论文中文题名: |
石墨烯基多孔材料的制备及其CO2吸附分离性能研究
|
姓名: |
宁海龙
|
学号: |
18213211050
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085216
|
学科名称: |
工学 - 工程 - 化学工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程
|
研究方向: |
多孔材料的制备及气体分离
|
第一导师姓名: |
杨志远
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-17
|
论文答辩日期: |
2021-06-05
|
论文外文题名: |
Preparation of Graphene-based Porous Materials and Their CO2 Adsorption and Separation Properties
|
论文中文关键词: |
二氧化碳 ; 吸附 ; 氧化石墨烯 ; 多孔材料 ; MOFs
|
论文外文关键词: |
CO2 ; adsorption ; Graphene oxide ; Porous materials ; MOFs
|
论文中文摘要: |
︿
为了应对二氧化碳排放引起的全球变暖、海平面上升等严重气候问题,二氧化碳的转化、捕获和分离受到广泛关注。CO2的微孔填充机理,需要多孔材料具有较高的微孔比表面积或孔尺寸接近吸附质分子的动力学直径使其具有分子筛效应从而提高二氧化碳吸附量和选择性。此外,各种杂原子,例如氮,氧,硫,磷和硼等引入碳骨架中提升材料的四极矩和极性也可以增强CO2的吸附和选择性。然而,直接改变多孔材料的结构、将不同杂原子掺杂进去是非常具有挑战的任务。因此,我们通过选取富含大量官能团的氧化石墨烯(GO)为操作平台,对GO进行功能化或非功能化改性从而达到引进其他杂原子或者改善多孔材料结构的目的。
首先,采用管式炉化学活化法,以半焦(SC)为碳前驱体,以不同质量比的石墨粉为原料,制备了碘吸附值为1223.99 mg·g-1和比表面积为1072.08 m2·g-1的石墨烯基多孔碳材料。通过傅里叶红外光谱对其结构的官能团变化进行了分析,拉曼光谱分析揭示了石墨碳和无定形碳之间的变化情况,X射线衍射分析得出石墨烯基多孔碳的低角度散射增加表明孔结构的变化,静态吸附测试得出二氧化碳吸附量为5.39 mmol·g-1(298 K, 30 bar),通过IAST模型预测了烟气成分(CO2/N2=15/85 vol%)下半焦石墨烯比为300:1的石墨烯基半焦多孔碳在1 bar和298 K下的CO2/N2选择性为28.64。
为了更进一步的提高二氧化碳的吸附量和选择性,我们提出了一种新的策略来设计和生产石墨烯基半焦多孔碳,这种多孔碳材料是富氮的层状三明治结构。共价功能化是通过SC和GO与乙二胺(EDA)的缩合和亲核取代实现的。采用合适的吸附等温线模型对CO2的平衡吸附量进行了测定和分析。通过改变GO与SC的质量比,研究了GO含量对CO2吸收的影响。富氮层状三明治结构的石墨烯基半焦多孔碳具有高比表面积(701.53 m2·g-1)和大量以0.8~2.0 nm为中心的微孔结构,新合成的多孔碳材料不仅在吸附容量(7.11 mmol∙g-1,298 K)上有所提高,而且在选择性(34.25)方面具有优异的性能。
最后,通过4,4′-氧代二苯二甲酸酐(ODPA)、2,4,6-三甲基-1,3-苯二胺(DAM)、UiO-66-NH2和GO的化学原位编织,制备了新型多孔超交联聚酰亚胺-UiO-石墨烯复合吸附剂。在UiO-66-NH2/GO中加入了一种富含氮和氧的聚酰亚胺(PIs)聚合物,其末端带有-NH2基团,并且其含有的超微孔可以提供CO2亲和力。PI-UiO/GOs具有优异的耐酸碱性能、适宜的吸附热和优异的循环稳定性,说明该复合多孔材料具有优异的循环利用能力,为吸附剂在复杂工业环境中的应用提供了多种可能性。在298 K和1 bar下,PI-UiO/GO-1在烟气中的CO2穿透时间达到369 s,所得材料(PI-UiO/GO-1)的CO2容量约为原始UiO-66-NH2的3倍(298 K和30 bar时为8.24 vs 2.8 mmol·g-1),CO2/N2选择性高出4.2倍(64.71 vs 15.43)。突破时间和吸附容量的提高证明了该策略的适用性。这一合成方法对设计新型的二氧化碳捕集和烟气分离材料有一定的指导意义。
﹀
|
论文外文摘要: |
︿
To deal with the global warming, sea level rise and other serious climate problems caused by CO2 emissions, the conversion, capture and separation of CO2 have been widely concerned. On the one hand, the micropore filling mechanism of CO2 requires that porous materials with high micropore specific surface area or close to the size of adsorbate molecules will have molecular sieve effect, so as to improve the adsorption capacity and selectivity of CO2. In addition, various heteroatoms (such as nitrogen, oxygen, sulfur, phosphorus and boron) are introduced into the carbon skeleton to enhance the quadrupole moment and polarity of the materials, which can also enhance the CO2 adsorption and selectivity. However, it is a challenging task to directly change the structure of porous materials and dope different heteroatoms. Therefore, we select graphene oxide (GO) rich in a large number of functional groups as the operating platform to carry out functional or non functional modification of GO, so as to introduce other heteroatoms or improve the structure of porous materials.
Firstly, the porous carbon materials with iodine adsorption value of 1223.99 mg·g-1 and specific surface area of 1072.08 m2·g-1 were prepared by tubular furnace chemical activation method using semi-coke (SC) as carbon precursor and GO with different mass ratios as raw materials. Fourier transform infrared spectroscopy (FTIR) was used to analyze the change of functional groups in the structure. Raman spectroscopy revealed the change between graphite carbon and amorphous carbon. X-ray diffraction analysis showed that the increase of low angle scattering of graphene based porous carbon indicated the change of pore structure. Static adsorption test showed that the adsorption capacity of CO2 was 5.39 mmol·g-1 (298 K, 30 bar). The IAST model predicts that the CO2/N2 selectivity of graphene-based porous carbon with 300:1 SC to GO ratio at 1 bar and 298 K is 28.64 at the flue gas composition (CO2/N2=15/85 vol%).
To further improve the adsorption capacity and selectivity of CO2, we proposed a new strategy to design and produce graphene-based semi-coke porous carbons with N-rich layered sandwich structure. Covalent functionalization is achieved by condensation and nucleophilic substitution of SC and GO with ethylenediamine (EDA). An appropriate adsorption isotherm model was used to measure and analyze the equilibrium adsorption capacity of CO2. The effect of GO content on CO2 absorption was studied by changing the mass ratio of GO to SC. Graphene-based semi-coke porous carbon with N-rich layered sandwich structure has high specific surface area (701.53 m2·g-1) and a large number of micropores centered at 0.8-2.0 nm. The most obvious is that the synthesized porous carbon materials not only improve the adsorption capacity (7.11 mmol·g-1, 298 K), but also have excellent selectivity (34.25).
Finally, a novel porous hyper-cross-linked polyimide-UiO-graphene composite adsorbent was prepared by chemical in-situ braiding of 4,4′-oxodiphthalic anhydride (ODPA), 2,4,6-trimethyl-1,3-phenylenediamine (DAM), UiO-66-NH2 and GO. A polyimide (PIs) rich in nitrogen and oxides was added to UiO-66-NH2/GO with -NH2 group at the end, and the supermicropores could provide enhanced CO2 affinity. PI-UiO/GO has excellent acid-base resistance, suitable adsorption heat and excellent cycling stability, which indicates that the composite porous material has excellent recycling ability, which provides a variety of possibilities for the application of adsorbent in complex industrial environment. Under 298 K and 1 bar, the breakthrough time of PI-UiO/GO-1 in flue gas reaches 369 s. As expected, the resulting composite (PI-UiO/GO-1) exhibited a three-fold CO2 capacity (8.24 vs 2.8 mmol·g-1 at 298 K and 30 bar), 4.2 times higher CO2/N2 selectivity (64.71 vs 15.43), and significantly improved acid-base resistance stability compared with those values of pristine UiO-66-NH2. The improvement of breakthrough time and adsorption capacity proved the applicability of the strategy. This synthesis method has a certain guiding significance for the design of new CO2 capture and flue gas separation materials.
﹀
|
参考文献: |
︿
[1].Haszeldine R S. Carbon Capture and Storage: How Green Can Black Be?[J]. Science, 2009, 325 (5948): 1647-1652. [2].Sumida K, Rogow D L, Mason J A, et al. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chemical Reviews, 2012, 112 (2): 724-781. [3].Hao G P, Li W C, Qian D, et al. Structurally Designed Synthesis of Mechanically Stable Poly(benzoxazine-co-resol)-based Porous Carbon Monoliths and Their Application as High-Performance CO2 Capture Sorbents[J]. Journal of the American Chemical Society, 2011, 133 (29): 11378-11388. [4].Yu J, Xie L H, Li J R, et al. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies[J]. Chemical Reviews, 2017, 117 (14): 9674-9754. [5].Liang L, Liu C, Jiang F, et al. Carbon Dioxide Capture and Conversion by an Acid-base Resistant Metal-Organic Framework[J]. Nature Communications, 2017, 8 (1): 1233. [6].Pardakhti M, Jafari T, Tobin Z, et al. Trends in Solid Adsorbent Materials Development for CO2 Capture[J]. ACS Applied Materials & Interfaces, 2019, 11 (38): 34533-34559. [7].Singh G, Lakhi K S, Sil S, et al. Biomass Derived Porous Carbon for CO2 Capture[J]. Carbon, 2019, 148: 164-186. [8].Zhang Z, Nguyen H T, Miller S A, et al. Polymer–Metal–Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations[J]. Journal of the American Chemical Society, 2016, 138 (3): 920-925. [9].Wang Y, Hu Z, Kundu T, et al. Metal–Organic Frameworks with Reduced Hydrophilicity for Postcombustion CO2 Capture from Wet Flue Gas[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11904-11912. [10].Shi Y Q, Zhu J, Liu X Q, et al. Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO2 Capture.[J]. ACS Applied Materials & Interfaces, 2014, 6 (22): 20340-20349. [11].Dlugokencky E, Tans P. Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed Sep 12, 2018). [12].SteinT. Carbon Dioxide Levels in Atmosphere Hit Record High in May, Jun 4, 2019, https://www.noaa.gov/news/carbon-dioxide-levels-in-atmosphere-hit-record-high-in-may (accessed Jul 29, 2019). [13].Sun L B, Kang Y H, Shi Y Q, et al. Highly Selective Capture of The Greenhouse Gas CO2 in Polymers[J]. ACS Sustainable Chemistry & Engineering, 2015, 3 (12): 3077-3085. [14].Shen C, Grande C A, Li P, et al. Adsorption Equilibria and Kinetics of CO2 and N2 on Activated Carbon Beads[J]. Chemical Engineering Journal, 2010, 160 (2): 398-407. [15].Guo Y, Tan C, Sun J, et al. Porous Activated Carbons Derived from Waste Sugarcane Bagasse for CO2 Adsorption[J]. Chemical Engineering Journal, 2019, 381: 122736. [16].Bae Y, Snurr R Q. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture[J]. Angewandte Chemie International Edition, 2011, 50 (49): 11586-11596. [17].Siriwardane R V, Shen M S, Fisher E P. Adsorption of CO2, N2, and O2 on Natural Zeolites[J]. Energy & Fuels, 2003, 17 (3): 571-576. [18].Wu L, Liu J, Shang H, et al. Capture CO2 from N2 and CH4 by Zeolite L with Different Crystal Morphology. Microporous and Mesoporous Materials, 2021, 316: 110956. [19].Liu Q, He P, Qian X, et al. Enhanced CO2 Adsorption Performance on Hierarchical Porous ZSM-5 Zeolite. Energy & Fuels, 2017, 31 (12): 13933-13941. [20].Yue M B, Chun Y, Cao Y, et al. CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template. Advanced Functional Materials, 2006, 16 (13): 1717-1722. [21].Liu S, Ma R, Hu X, et al. CO2 Adsorption on Hazelnut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized by Single-Step Sodium Amide Activation. Industrial & Engineering Chemistry Research, 2019, 59 (15): 7046-7053. [22].Yang F, Wang J, Liu L, et al. Synthesis of Porous Carbons with High N-Content from Shrimp Shells for Efficient CO2-Capture and Gas Separation. ACS Sustainable Chemistry & Engineering, 2018, 6 (11): 15550-15559. [23].Wang Y, Hu X, Hao J, et al. Nitrogen and Oxygen Codoped Porous Carbon with Superior CO2 Adsorption Performance: A Combined Experimental and DFT Calculation Study. Industrial & Engineering Chemistry Research, 2019, 58 (29): 13390-13400. [24].Chen K J, Madden D G, Pham T, et al. Tuning Pore Size in Square‐Lattice Coordination Networks for Size‐Selective Sieving of CO2. Angewandte Chemie International Edition, 2016, 128 (35): 10424-10428. [25].Ding N, Li H, Feng X, et al. Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138 (32): 10100-10103. [26].Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306 (5696): 666-669. [27].Vaidhyanathan R, Iremonger S S, Shimizu G K, et al. Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid[J]. Science, 2010, 330 (6004): 650-653. [28].Georgakilas V, Otyepka M, Bourlinos A B, et al. Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112 (11): 6156-6214. [29].Yu D S, Kuila T, Kim N H, et al. Enhanced Properties of Aryl Diazonium Salt-Functionalized Graphene/poly(vinyl alcohol) Composites[J]. Chemical Engineering Journal, 2014, 245: 311-322. [30].Yuan K, Xu Y, Uihlein J, et al. Straightforward Generation of Pillared, Microporous Graphene Frameworks for Use in Supercapacitors[J]. Advanced Materials, 2015, 27 (42): 6714-6721. [31].Kumar R, Suresh V M, Maji T K, et al. Porous Graphene Frameworks Pillared by Organic Linkers with Tunable Surface Area and Gas Storage Properties[J]. Chemical Communications, 2014, 50 (16): 2015-2017. [32].Huang A, Feng B. Facile Synthesis of PEI-GO@ZIF-8 Hybrid Material for CO2 Capture[J]. International Journal of Hydrogen Energy, 2018, 43 (4): 2224-2231. [33].Yang Z, Wang S, Zhang Z, et al. Influence of Fluorination on CO2 Adsorption in Materials Derived from Fluorinated Covalent Triazine Framework Precursors[J]. Journal of Materials Chemistry A, 2019, 7 (29): 17277-17282. [34].Lee S, Jang S, Park K, et al. A Mechanistic Study of Graphene Fluorination[J]. Journal of Physical Chemistry C, 2013, 117 (10): 5407-5415. [35].Zheng X, Xu Q, He L, et al. Modification of Graphene Oxide with Amphiphilic Double-Crystalline Block Copolymer Polyethylene-b-poly(ethylene oxide) with Assistance of Supercritical CO2 and Its Further Functionalization[J]. Journal of Physical Chemistry B, 2011, 115 (19): 5815-5826. [36].Dong L, Fan W, Tong X, et al. A CO2-responsive Graphene Oxide/Polymer Composite Nanofiltration Membrane for Water Purification[J]. Journal of Materials Chemistry A, 2018, 6 (16): 6785-6791. [37].Chandra V, Yu S U, Kim S H, et al. Highly Selective CO2 Capture on N-doped Carbon Produced by Chemical Activation of Polypyrrole Functionalized Graphene Sheets[J]. Chemical Communications, 2012, 48 (5): 735-737. [38].Liu Y, Wilcox J. Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons[J]. Environmental Science & Technology, 2012, 46 (3): 1940-1947. [39].Xie A, Dai J, Cui J, et al. Novel Graphene Oxide–Confined Nanospace Directed Synthesis of Glucose-Based Porous Carbon Nanosheets with Enhanced Adsorption Performance[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11566-11576. [40].Pal A, Uddin K, Rocky K A, et al. CO2 Adsorption onto Activated Carbon–Graphene Composite for Cooling Applications[J]. International Journal of Refrigeration-revue Internationale Du Froid, 2019, 106: 558-569. [41].Martinjimeno F J, Suarezgarcia F, Paredes J I, et al. Activated Carbon Xerogels with A Cellular Morphology Derived from Hydrothermally Carbonized Glucose-Graphene Oxide Hybrids and Their Performance towards CO2 and Dye Adsorption[J]. Carbon, 2015, 81: 137-147. [42].Seema H, Kemp K C, Le N H, et al. Highly Selective CO2 Capture by S-Doped Microporous Carbon Materials[J]. Carbon, 2014, 66: 320-326. [43].Lawrence C M, Xiao Y, Deng Z. DFT Study of Carbon Dioxide Capture on Functionalized Graphane Sheets[C]. Third International Conference on Advances in Bio-Informatics, Bio-Technology and Environmental Engineering-ABBE 2015. [44].Zheng L, Xia K, Han B, et al. N/P Codoped Porous Carbon-Coated Graphene Nanohybrid as a High-Performance Electrode for Supercapacitors[J]. ACS Applied Nano Materials, 2018, 1 (12): 6742-6751. [45].Zhang Y, Wang F, Zhu H, et al. Preparation of Nitrogen-Doped Biomass-Derived Carbon Nanofibers/Graphene Aerogel as A Binder-Free Electrode for High Performance Supercapacitors[J]. Applied Surface Science, 2017, 426 (44): 99-106. [46].Wang M, Liu Q, Sun H, et al. Preparation of High-Surface-Area Carbon Nanoparticle/Graphene Composites[J]. Carbon, 2012, 50 (10): 3845-3853. [47].雷广平, 刘朝, 解辉. 石墨烯/纳米管复合结构吸附分离CO2/CH4混合物的分子模拟[J].物理化学学报, 2015, 31 (04): 660-666. [48].De Marco M, Menzel R, Bawaked S M, et al. Hybrid Effects in Graphene Oxide/Carbon Nanotube-Supported Layered Double Hydroxides: Enhancing the CO2 Sorption Properties[J]. Carbon, 2017, 123: 616-627. [49].Li L, Guojun Z, Benqun Y, et al. Amine-Functionalized Mesoporous Silica@Reduced Graphene Sandwich-Like Structure Composites for CO2 Adsorption[J]. ACS Applied Nano Materials, 2018, 1 (9): 4695-4702. [50].Yang S, Zhan L, Xu X, et al. Graphene‐Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO2 Capture[J]. Advanced Materials, 2013, 25 (15): 2130-2134. [51].Pokhrel J, Bhoria N, Anastasiou S, et al. CO2 Adsorption Behavior of Amine-Functionalized ZIF-8, Graphene Oxide, and ZIF-8/Graphene Oxide Composites under Dry and Wet Conditions[J]. Microporous and Mesoporous Materials, 2018, 267: 53-67. [52].Cao Y, Zhao Y, Lv Z, et al. Preparation and Enhanced CO2 Adsorption Capacity of UiO-66/Graphene Oxide Composites[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 102-107. [53].Chen Y, Lv D, Wu J, et al. A New MOF-505@GO Composite with High Selectivity for CO2/CH4 and CO2/N2 Separation[J]. Chemical Engineering Journal, 2017, 308: 1065-1072. [54].Bian Z, Zhu X, Jin T, et al. Ionic Liquid-Sssisted Growth of Cu3(BTC)2 Nanocrystals on Graphene Oxide Sheets: towards both High Capacity and High Rate for CO2 Adsorption[J]. Microporous and Mesoporous Materials, 2014, 200: 159-164. [55].Xu L, Zhou X, Tian W Q, et al. Surface-Confined Single-Layer Covalent Organic Framework on Single-Layer Graphene Grown on Copper Foil[J]. Angewandte Chemie International Edition, 2014, 53 (36): 9564-9568. [56].Tang Y, Feng S, Fan L, et al. Covalent Organic Frameworks Combined with Graphene Oxide to Fabricate Membranes for H2/CO2 Separation[J]. Separation and Purification Technology, 2019, 223: 10-16. [57].Haque E, Islam M M, Pourazadi E, et al. Boron-Functionalized Graphene Oxide-Organic Frameworks for Highly Efficient CO2 Capture[J]. Chemistry-An Asian Journal, 2017, 12 (3): 283-288. [58].Lackner K S. A Guide to CO2 Sequestration[J]. Science, 2003, 300 (5626): 1677-1678. [59].Mason J A, Sumida K, Herm Z R, et al. Evaluating Metal–Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption[J]. Energy & Environmental Science, 2011, 4 (8): 3030-3040. [60].Wang S, Xu M, Peng T, et al. Porous Hypercrosslinked Polymer-TiO2-Graphene Composite Photocatalysts for Visible-Light-Driven CO2 Conversion[J]. Nature Communications, 2019, 10 (1): 1-10. [61].Zhao P, Fang H, Mukhopadhyay S, et al. Structural Dynamics of A Metal-Organic Framework Induced by CO2 Migration in Its Non-Uniform Porous Structure[J]. Nature Communications, 2019, 10 (1): 1-8. [62].McDonald T M, Mason J A, Kong X, et al. Cooperative Insertion of CO2 in Diamine-Appended Metal-Organic Frameworks[J]. Nature, 2015, 519 (7543): 303-308. [63].Hung W S, Tsou C H, De Guzman M, et al. Cross-Linking with Diamine Monomers to Prepare Composite Graphene Oxide-Framework Membranes with Varying D-Spacing[J]. Chemistry of Materials, 2014, 26 (9): 2983-2990. [64].Cai J, Chen J, Zeng P, et al. Molecular Mechanisms of CO2 Adsorption in Diamine-Cross-Linked Graphene Oxide[J]. Chemistry of Materials, 2019, 31 (10): 3729-3735. [65].MacDowell N, Florin N, Buchard A, et al. An Overview of CO2 Capture Technologies[J]. Energy & Environmental Science, 2010, 3 (11): 1645-1669. [66].Venna S R, Carreon M A. Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation[J]. Journal of the American Chemical Society, 2010, 132 (1): 76-78. [67].Hudson M R, Queen W L, Mason J A, et al. Unconventional, Highly Selective CO2 Adsorption in Zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134 (4): 1970-1973. [68].Sethia G, Sayari A. Comprehensive Study of Ultra-Microporous Nitrogen-Doped Activated Carbon for CO2 Capture[J]. Carbon, 2015, 93: 68-80. [69].Zeeshan M, Nozari V, Yagci M B, et al. Core–Shell Type Ionic Liquid/Metal OrganicFramework Composite: An Exceptionally High CO2/CH4 Selectivity[J]. Journal of the American Chemical Society, 2018, 140 (32): 10113-10116. [70].Molavi H, Shojaei A. Mixed-Matrix Composite Membranes Based on UiO-66-Derived MOFs for CO2 Separation[J]. ACS Applied Materials & Interfaces, 2019, 11 (9): 9448-9461. [71].Meng Z, Yang Z, Yin Z, et al. Effects of Coal Slime on the Slurry Ability of A Semi-Coke Water Slurry[J]. Powder Technol, 2020, 359: 261-267. [72].Wang W, Li C, Yan Z. Study on Molding Semi-Coke Used for Flue-Gas Desulphurization[J]. Catalysis Today, 2010, 158 (3-4): 235-240. [73].Wang Q, Wang H, Sun B, et al. Interactions between Oil Shale and Its Semi-Coke During Co-Combustion[J]. Fuel, 2009, 88 (8): 1520-1529. [74].Wang Q, Zhao W, Liu H, et al. Interactions and Kinetic Analysis of Oil Shale Semi-Coke with Cornstalk During Co-Combustion[J]. Applied Energy, 2011, 88 (6): 2080-2087. [75].Yang Z, Ning H, Liu J, et al. Surface Modification on Semi-Coke-Based Activated Carbon for Enhanced Separation of CH4/N2[J]. Chemical Engineering Research and Design, 2020, 161: 312-321. [76].Yuan K, Guo P, Hu T, et al. Nanofibrous and Graphene-Templated Conjugated Microporous Polymer Materials for Flexible Chemosensors and Supercapacitors[J]. Chemistry of Materials, 2015, 27 (21): 7403-7411. [77].Patiño J, Gutiérrez M C, Carriazo D, et al. DES Assisted Synthesis of Hierarchical Nitrogendoped Carbon Molecular Sieves for Selective CO2 versus N2 Adsorption[J]. Journal of Materials Chemistry A, 2014, 2 (23): 8719-8729. [78].Parshetti G K, Chowdhury S, Balasubramanian R. Biomass Derived Low-Cost Microporous Adsorbents for Efficient CO2 Capture[J]. Fuel, 2015, 148: 246-254. [79].Zhao Y, Liu X, Yao K X, et al. Superior Capture of CO2 Achieved by Introducing Extra-Framework Cations into N-Doped Microporous Carbon[J]. Chemistry of Materials, 2012, 24 (24): 4725-4734. [80].Sevilla M, Valle-Vigón P, Fuertes A B. N-doped Polypyrrole-Based Porous Carbons for CO2 Capture[J]. Advanced Functional Materials, 2011, 21 (14): 2781-2787. [81].Dutta S, Bhaumik A, Wu K C W. Hierarchically Porous Carbon Derived from Polymers and Biomass: Effect of Interconnected Pores on Energy Applications[J]. Energy & Environmental Science, 2014, 7 (11): 3574-3592. [82].Lu W, Yuan D, Sculley J, et al. Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure[J]. Journal of the American Chemical Society, 2011, 133 (45): 18126-18129. [83].Chen C, Huang Y, Meng Z, et al. N/O/P-Rich Three-Dimensional Carbon Network for Fast Sodium Storage[J]. Carbon, 2020, 170: 225-235. [84].Zhang L, Jiang C, Zhang Z. Graphene Oxide Embedded Sandwich Nanostructures for Enhanced Raman Readout and Their Applications in Pesticide Monitoring[J]. Nanoscale, 2013, 5 (9): 3773-3779. [85].Hao G P, Lu A H, Dong W, et al. Sandwich-Type Microporous Carbon Nanosheets for Enhanced Supercapacitor Performance[J]. Advanced Energy Materials, 2013, 3 (11): 1421-1427. [86].Yan Y, Yin Y X, Guo Y G, et al. A Sandwich-Like Hierarchically Porous Carbon/Graphene Composite as A High-Performance Anode Material for Sodium-Ion Batteries[J]. Advanced Energy Materials, 2014, 4 (8): 1-5. [87].Gómez-Pozuelo G, Sanz-Pérez E S, Arencibia A, et al. CO2 Adsorption on Amine-Functionalized Clays[J]. Microporous and Mesoporous Materials, 2019, 282: 38-47. [88].Wang L, Wei T, Sheng L, et al. “Brick-and-Mortar” Sandwiched Porous Carbon Building Constructed by Metal-Organic Framework and Graphene: Ultrafast Charge/Discharge Rate up to 2 Vs−1 for Supercapacitors[J]. Nano Energy, 2016, 30: 84-92. [89].Wu Z L, Liu F, Li C K, et al. A Sandwich-Structured Graphene-Based Composite: Preparation, Characterization, and Its Adsorption Behaviors for Congo Red[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 65-72. [90].Krishnan D, Raidongia K, Shao J, et al. Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates[J]. ACS Nano, 2014, 8 (1): 449-457. [91].Rodríguez-García S, Santiago R, López-Díaz D, et al. Role of the Structure of Graphene Oxide Sheets on the CO2 Adsorption Properties of Nanocomposites Based on Graphene Oxide and Polyaniline or Fe3O4-Nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (14): 12464-12473. [92].Xie Z, He Z, Feng X, et al. Hierarchical Sandwich-Like Structure of Ultrafine N-Rich Porous Carbon Nanospheres Grown on Graphene Sheets as Superior Lithium-Ion Battery Anodes[J]. ACS Applied Materials & Interfaces, 2016, 8 (16): 10324-10333. [93].Xu Q, Yang Y, Wang X, et al. Atomic Layer Deposition of Alumina on Porous Polytetrafluoroethylene Membranes for Enhanced Hydrophilicity and Separation Performances[J]. Journal of Membrane Science, 2012, 415: 435−443. [94].Shang Y, Chen C, Zhang P, et al. Removal of Sulfamethoxazole from Water via Activation of Persulfate by Fe3C@NCNTs Including Mechanism of Radical and Nonradical Process[J]. Chemical Engineering Journal, 2019, 375: 122004. [95].Sevilla M, Fuertes A B. Sustainable Porous Carbons with A Superior Performance for CO2 Capture[J]. Energy & Environmental Science, 2011, 4 (5): 1765-1771. [96].Wang D, Song S, Zhang W, et al. CO2 Selective Separation of Pebax-based Mixed Matrix Membranes (MMMs) Accelerated by Silica Nanoparticle Organic Hybrid Materials (NOHMs)[J]. Separation and Purification Technology, 2020, 241: 116708. [97].Yue L, Rao L, Wang L, et al. Efficient CO2 Capture by Nitrogen-Doped Biocarbons Derived from Rotten Strawberries[J]. Industrial & Engineering Chemistry Research, 2017, 56 (47): 14115-14122. [98].Ding S, Dong Q, Hu J, et al. Enhanced Selective Adsorption of CO2 on Nitrogen-Doped Porous Carbon Monoliths Derived from IRMOF-3[J]. Chemical Communications, 2016, 52 (63): 9757-9760. [99].Chowdhury S, Parshetti G K, Balasubramanian R. Post-combustion CO2 Capture Using Mesoporous TiO2/Graphene Oxide Nanocomposites[J]. Chemical Engineering Journal, 2015, 263: 374-384. [100].Saboun R, Kazemian H, Rohani S. Carbon Dioxide Adsorption in Microwave-Synthesized Metal Organic Framework CPM-5 Equilibrium and Kinetics Study[J]. Microporous and Mesoporous Materials, 2013, 175: 85-91. [101].Zhang Z, Xian S, Xi H, et al. Improvement of CO2 Adsorption on ZIF-8 Crystals Modified by Enhancing Basicity of Surface[J]. Chemical Engineering Science, 2011, 66 (20): 4878-4888. [102].Chen J, Yang J, Hu G, et al. Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (3): 1439-1445. [103].Banerjee R, Furukawa H, Britt D, et al. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties[J]. Journal of the American Chemical Society, 2009, 131 (11): 3875-3877. [104].Silva P, Vilela S M F, Tome J P C, et al. Multifunctional Metal-Organic Frameworks: from Academia to Industrial Applications[J]. Chemical Society Reviews, 2015, 44 (19): 6774-6803. [105].Lin Y, Kong C, Zhang Q, et al. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage[J]. Advanced Energy Materials, 2017, 7 (4): 1601296. [106].Zhou H C, Long J R, Yaghi O M. Introduction to Metal-Organic Frameworks[J]. Chemical Reviews, 2012, 112 (2): 673–674. [107].Ning H, Yang Z, Wang D, et al. Graphene-based Semi-coke Porous Carbon with N-rich Hierarchical Sandwich-like Structure for Efficient Separation of CO2/N2[J]. Microporous and Mesoporous Materials, 2021, 311: 110700. [108].Fujiki J, Yogo K. The Increased CO2 Adsorption Performance of Chitosan-derived Activated Carbons with Nitrogen-doping[J]. Chemical Communications, 2016, 52 (1): 186-189. [109].Altundal O F, Altintas C, Keskin S. Can COFs Replace MOFs in Flue Gas Separation? High-throughput Computational Screening of COFs for CO2/N2 Separation[J]. Journal of Materials Chemistry A, 2020, 8 (29): 14609-14623. [110].Deeg K S, Borges D D, Ongari D, et al. In Silico Discovery of Covalent Organic Frameworks for Carbon Capture[J]. ACS Applied Materials & Interfaces, 2020, 12 (19): 21559–21568. [111].Liu F Q, Wang L L, Li G H, et al. Hierarchically Structured Graphene Coupled Microporous Organic Polymers for Superior CO2 Capture[J]. ACS Applied Materials & Interfaces, 2017, 9 (39): 33997-34004. [112].Nguyen J G, Cohen S M. Moisture-resistant and Superhydrophobic Metal-Organic-Frameworks Obtained via Postsynthetic Modification[J]. Journal of the American Chemical Society, 2010, 132 (13): 4560-4561. [113].Yu J, Xie L H, Li J R, et al. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies[J]. Chemical Reviews, 2017, 117 (14): 9674-9754. [114].Kundu K, Sillar J Sauer. Predicting Adsorption Selectivities from Pure Gas Isotherms for Gas Mixtures in Metal-Organic Frameworks[J]. Chemical Science, 2020, 11 (3): 643-655. [115].Sevilla M, Valle‐Vigón P, Fuertes A B. N‐doped Polypyrrole‐based Porous Carbons for CO2 Capture[J]. Advanced Functional Materials, 2011, 21 (14): 2781-2787. [116].Wang Z, Ren H, Zhang S, et al. Polymers of Intrinsic Microporosity/Metal-Organic Framework Hybrid Membranes with Improved Interfacial Interaction for High-Performance CO2 Separation[J]. Journal of Materials Chemistry A, 2017, 5 (22): 10968-10977. [117].Belmabkhout Y, Bhatt P M, Adil K, et al. Natural Gas Upgrading Using a Fluorinated MOF with Tuned H2S and CO2 Adsorption Selectivity[J]. Nature Energy, 2018, 3 (12): 1059-1066. [118].Yeon J S, Lee W R, Kim N W, et al. Homodiamine-Functionalized Metal-Organic Frameworks with A MOF-74-type Extended Structure for Superior Selectivity of CO2 over N2[J]. Journal of Materials Chemistry A, 2015, 3 (37): 19177-19185. [119].Petit C, Bandosz T J. MOF-Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal-Organic Frameworks[J]. Advanced Materials, 2009, 21 (46): 4753-4757. [120].Liu S, Sun L, Xu F, et al. Nanosized Cu-MOFs Induced by Graphene Oxide and Enhanced Gas Storage Capacity[J]. Energy & Environmental Science, 2013, 6 (3): 818-823. [121].Zhao Y, Seredych M, Zhong Q, et al. Superior Performance of Copper Based MOF and Aminated Graphite Oxide Composites as CO2 Adsorbents at Room Temperature[J]. ACS Applied Materials & Interfaces, 2013, 5 (11): 4951-4959. [122].Zhao Y, Seredych M, Jagiello J, et al. Insight into The Mechanism of CO2 Adsorption on Cu-BTC and Its Composites with Graphite Oxide or Aminated Graphite Oxide[J]. Chemical Engineering Journal, 2014, 239: 399-407. [123].Xu F, Yu Y, Yan J, et al. Ultrafast Room Temperature Synthesis of GrO@HKUST-1 Composites with High CO2 Adsorption Capacity and CO2/N2 Adsorption Selectivity[J]. Chemical Engineering Journal, 2016, 303: 231-237. [124].Chen K J, Madden D G, Mukherjee S, et al. Synergistic Sorbent Separation for One-step Ethylene Purification from A Four-Component Mixture[J]. Science, 2019, 366 (6462): 241-246. [125].Mohanty P, Kull L D, Landskron K. Porous Covalent Electron-Rich Organonitridic Frameworks as Highly Sorbents for Methane and Carbon Dioxide[J]. Nature Communications, 2011, 2 (1): 1-6. [126].Yoo D K, Khan N A, Jhung S H. Polyaniline-Loaded Metal-Organic Framework MIL-101(Cr): Promising Adsorbent for CO2 Capture with Increased Capacity and Selectivity by Polyaniline Introduction[J]. Journal of CO2 Utilization, 2018, 28: 319-325. [127].Wang D, Xin Y, Wang Y, et al. A General Way to Transform Ti3C2Tx MXene into Solvent-free Fluids for Filler Phase Applications[J]. Chemical Engineering Journal, 2021, 409: 128082. [128].Wang D, Xi Y, Li X, et al. Transforming Metal-Organic Frameworks into Porous Liquids via A Covalent Linkage Strategy for CO2 Capture[J]. ACS Applied Materials & Interfaces, 2021, 13 (2): 2600-2609. [129].Wang D, Xin Y, Li X, et al. A Universal Approach to Turn UiO-66 into Type 1 Porous Liquids via Post-Synthetic Modification with Corona-Canopy Species for CO2 Capture[J]. Chemical Engineering Journal, 2021, 127625. [130].Yoo D K, Yoon T U, Ba Y S, et al. Metal-Organic Framework MIL-101 Loaded with Polymethacrylamide with or without Further Reduction: Effective and Selective CO2 Adsorption with Amino or Amide Functionality[J]. Chemical Engineering Journal, 2020, 380: 122496. [131].Jiang Y, Tan P, Qi S C, et al. Metal-Organic Frameworks with Target-Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO2 Capture[J]. Angewandte Chemie International Edition, 2019, 58 (20): 6600-6604. [132].Suresh V M, Bonakala S, Atreya H S, et al. Amide Functionalized Microporous Organic Polymer (Am-MOP) for Selective CO2 Sorption and Catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6 (7): 4630-4637. [133].Zheng B, Bai J, Duan J, et al. Enhanced CO2 Binding Affinity of A High-Uptake Rht-type Metal-Organic Framework Decorated with Acylamide Groups[J]. Journal of the American Chemical Society, 2011, 133 (4): 748-751. [134].Moreau F, Da Silva I, Al Smail N H, et al. Unravelling Exceptional Acetylene and Carbon Dioxide Adsorption within A Tetra-Amide Functionalized Metal-Organic Framework[J]. Nature Communications, 2017, 8 (1): 1-9. [135].Wang H, He S, Qin X, et al. Interfacial Engineering in Metal-Organic Framework-based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes[J]. Journal of the American Chemical Society, 2018, 140 (49): 17203-17210. [136].Li G, Zhang B, Yan J, et al. Microporous Polyimides with Functional Groups for the Adsorption of Carbon Dioxide and Organic Vapors[J]. Journal of Materials Chemistry A, 2016, 4 (29): 11453-11461. [137].Xu C, Bacsik Z, Hedin N. Adsorption of CO2 on A Micro-/Mesoporous Polyimine Modified with Tris (2-aminoethyl) amine[J]. Journal of Materials Chemistry A, 2015, 3 (31): 16229-16234. [138].Chen M, Chen S, Chen W, et al. Analyzing Gas Adsorption in An Amide-Functionalized Metal Organic Framework: Are the Carbonyl or Amine Groups Responsible?[J]. Chemistry of Materials, 2018, 30 (11): 3613-3617. [139].Zhu J, Wu L, Bu Z, et al. Polyethyleneimine-modified UiO-66-NH2 (Zr) Metal–Organic Frameworks: Preparation and Enhanced CO2 Selective Adsorption[J]. ACS Omega, 2019, 4 (2): 3188-3197. [140].Hu Z, Faucher S, Zhuo Y, et al. Combination of Optimization and Metalated‐Ligand Exchange: An Effective Approach to Functionalize UiO‐66 (Zr) MOFs for CO2 Separation[J]. Chemistry-A European Journal, 2015, 21 (48): 17246-17255. [141].Yazaydın A O, Benin A I, Faheem S A, et al. Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules[J]. Chemistry of Materials, 2009, 21 (8): 1425-1430. [142].Bloch E D, Britt D, Lee C, et al. Metal Insertion in A Microporous Metal-Organic Framework Lined with 2, 2′-bipyridine[J]. Journal of the American Chemical Society, 2010, 132 (41): 14382-14384. [143].Li B, Zhang Z, Li Y, et al. Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO2 by Dual Functionalization of A Rht-type Metal-Organic Framework[J]. Angewandte Chemie International Edition, 2012, 51 (6): 1412-1415. [144].Hu Z, Peng Y, Kang Z, et al. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-type MOFs[J]. Inorganic Chemistry, 2015, 54 (10): 4862-4868. [145].Nugent P, Belmabkhout Y, Burd S D, et al. Porous Materials with Optimal Adsorption Thermodynamics and Kinetics for CO2 Separation[J]. Nature, 2013, 495 (7439): 80-84. [146].Saha D, Bao Z, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A[J]. Environmental Science & Technology, 2010, 44 (5): 1820-1826. [147].Hefti M, Marx D, Joss L, et al. Adsorption Equilibrium of Binary Mixtures of Carbon Dioxide and Nitrogen on Zeolites ZSM-5 and 13X[J]. Microporous and Mesoporous Materials, 2015, 215: 215-228. [148].Shan W, Fulvio P F, Kong L, et al. New Class of Type III Porous Liquids: A Promising Platform for Rational Adjustment of Gas Sorption Behavior[J]. ACS Applied Materials & Interfaces, 2018, 10 (1): 32-36. [149].Zhao X, Yuan Y, Li P, et al. A Polyether Amine Modified Metal Organic Framework Enhanced the CO2 Adsorption Capacity of Room Temperature Porous Liquids[J]. Chemical Communications, 2019, 55 (87): 13179–13182. [150].Surble S, Millange F, Serre C, et al. Synthesis of MIL-102, A Chromium Carboxylate Metal-Organic Framework, with Gas Sorption Analysis[J]. Journal of the American Chemical Society, 2006, 128 (46): 14889-14896. [151].Loiseau T, Lecroq L, Volkringer C, et al. MIL-96, A Porous Aluminum Trimesate 3D Structure Constructed from A Hexagonal Network of 18-Membered Rings and 3-oxo-centered Trinuclear Units[J]. Journal of the American Chemical Society, 2006, 128 (31): 10223-10230. [152].Galli S, Masciocchi N, Tagliabue G, et al. Polymorphic Coordination Networks Responsive to CO2, Moisture, and Thermal Stimuli: Porous Cobalt(II) and Zinc(II) Fluoropyrimidinolates[J]. Chemistry-A European Journal, 2008, 14 (32): 9890-9901. [153].Park H J, Suh M P. Stepwise and Hysteretic Sorption of N2, O2, CO2, and H2 Gases in A Porous Metal-Organic Framework [Zn2(BPnDC)2(bpy)][J]. Chemical Communications, 2010, 46 (4): 610-612. [154].Couck S, Denayer J F M, Baron G V, et al. An Amine-Functionalized MIL-53 Metal−Organic Framework with Large Separation Power for CO2 and CH4[J]. Journal of the American Chemical Society, 2009, 131 (18): 6326-6327. [155].Bourrelly S, Llewellyn P L, Serre C, et al. Different Adsorption Behaviors of Methane and Sarbon Dioxide in the Isotypic Nanoporous Metal Terephthalates MIL-53 and MIL-47[J]. Journal of the American Chemical Society, 2005, 127 (39): 13519-13521. [156].Nune S K, Thallapally P K, Dohnalkova A, et al. Synthesis and Properties of Nano Zeolitic Imidazolate Frameworks[J]. Chemical Communications, 2010, 46 (27): 4878-4880. [157].Hamon L, Jolimaitre E, Pirngruber G D. CO2 and CH4 Separation by Adsorption Using Cu-BTC Metal-Organic Framework[J]. Industrial & Engineering Chemistry Research, 2010, 49 (16): 7497-7503.
﹀
|
中图分类号: |
TB34
|
开放日期: |
2021-06-18
|