determined that the water movement in the boundary water inrush fracture conforms to the flat plate flow pattern, the water movement in the network water inrush fracture conforms to the fracture flow pattern, and the water movement in the water-conducting fracture conforms to the pore fracture flow pattern. Finally, the criterion of water inrush from the interval strata between two coal seams failure is obtained, and the water inrush prediction of the interval strata between two coal seams failure in Yuyang Coal Mine and Anshan Coal Mine is carried out.

参考文献:

[1]尹茂森. 神东矿区浅埋煤层关键层理论及其应用研究[D]. 徐州: 中国矿业大学, 2008.

[2]中国煤炭工业协会. 2020煤炭行业发展年度报告[R]. 2021.

[3]白乐, 李怀恩, 何宏谋, 等. 煤矿开采区地表水-地下水耦合模拟[J]. 煤炭学报, 2015, 40(04): 931-937.

[4]范立民, 张晓团, 向茂西, 等. 浅埋煤层高强度开采区地裂缝发育特征-以陕西榆神府矿区为例[J]. 煤炭学报, 2015, 40(6): 1442-1447.

[5]崔邦军. 柠条塔煤矿注浆堵水工程及效果[J]. 地下水, 2011, 10(S): 60-61.

[6]董震雨, 王双明. 采煤对陕北榆溪河流域地下水资源的影响分析-以杭来湾煤矿开采区为例[J]. 干旱区资源与环境, 2017(3): 185-190.

[7]Chang J, Li D , He K. Mining Failure Response Characteristics of Stope Floor: A Case of Renlou Coal Mine[J]. Advances in Civil Engineering, 2020, (11): 1-11.

[8]Zhu S, Liu R, Zhang S, et al. Characteristics of Deformation and Failure of Deep Coal Seam Floor Affected by Fully Mechanized Mining[J]. Geotechnical Testing Journal, 2016, 39(1): 20150042.

[9]许延春, 陈新明, 李见波, 等. 大埋深高水压裂隙岩体巷道底臌突水试验研究[J]. 煤炭学报, 2013, 38(S1): 124-128.

[10]许延春, 陈新明, 姚依林. 高水压突水危险工作面防治水关键技术[J]. 煤炭科学技术, 2012, 40(9): 99-103.

[11]许延春, 杨扬. 开采工作面底板注浆加固防治水技术新进展[J]. 煤炭科学技术, 2014, 42(1): 98-101.

[12]连会青, 夏向学, 冉伟, 等. 新型流固耦合相似模拟材料的抗水性实验研究[J]. 煤矿开采, 2015, 20(1): 12-16.

[13]Zhang Y, Li F. Prediction of Water Inrush from Coal Seam Floors Based on the Effective Barrier Thickness[J]. Mine Water and the Environment, 2022, 41: 168-175.

[14]Bai JW, Li SC, Liu RT, et al. Multi-field information monitoring and warning of delayed water bursting in deep rock fault[J]. Chin J Rock Mech Eng, 2015, 34(11):2327-2335.

[15]Zhang BL, Guo WJ, Zhang XG, et al. Development and application of analogue testing system for floor confined water rise in coal mining[J]. J China Coal Soc, 2016, 41: 2057-5062.

[16]Sun J, Hu Y, Zhao GM. Relationship between water inrush from coal seam floors and main roof weighting[J]. Int J Min Sci Technology, 2017, 27: 873-881.

[17]Sun J, Wang LG, Zhao GM. Failure characteristics and confined permeability of an inclined coal seam floor in fluid-solid coupling[J]. Advances in Civil Engineering, 2018, 9: 1-12.

[18]Liu SL, Liu WT, Yin DW. Numerical simulation of the lagging water inrush process from insidious fault in coal seam floor[J]. Geotech Geolo Eng, 2017, 35: 1013-1021.

[19]于小鸽. 采场损伤底板破坏深度研究[D]. 青岛: 山东科技大学, 2011.

[20]Qi YM, Li MZ, Li KJ, et al. Spatiotemporal development of mine water inrush and its mechanism—a case study in Ganhe coal mine, Shanxi, China[J]. Arab J Geosci, 2017, 433(10):1-8.

[21]Liu SL, Li WP, Wang QQ, et al. Water inrush risk zoning and water conservation mining technology in the Shennan mining area, Shaanxi, China[J]. Arab J Sci Eng, 2018, 43:321-333.

[22]Ma D, Mohammad R, Yu HS, et al. Variations of hydraulic properties of granular sandstones during water inrush: effect of small particle migration[J]. Eng Geol, 2017, 217: 61-70.

[23]Gao R, Yan H, Feng J, et al. Influential factors and control of water inrush in a coal seam as the main aquifer[J]. Int J Min Sci Technology, 2018, 28(2):187-193.

[24]Wang K, Zhang X, Du F, et al. Evolution of the Overlying-Strata-Bearing Structure and the Permeability Distribution of the Broken Interlayer in Shallow Multiseam Mining[J]. International Journal of Geomechanics, 2023,23(8): 04023111.

[25]Yang WF, Jin L, Zhang XQ. Simulation test on mixed water and sand inrush disaster induced by mining under the thin bedrock[J]. J Loss Prev Process Ind, 2019, 57:1-6.

[26]Lu H, Liang X, Shan N, et al. Study on the Stability of the Coal Seam Floor above a

Confined Aquifer Using the Structural System Reliability Method[J]. Geofluids, 2018, (12):1-15.

[27]Zhang Y. Mechanism of Water Inrush of a Deep Mining Floor Based on Coupled Mining Pressure and Confined Pressure[J]. Mine Water Environ, 2021, 40, 366-377.

[28]孙建, 王连国. 采场底板倾斜隔水关键层的失稳力学判据[J]. 煤炭学报, 2014, 39(11): 2276-2285.

[29]Sun J, Wang LG, Zhao GM. Stress distribution and failure characteristics for workface floor of a tilted coal seam[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3793-3806.

[30]Liu SL, Liu WT, Huo ZC, et al. Early warning information evolution characteristics of water inrush from floor in underground coal mining[J]. Arabian Journal of Geosciences, 2019, 12(2): 1-12.

[31]刘伟韬, 刘士亮, 宋文成, 等. 基于薄板理论的工作面底板隔水层稳定性研究[J]. 煤炭科学技术, 2015, 43(9): 144-148.

[32]冯强, 蒋斌松. 基于积分变换采场底板应力与变形解析计算[J].岩土力学, 2015, 36(12): 3482-3488.

[33]陆银龙, 王连国. 基于微裂纹演化的煤层底板损伤破裂与渗流演化过程数值模拟[J]. 采矿与安全工程学报, 2015, 32(6): 889-897.

[34]付宝杰, 涂敏. 重复采动影响下采场底板隔水层裂隙演化规律试验研究[J]. 采矿与安全工程学报, 2015, 32(1): 54-58.

[35]李加祥, 李白英. 受承压水威胁的煤层底板“下三带”理论及其应用[J]. 中州煤炭, 1990, (05): 6-8.

[36]刘天泉, “三下一上”采煤技术的现状及展望[J]. 煤炭科学技术, 1995, (01): 5-7+62.

[37]李白英. 预防矿井底板突水的“下三带”理论及其发展与应用[J]. 山东矿业学院学报(自然科学版), 1990, (04): 11-18.

[38]施龙青, 于小鸽, 尹会永, 等. “下四带”理论及其在底板突水评价中的应用[C]//中国煤炭学会矿井地质专业委员会学术论坛文集. 2008.

[39]王作宇, 刘鸿泉. 煤层底板突水机制的研究[J]. 煤田地质与勘探, 1989, (01): 36-39+71-72.

[40]王作宇, 刘鸿泉. 承压水上采煤的理论研究与实践[C]//中国岩石力学与工程学会第三次大会论文集. 1994.

[41]王作宇. 煤层底板岩体移动的“原位张裂”理论[J]. 河北煤炭, 1988, (3): 31-33.

[42]张金才, 刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报, 1990, (02): 46-55.

[43]秦伟, 许家林. 许家林. 对“基于薄板理论的采场覆岩关键层的判别方法”的商榷 [J]. 煤炭学报, 2010.

[44]黎良杰, 钱鸣高, 闻全, 等. 底板岩体结构稳定性与底板突水关系的研究[J]. 中国矿业大学学报, 1995, (04): 18-23.

[45]卜万奎, 茅献彪. 断层倾角对断层活化及底板突水的影响研究[J]. 岩石力学与工程学报, 2009, 28(2): 386-394.

[46]孟召平, 彭苏萍, 黎洪. 正断层附近煤的物理力学性质变化及其对矿压分布的影响[J]. 煤炭学报, 2001, 26(6): 561-566.

[47]武强, 周英杰, 刘金韬, 等. 煤层底板断层滞后型突水时效机理的力学试验研究[J]. 煤炭学报, 2003, 28(6): 561-565.

[48]许延春, 杨扬. 大埋深煤层底板破坏深度统计公式及适用性分析[J]. 煤炭科学技术, 2013, 14(9): 129-132.

[49]Garboczi EJ, Cheok GS, Stone WC. Using LADAR to characterize the 3-D shape of aggregates: Preliminary results[J]. Cement and Concrete Research, 2006, 36(6):1072-1075.

[50]Haefner S, Eckardt S, Luther T, et al. Mesoscale modeling of concrete: Geometry and numerics[J]. Computers & Structures, 2006, 84(7): 450-461.

[51]Hu, Y, Li, W, Liu, S. et al. Prediction of Floor Failure Depth in Deep Coal Mines by Regression Analysis of the Multi-factor Influence Index[J]. Mine Water Environ, 2021, 40, 497-509.

[52]Zhang B, Chang XF. Prediction method and application of coal mining floor failure depth[J]. Coal Technol, 2018, 37(12):20-23.

[53]Meng XX, Liu WT, Zhao JY, et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study[J]. Mine Water and the Environment, 2019, 38: 686–694.

[54]Liu SL, Liu WT, Shen JJ. Stress evolution law and failure characteristics of mining floor rock mass above confined water[J]. KSCE Journal of Civil Engineering, 2017, 21(7): 2665-2672.

[55]Su PL, Wei ZF. Depth of floor failure of stope with medium-thickness coal seam[J]. Geotechnical and Geological Engineering, 2018, 36(2): 1341-1347.

[56]Zhu SY, Jiang ZQ, Zhou KJ, et al. The characteristics of deformation and failure of coal seam floor due to mining in Xinmi coal field in China[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(4): 1151-1163.

[57]刘伟韬, 穆殿瑞, 谢祥祥, 等. 倾斜煤层底板采动应力分布规律及破坏特征[J]. 采矿与安全工程学报, 2018, 35(4): 756-764.

[58]程久龙, 于师建, 宋扬, 等. 煤层底板破坏深度的声波CT探测试验研究[J]. 煤炭学报, 1999(6): 576-580.

[59]孔皖军, 郑根源, 国伟, 等. 采动条件下底板岩层破坏深度动态测试研究及应用[J]. 煤炭工程, 2018, 50(10): 96-100.

[60]Zhu SY, Jiang ZQ, Cao DT, et al. Restriction function of lithology and its composite structure to deformation and failure of mining coal seam floor[J]. Natural hazards, 2013, 68(2): 483-495.

[61]李江华, 许延春, 谢小锋, 等. 采高对煤层底板破坏深度的影响[J]. 煤炭学报, 2015, 40(S2): 303-310.

[62]段宏飞. 煤矿底板采动变形及带压开采突水评判方法研究[D]. 徐州: 中国矿业大学, 2012.

[63]刘伟韬, 宋文成, 穆殿瑞, 等. 底板采动破坏带分段观测系统与应用[J]. 中南大学学报(自然科学版), 2017, 48(10): 2808-2816.

[64]Li A, Ma Q, Lian YQ, et al. Numerical simulation and experimental study on floor failure mechanism of typical working face in thick coal seam in Chenghe mining area of Weibei, China[J]. Environmental Earth Sciences, 2020, 79(5): 118.

[65]张金才, 刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报, 1990, 15(2): 46-55.

[66]林远东, 涂敏. 采场端部底板破坏深度解析分析[J]. 煤炭科学技术, 2011, 39(3): 25-28.

[67]施龙青, 韩进. 开采煤层底板“四带”划分理论与实践[J]. 中国矿业大学学报, 2005, 34(1): 16-23.

[68]鲁海峰, 姚多喜, 胡友彪, 等. 水压影响下煤层底板采动破坏深度弹性力学解[J]. 采矿与安全工程学报, 2017, 34(3): 452-458.

[69]张文泉. 矿井(底板)突水灾害的动态机理及综合判测和预报软件开发研究[D]. 青岛: 山东科技大学, 2004.

[70]孟祥瑞, 徐铖辉, 高召宁, 等. 采场底板应力分布及破坏机理[J]. 煤炭学报, 2010, 35(11): 1832-1836.

[71]王连国, 韩猛, 王占盛. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报, 2013, 30(3): 317-322.

[72]宋文成, 梁正召. 承压水上开采倾斜底板破坏特征与突水危险性分析[J]. 岩土力学, 2020, 41(2): 624-634.

[73]宋文成, 梁正召, 刘伟韬, 等. 采场底板破坏特征及稳定性理论分析与试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2208-2218.

[74]Liang ZZ, Song WC, Liu WT. Theoretical models for simulating the failure range and stability of inclined floor strata induced by mining and hydraulic pressure[J]. International Journal of Rock Mechanics and Mining Science, 2020, 132: 104382.

[75]题正义, 李佳臻, 王猛, 等. 基于断裂力学倾斜煤层底板采动破坏深度研究[J]. 华中师范大学学报(自然科学版), 2020, 54(5): 787-791+797.

[76]Liu WT, Du YH, Liu YB, et al. Failure characteristics of floor mining-induced damage under deep different dip angles of coal seam[J]. Geotechnical and Geological Engineering, 2019, 37(2): 985-994.

[77]董书宁, 王皓, 张文忠. 华北型煤田奥灰顶部利用与改造判别准则及底板破坏深度研究[J]. 煤炭学报, 2019, 44(7): 2216-2226.

[78]黄广帅, 翟新献, 涂兴子, 等. 不同条件下带压开采煤层底板破坏深度研究[J]. 煤炭工程, 2018, 50(2): 95-99.

[79]朱宁宁, 姚多喜, 鲁海峰, 等. 采动底板的岩性组合效应研究[J]. 煤炭技术, 2017, 36(11): 44-47.

[80]刘伟韬, 王东辉, 穆殿瑞. 深部承压水上开采煤层底板破坏特征[J]. 辽宁工程技术大学学报(自然科学版), 2017, 36(9): 920-926.

[81]熊祖强, 王晓蕾. 承压水上工作面破坏及裂隙演化相似模拟试验[J]. 地下空间与工程学报, 2014, 10(5): 1114-1120+1216.

[82]袁本庆. 近距离厚煤层采场底板岩体应力分布及采动裂隙演化规律研究[D]. 合肥: 安徽理工大学, 2012.

[83]赵继忠, 冯利民, 陈舰艇, 等. 承压水上开采工作面底板破坏深度相似模拟试验[J]. 煤矿安全, 2015, 46(6): 32-35.

[84]许延春, 谢小锋, 董检平, 等. 在相似模拟试验中利用超声波检测技术探测底板破坏深度[J]. 煤矿开采, 2016, 21(1): 7-11.

[85]王红. 博孜墩煤矿“一硬两软”大倾角厚煤层开采底板活动规律研究[D]. 徐州: 中国矿业大学, 2016.

[86]王明明. 环工作面电磁法底板突水监测技术研究[D]. 徐州: 中国矿业大学, 2014.

[87]史卓林. 水力耦合作用下煤岩体裂隙渗流特征及裂隙演化规律研究[D]. 徐州: 中国矿业大学, 2024.

[88]刘敬东, 田灵涛, 余波, 等. 煤矿采动过程中底板破坏特征及地下水流场分布预测研究[J]. 能源与环保, 2023, 45( 9) : 248-256.

[89]孙娈娈, 王中华, 孙燕青, 等. 煤层底板破坏流固耦合数值模拟[J]. 煤田地质与勘探, 2013, 41( 03 ): 55-58.

[90]李可. 煤层底板采动破坏特征流固耦合分析[J]. 煤矿安全, 2017, 48( 03 ): 171-174.

[91]刘军, 李小明. 基于流固耦合数值模拟煤层底板破坏深度研究[J]. 华北科技学院学报, 2019, 16( 04 ): 6-11.

[92]张贵银. 底板导水裂隙发育规律的数值模拟研究[J]. 铜业工程, 2015, ( 06 ): 13-16+72.

[93]李利平, 李术才, 李树忱, 等. 松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J]. 岩土工程学报, 2013, 35(04):679-690.

[94]Zhang SC, Shen BT, Li YY, et al. Modeling Rock Fracture Propagation and Water Inrush Mechanisms in Underground Coal Mine. Geofluids. 2019, 15.

[95]刘业娇, 薛俊华, 袁亮, 等. 软岩底板突水机理分析及数值试验[J]. 煤炭学报, 2017, 42(12): 3255-3261.

[96]李昂. 带压开采下底板渗流与应力耦合破坏突水机理及其工程应用[D]. 西安: 西安科技大学, 2012.

[97]陆银龙, 王连国. 基于微裂纹演化的煤层底板损伤破裂与渗流演化过程数值模拟[J]. 采矿与安全工程学报, 2015, 32(6): 889-897.

[98]Li SD, Fan GW, Zhang DS, et al. Fracture propagation and hydraulic properties of a coal floor subjected to thick-seam long-walling above a highly confined aquifer[J]. Geofluids, 2021, 2021: 6668644.

[99]徐军. 变水压下采动岩体渗流演化特征数值模拟研究[D]. 合肥: 安徽建筑工业学院, 2012.

[100]任崇鸿. 不同开采条件下煤岩损伤演化过程中渗透特性研究[D]. 贵阳: 贵州大学, 2020.

[101]陆银龙. 渗流-应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究[D]. 徐州: 中国矿业大学, 2013.

[102]陆银龙, 王连国. 基于微裂纹演化的岩石蠕变损伤与破裂过程的数值模拟[J]. 煤炭学报, 2015, 40(6): 1276-1283.

[103]Zhang J, Wu J J, Yang T, et al. Analysis of Water Inrush Disaster Mechanism of Inter-Layer Rocks between Close Coal Seams under the Influence of Mining. Applied Sciences-Basel. 2023, 13(15): 9043

[104]刘天泉. 用垮落法上行开采的可能性[J]. 煤炭学报, 1981, (1): 18-29.

[105]高延法. 岩移“四带”模型与动态位移反分析[J]. 煤炭学报, 1996, (1): 51-56.

[106]黄庆享,钱鸣高,石平五. 浅埋煤层采场老顶周期来压的结构分析[J]. 煤炭学报, 1999, (6): 581-585.

[107]付玉平, 宋选民, 邢平伟, 等. 浅埋厚煤层大采高工作面顶板岩层断裂演化规律的模拟研究[J]. 煤炭学报. 2012, 37(6): 366-371.

[108]付玉平, 宋选民, 邢平伟, 等. 大采高采场顶板断裂关键块稳定性分析[J]. 煤炭学报, 2009, 34(8): 1027-1031.

[109]付玉平, 宋选民, 邢平伟. 浅埋煤层大采高超长工作面垮落带高度的研究[J]. 采矿与安全学报, 2010, 27(2): 190-194.

[110]张百胜. 极近距离煤层开采围岩控制理论及技术研究[D]. 太原: 太原理工大学, 2008.

[111]周楠, 张强, 安百富, 等. 近距离煤层采空区下工作面矿压显现规律研究[J]. 中国煤炭, 2011, 37(02) :48-51+96.

[112]钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998(05): 20-23.

[113]赵高博, 郭文兵, 娄高中, 等. 基于覆岩破坏传递的导水裂缝带发育高度研究[J]. 煤田地质与勘探, 2019, 47(02): 144-150.

[114]黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(01): 7-15.

[115]赵兵朝, 王守印, 刘晋波, 等. 榆阳矿区覆岩导水裂缝带发育高度研究[J]. 西安科技大学学报, 2016, 36(03): 343-348.

[116]许家林, 王晓振, 刘文涛, 等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报, 2009, 28(02): 380-385.

[117]许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(05): 762-769.

[118]王悦, 夏玉成, 杜荣军. 陕北某井田保水采煤最大采高探讨[J]. 采矿与安全工程学报, 2014, 31(04): 558-563.

[119]赵兵朝, 刘樟荣, 同超, 等. 覆岩导水裂缝带高度与开采参数的关系研究[J]. 采矿与安全工程学报, 2015, 32(04): 634-638.

[120]黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017, 42(01): 50-55.

[121]孔德中, 郑上上, 韩承红, 等. 近距离煤层群重复采动下端面稳定性分析[J]. 煤矿安全, 2019, 50(11): 220-223.

[122]田成林, 宁建国, 谭云亮, 等. 多次采动条件下浅埋覆岩裂隙带发育规律[J]. 煤矿安全, 2014, 45(11): 45-47.

[123]王振荣, 赵立钦, 康健, 等. 多煤层重复采动导水裂隙带高度观测技术研究[J]. 煤炭工程, 2018, 50(12): 82-85.

[124]胡永忠, 刘长郄, 刘长友, 等. 煤层群混合开采采动裂隙发育规律研究[J]. 采矿与安全工程学报, 2015, 32(03): 396-400.

[125]刘世奇, 许延春, 郭文砚, 等. 近距离多煤层重复采动“两带”高度预计方法改进[J]. 煤炭科学技术, 2018, 46(05): 74-80.

[126]黄庆享, 韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报, 2019, 36(04): 706-711.

[127]吕兆海, 赵长红, 岳晓军, 等. 近距离煤层下行开采条件下覆岩运移规律研究[J]. 煤炭科学技术, 2017, 45(07): 18-22.

[128]杨国枢, 王建树. 近距离煤层群二次采动覆岩结构演化与矿压规律[J]. 煤炭学报, 2018, 43(S2): 353-358.

[129]王创业, 张琪, 李俊鹏, 等. 近浅埋煤层重复采动覆岩裂隙发育相似模拟[J]. 煤矿开采, 2017, 22(06): 78-81.

[130]余明高, 滕飞, 褚廷湘, 等. 浅埋煤层重复采动覆岩裂隙及漏风通道演化模拟研究[J]. 河南理工大学学报(自然科学版), 2018, 37(01): 1-7.

[131]李树刚, 秦伟博, 李志梁, 等. 重复采动覆岩裂隙网络演化分形特征[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(12): 1384-1389.

[132]李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016, 33(05): 904-910.

[133]王文学, 隋旺华, 董青红, 等. 松散层下覆岩裂隙采后闭合效应及重复开采覆岩破坏预测[J]. 煤炭学报, 2013, 38(10): 1728-1734.

[134]胡青峰, 王新静, 崔希民, 等. 煤柱群下重复采动覆岩与地表沉陷规律与形成机理数值研究: 首届煤炭行业青年科学家论坛[C], 中国北京, 2014.

[135]胡青峰, 崔希民, 刘文锴, 等. 特厚煤层重复开采覆岩与地表移动变形规律研究[J].采矿与岩层控制工程学报, 2020(02): 1-9.

[136]何也, 杨国栋, 黄美涛. 郭家河煤业公司顶板离层突水规律及防治技术研究[J]. 能源技术与管理, 2018, 43(01): 95-96.

[137]高飞, 桑赟. 李家楼煤矿离层水害的成因与防治[J]. 华北科技学院学报, 2017, 14(06): 12-16.

[138]程军, 姚光华. 鱼田堡煤矿水文地质特征及深部突水模式分析[J]. 中国煤田地质, 2007(05): 31-34.

[139]林青, 乔伟. 崔木煤矿顶板离层水防治技术[J]. 煤炭科学技术, 2016, 44(03): 129-134.

[140]胡明利, 张进军. 大佛寺煤矿41103工作面防治水技术[C].《煤矿水害防治技术研究-陕西省煤炭学会学术年会论文集(2013)》, 2013.

[141]张严静, 侯恩科. 大佛寺煤矿煤层顶板离层水形成机理[C]. 第一届中国西部矿山地质环境保护学术论坛论文摘要集, 2017.

[142]姜国成. 华亭大柳煤矿综放工作面顶板离层水层位分析[J]. 煤炭工程, 2016, 48(07): 69-70.

[143]贾民, 田涛. 济二矿覆岩离层水涌水机理与防治技术研究[J]. 中国煤炭, 2013, 39(01): 110-115.

[144]王冠, 崔宏磊, 黄美涛. 黄陇侏罗纪煤田特厚煤层综放开采顶板水害防治技术[J]. 煤矿安全, 2018, 49(05): 95-98.

[145]娄金福, 徐刚, 林青, 等. 永陇矿区松软富水顶板灾变机理与防控研究[J]. 煤炭科学技术, 2018, 46(07): 10-18.

[146]李忠凯, 胡杰. 工作面顶板动态离层水治理研究[J]. 中国煤田地质, 2007, (02): 35-37.

[147]许进鹏, 周宇, 浦早红, 等. 离层积水量估算方法及离层突水预测—以陕西招贤煤矿1304工作面突水为例[J]. 煤炭学报, 2022, 47( 8): 3083-3090.

[148]乔伟, 赵世隆, 李连刚, 等. 采动覆岩高位离层演化特征及涌(突)水前兆信息研究[J]. 煤炭科学技术, 2021, 49(2): 194-205.

[149]虞泽全. 五轮山煤矿多煤层开采离层水害预测评价及防治研究[D]. 徐州: 中国矿业大学, 2022.

[150]唐守锋, 史可, 张晔. 基于LLE-FOA-SVR模型的煤矿突水预测[J].传感器与微系统, 2023, 42(04): 148-151.

[151]童柔, 谢天保. 基于机器学习的煤矿突水预测方法[J].计算机系统应用, 2019, 28(12): 243-247.

[152]杨文凯, 孙文洁, 刘阳, 等.我国矿井水害评价预测方法及其展望[J].煤炭技术, 2019, 38(04): 115-117.

[153]胡文博, 孙延辉, 马红林. 基于多因素的煤矿突水事故预测随机森林模型[J]. 采矿技术, 2023, 23(03): 117-120.

[154]施龙青, 史雅迪, 李越. 矿山压力控制理论的采场顶板初始突水量预测模型[J]. 山东煤炭科技, 2020(10): 176-178+181+184.

[155]Zhang J, Yao T. Study of a roof water inrush prediction model in shallow seam mining based on an analytic hierarchy process using a grey relational analysis method [J]. Arabian Journal of Geosciences, 2018,11(7): 1309.

[156]Bi YS, Wu JW, Zhai XR. Quantitative prediction model of water inrush quantities from coal mine roofs based on multi-factor analysis. Environ Earth Sci, 2022,(81)314.

[157]Yin HC, Wu Q, Yin SX, et al. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest. Journal of Hydrology, 2023, 616.

[158]LiU WT, Han MK. A Practical Method for Floor Water Inrush Prediction Using a Hybrid Artificial Intelligence Model and GIS. Mine Water and the Environment. 2023, 42(2): 220-229.

[159]李智学, 申小龙, 李明培, 等. 榆神矿区最上可采煤层赋存规律及开采危害程度[J]. 煤田地质与勘探, 2019, 47(3): 130-139.

[160]赵春虎, 靳德武, 李智学, 等. 陕北榆神矿区煤层开采顶板涌水规律分析[J]. 煤炭学报, 2021, 46(2): 523-533.

[161]许峰, 靳德武, 杨茂林, 等. 神府−东胜矿区高强度开采顶板涌水特征及防治技术[J]. 煤田地质与勘探, 2022, 50(2): 72−80.

[162]刘瑜. 陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D]. 徐州: 中国矿业大学, 2019.

[163]李春元. 深部强扰动底板裂隙岩体破裂机制及模型研究[D]. 北京: 中国矿业大学, 2018.

[164]孟祥喜. 水岩作用下岩石损伤演化规律基础试验研究[D]. 青岛: 山东科技大学, 2018.

[165]李春元, 张勇, 张国军, 等. 深部开采动力扰动下底板应力演化及裂隙扩展机制[J]. 岩土工程学报, 2018, 40(11): 2031-2040.

[166]杨涛. 神府矿区隔水土层采动失稳突水机理研究[D]. 西安: 西安科技大学, 2019.

[167]余伊河. 采场边界覆岩损伤破坏特征及渗透性演化规律[D]. 徐州: 中国矿业大学, 2020.

[168]吴禄源. 煤层覆岩离层突水灾害演变机理研究[D]. 徐州: 中国矿业大学, 2020.

[169]师修昌. 煤炭开采上覆岩层变形破坏及其渗透性评价研究[D]. 北京: 中国矿业大学, 2016.

中图分类号:

 TD745    

开放日期:

 2029-01-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式