- 无标题文档
查看论文信息

论文中文题名:

 综掘工作面气室降尘技术及其优化研究    

姓名:

 马文杰    

学号:

 19220214076    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 粉尘防治    

第一导师姓名:

 张京兆    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Dust Suppression Technology and Optimization of Air Cell in Fully Mechanized Excavation Face    

论文中文关键词:

 粉尘防治 ; 气室 ; 风幕 ; 综掘工作面 ; 粉尘运移规律    

论文外文关键词:

 Dust control ; Air curtain ; Gas cell ; Fully mechanized excavation face ; Dust movement regularity    

论文中文摘要:

目前我国煤矿综掘工作面主要采用高压喷雾、除尘风机、长压短抽通风等措施进行粉尘防治工作,虽取得了一定成效,但由于各降尘措施的局限性、经济性等原因,部分综掘工作面依旧存在粉尘浓度超限的问题。论文通过设计综掘工作面气室降尘技术,以期在实际生产中发挥重要作用,改善煤矿综掘工作面作业环境,对综掘面粉尘防治工作具有重要的指导意义。

论文以巴拉素煤矿2号煤二号回风大巷综掘工作面为研究对象,构建粉尘运动数学模型,结合风幕射流理论及现有降尘措施的优缺点,提出并设计了综掘工作面气室降尘技术,基于数值模拟和现场实验对设备布置参数进行优化,以提高其降尘效率。

通过对比长压短抽通风、单一风幕控尘和气室降尘技术的风流场模拟结果,确定气室降尘技术在实际生产应用具备可行性与有效性;影响气室降尘技术的因素为气室封闭区域控尘效果和除尘风机抽尘净化能力。

通过现场实验,采用固定变量法对气室降尘技术中的设备布置进行优化,结果表明:正压风筒出风口位置存在临界值,距综掘面过远会造成掘进巷道二次扬尘可能性增加,距综掘面过近会破坏气室封闭效果,正压风筒出风口距综掘面15 m降尘效果最佳;风幕布置位置仅影响气室封闭区域的范围,不会提高气室降尘技术的降尘效率;在只采取长压短抽通风方式的降尘措施时,巷道内粉尘扩散严重,且会在综掘面工作区域形成涡流区,严重影响井下工作人员的健康;风袖布置于正压风筒中上部,且直径为0.3 m时,风袖口出射风流对巷道内风流场扰动作用最小,气室降尘技术降尘效率最佳;在不改变负压风筒吸风量的前提下,负压风筒末端直径越小气室降尘技术效果越好,在负压风筒末端直径从0.8 m改为0.6 m时,气室封闭区域内降尘效率提高45.4%,气室封闭区域外降尘效率提高3.7%。

论文外文摘要:

At present, China's coal mines mainly use high-pressure spraying, dust fans, long pressure and short extraction ventilation and other measures for dust prevention and control work, which has achieved certain results, but due to the limitations of each dust reduction measures, economic and other reasons, some of the comprehensive excavation work face still has the problem of dust concentration over the limit. The paper aims to play an important role in improving the working environment of the coal mining face by designing the air chamber dust reduction technology for the heaving face, which is an important guideline for dust prevention and control work at the heaving face.

The paper takes the No.2 coal No.2 return air tunnel heaving workface of Balasu coal mine as the research object, constructs a mathematical model of dust movement, combines the wind curtain jet theory and the advantages and disadvantages of existing dust reduction measures, proposes and designs the air chamber dust reduction technology for the heaving workface, and optimises the equipment arrangement parameters through numerical simulation and field experiments in order to improve its dust reduction efficiency.

By comparing the simulation results of air flow field of long pressure and short extraction ventilation, single air curtain dust control and air chamber dust reduction technology, it was determined that the air chamber dust reduction technology is feasible and effective in actual production application.

The results show that there is a critical value for the location of the outlet of the positive pressure duct, which is too far from the header face and will increase the possibility of secondary dust emission in the roadway, and too close to the header face will destroy the effect of the air chamber closure, and the outlet of the positive pressure duct is 15 m away from the header face with the best dust reduction effect. The dust reduction efficiency of the air chamber technology will not be improved if the air curtain is positioned in the closed area of the air chamber, and the dust reduction efficiency of the air chamber technology will not be improved. On the premise of not changing the suction volume of the negative pressure duct, the smaller the diameter of the end of the negative pressure duct, the better the effect of the air chamber dust reduction technology. When the diameter of the end of the negative pressure duct is changed from 0.8 m to 0.6 m, the dust reduction efficiency within the closed area of the air chamber increases by 45.4%, and the dust reduction efficiency outside the closed area of the air chamber increases by 3.7%.

参考文献:

[1]程卫民,周刚,陈连军,等.我国煤矿粉尘防治理论与技术20年研究进展及展望[J].煤炭科学技术,2020,48(2):1-20.

[2]中华人民共和国国家统计局.2012-2019国家煤炭消费总量数据[EB/OL].国家统计局,2022.

[3]周刚, 程卫民,陈连军.矿井粉尘控制关键理论及其技术工艺的研究与实践[M].北京:煤炭工业出版社,2011.

[4]王飞.矿井综掘面粉尘空间分布规律及降尘技术研究[D].北京:中国矿业大学,2020.

[5]张琦,白若男,马骁.综采工作面风流-粉尘运移规律的数值模拟[J].工业安全与环保,2015,4(12):96-99.

[6]李德文,隋金君,刘国庆,等.中国煤矿粉尘危害防治技术现状及发展方向[J].矿业安全与环保,2019,46(6):1-7.

[7]Lu J, Jiang S, Jun T, et al. Analysis of dust to evaluate the incidence of pneumoconiosis in huainan coal mines[J]. Analytical Letters, 2016, 49(11): 1783-1793.

[8]Gandhi S A, RA Cohen, Blanc P D, et al. Early radiographic pneumoconiosis is associated with impaired exercise gas exchange among coal miners with normal resting spirometry[J]. American Journal of Industrial Medicine, 2021, 64(6): 453-461.

[9]胡锦国,康向涛,高璐,等.煤矿职业病应急预案与研究[J].煤矿安全,2022,53(3):253-256.

[10]张倩茹.煤炭企业安全投入对经济效益的影响研究[D].太原:太原理工大学,2019.

[11]佟林全,王雪涛,徐洋,等.井下回采工作面呼吸性粉尘危害现状及防治对策[J].中国煤炭,2020,46(4):47-51.

[12]黄平,范泽远,王丹,等.1m^(3)粉尘环境模拟装置粉尘扩散数值模拟[J].安全与环境学报,2021,21(6):2541-2549.

[13]庄学安.小保当矿井粉尘高效治理技术探讨[J].煤炭技术,2022,41(2):149-152.

[14]Ma W, Mo J. Numerical simulation and field test of dust control effect of exhaust ventilation in fully mechanized face[C]// IOP Conference Series Earth and Environmental Science, Xi'an, China, 2021, 631.

[15]Hua Y, Nie W, Wei W, et al. Research on multi-radial swirling flow for optimal control of dust dispersion and pollution at a fully mechanized tunnelling face[J]. Tunnelling and Underground Space Technology, 2018, 79(9): 293-303.

[16]Yu H, Cheng W, Xie Y, et al. Spray dedusting scheme under hybrid ventilation at a fully mechanized excavation face[J]. Environmental Science and Pollution Research, 2020, 27(8): 7851-7871.

[17]侯树宏,郝军,李腾龙,等.综掘工作面通风控尘参数匹配关系研究及应用[J].煤炭技术,2022,41(1):166-169.

[18]霍文.采煤工作面煤层注水防尘施工参数优化及应用[J].中国矿山工程,2021,50(4):47-49.

[19]董荣宝.全断面掘进机冷却、喷雾系统的设计与分析[J].煤矿机械,2019,40(8):106-49.

[20]张星,章鑫,巩孔正,等.掘进机内喷雾水路的优化改进[J].煤矿机械,2017,38(4):96-97.

[21]许满贵,方秦月,胡涛,等.桑树坪煤矿综采综掘工作面呼吸性粉尘危害及防治对策[J].煤矿安全,2017,48(9):171-174.

[22]梁爱春.泥岩底板突出综掘工作面粉尘综合防治技术[J].煤矿安全,2017,48(7):85-88.

[23]Song J, Dong C, Guo C. Dust migration law in working area of large cross-section tunnel by mining method[C]// IOP Conference Series Earth and Environmental Science, Xi'an, China, 2020, 741.

[24]Yu H, Cheng W, Wu L, et al. Mechanisms of dust diffuse pollution under forced-exhaust ventilation in fully-mechanized excavation faces by CFD-DEM[J]. Powder Technology, 2017, 317: 31-47.

[25]Zhao Y, Ambrose R. Modeling dust dispersion and suspension pattern under turbulence[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103934.

[26]Du T, Nie W, Chen D, et al. CFD modeling of coal dust migration in an 8.8-Meter-High fully mechanized mining face[J]. Energy, 2020, 212: 118616.

[27]Lga B, Wen N, Shuai Y, et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling-Science Direct[J]. Building and Environment, 2020, 178: 106846.

[28]李根,刘桂龙,李丹丹.综掘工作面出风口参数对粉尘分布规律影响分析[J].煤炭技术,2020,39(10):97-101.

[29]李泽恒,马胜利,张恒.综掘面尘源点位置对粉尘分布规律的研究[J].煤炭技术,2020,39(5):136-139.

[30]Liu N, Chen K, Jiang P, et al. Research on dust migration law and dust reduction efficiency in the operation process of tunnel boring machine[J]. KSCE Journal of Civil Engineering, 2021, 26(23): 1419-1427.

[31]姬瑞龙.掘进巷道粉尘分布规律及降尘系统优化研究[J].煤炭与化工,2019,42(11):100-102.

[32]周全超,杨胜强,蒋孝元,等.综掘工作面粉尘分布规律及通风除尘优化研究[J].工矿自动化,2019,45(11):70-74.

[33]张俊泽.综掘工作面压入式通风粉尘分布规律实验[J].矿业工程研究,2019,34(2):18-21.

[34]仝瑞刚.综掘工作面喷雾降尘技术与应用[J].山东煤炭科技,2019,36(2):88-90.

[35]刘子靖.掘进机喷雾压力与流量匹配的研究[J].煤矿机械,2019,40(1):34-35.

[36]张小涛,隋金君,曲宝,等.采掘工作面喷雾降尘技术研究及应用[J].煤矿机械,2013,34(8):247-250.

[37]许满贵,刘欣凯,文新强.煤矿综掘工作面高效喷雾降尘系统[J].湖南科技大学学报(自然科学版),2015,30(2):1-7.

[38]许斌,陈清华,江丙友,等.风水联动除尘器测试系统设计与试验验证[J].煤矿安全,2021,52(10):115-118.

[39]Malikov Z M, Nazarov F K. Numerical study of a Two-Phase flow in a centrifugal dust collector based on a Two-Fluid turbulence model[J]. Mathematical Models and Computer Simulations, 2021, 13(5): 790-797.

[40]Xu J, Wang H. Underground intelligent dry dust collector in the coal mine[J]. IOP Conference Series Earth and Environmental Science, 2021, 647(1): 012051.

[41]Romanyuk R V, Lagutkin M G, Danilenko N V. Influence of the design of the upper vortex swirl on hydrodynamics of a vortex dust collector[J]. Chemical and Petroleum Engineering, 2020, 56(7): 548-553.

[42]周福宝,李建龙,李世航,等.综掘工作面干式过滤除尘技术实验研究及实践[J].煤炭学报,2017,42(3):639-645.

[43]Gao D, Zhou G, Liu R, et al. CFD investigation on gas–solid two-phase flow of dust removal characteristics for cartridge filter: a case study[J]. Environmental Science and Pollution Research, 2020, 36(3): 1-21.

[44]张江石,刘金锋,李晓曦,等.掘进工作面高效复合式湿式除尘器[J].煤矿安全,2017,48(11):126-129.

[45]Sheremet E O, Seminenko A S, Gol'Tsov A B, et al. Efficiency of dust separation devices in ventilated emission purification systems[J]. Iop Conference, 2018, 327: 042081.

[46]龚晓燕,彭高高,宋涛,等.掘进工作面长压短抽通风出风口风流调控参数研究[J].工矿自动化,2021,47(9):45-52.

[47]郭奋超,杨桐,杨俊磊,等.岩巷掘进工作面抽出式通风除尘系统设计与应用[J].矿业安全与环保,2021,48(2):97-100.

[48]郭海军,董华东.长压短抽除尘系统在快速掘进工作面的应用[J].煤矿安全,2016,47(4):158-160.

[49]李继良,谭强,吴建宾,等.岩巷炮掘工作面长抽短压式通风降尘技术研究[J].煤炭工程,2015,47(11):74-77.

[50]Liu X, Qian J, Wang E, et al. Study of integrated vortex ventilation and dust removal system in mechanized excavation face[J]. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part E Journal of Process Mechanical Engineering, 2020, 235(1): 1989-1996.

[51]郝学.综掘工作面煤体破碎产尘规律研究[D].淮南:安徽理工大学,2020.

[52]Li X C, Jiang Y F, Fang Z C, et al. Air curtain dust-collecting technology: A simulation study on air jet distribution and departure angle of air curtain generator[J]. Environmental Technology & Innovation, 2021, 23: 101759.

[53]Khayrullina A, Blocken B, MOMD Almeida, et al. Impact of a wall downstream of an air curtain nozzle on air curtain separation efficiency[J]. Building and Environment, 2021, 197(1): 107873.

[54]Wang H, Cheng W, Sa Z, et al. Experimental study of the effects of air volume ratios on the air curtain dust cleaning in fully mechanized working face[J]. Journal of Cleaner Production, 2021, 293(2): 126109.

[55]Xiao D, Li X, Fang Z, et al. Investigation of the dust control performance of a new transverse-flow air curtain soft-sealing system[J]. Powder Technology, 2020, 362(2): 238-245.

[56]马胜利,张强,张凯铭.综掘工作面风幕控尘除尘系统数值模拟研究[J].煤炭技术,2022,41(2):87-89.

[57]Cai P, Nie W, Liu Z, et al. Study on the air curtain dust control technology with a dust purifying fan for fully mechanized mining face[J]. Powder Technology, 2020, 374(3): 507-521.

[58]Yin S, Nie W, Guo L, et al. CFD simulations of air curtain dust removal effect by ventilation parameters during tunneling[J]. Advanced Powder Technology, 2020, 31(6): 2456-2468.

[59]丁厚成,李胜男,郭成,等.综采工作面双重空气幕隔尘技术数值模拟研究[J].安全与环境工程,2016,23(3):119-124.

[60]李谢玲.基于风幕集尘除尘系统的综掘面粉尘防治研究[J].煤炭技术,2018,37(5):178-180.

[61]Handique J, Kotoky S. A. Computational investigation of the effects of particle diameter and particle-particle interactions on jet penetration characteristics in a Gas–Solid fluidized bed with a central Jet[J]. Flow, Turbulence and Combustion, 2020, 105(3): 915-931.

[62]陈雅.综采工作面双尘源多场耦合模型及仿真模拟研究[D].北京:北京科技大学,2019.

[63]徐小奔.综采工作面煤岩截割产尘特征及影响因素研究[D].淮南:安徽理工大学,2020.

[64]魏伟.综掘工作面粉尘扩散与不同粒径粉尘的沉降规律研究[J].矿业安全与环保,2021,48(5):38-42.

[65]郝永江,郭玉峰,郭伟强,等.综放工作面转载破碎点粉尘分布特征研究[J].安全与环境学报,2021,21(2):562-569.

[66]桂长庚.综掘工作面气载粉尘扩散规律及控尘优化方法研究[D].北京:中国矿业大学,2021.

[67]张凯铭.综掘工作面粉尘运移规律与风幕控尘除尘技术研究[D].西安:西安科技大学,2020.

[68]江静枝.基于光散射法的颗粒浓度检测系统研制[D].南京:东南大学,2018.

[69]刘天程.挟带粉体超声速喷管气体射流的数值模拟[D].杭州:浙江理工大学,2021.

[70]朱晓光.波形板式汽水分离器的仿真建模研究[D].哈尔滨:哈尔滨工程大学,2017.

[71]Pezzotti S, Mora V N, Andrés A S, et al. Experimental study of the magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104065.

[72]Kajiwara S. Evaluation of magnus force on check ball behavior in a hydraulic L shaped pipe[J]. Fluids, 2021, 6(5): 191-204.

[73]Moreno-Casas P A, Bombardelli F A. Computation of the basset force: recent advances and environmental flow applications[J]. Environmental Fluid Mechanics, 2016, 16(1): 193-208.

[74]孙铭阳,韦鲁滨,朱学帅,等.液固分选流化床内颗粒动力学方程的简化及应用[J].中南大学学报(自然科学版),2018,49(6):1307-1314.

[75]Krafcik A, Babinec P, Babincova M, et al. Importance of basset history force for the description of magnetically driven motion of magnetic particles in air[J]. Measurement Science Review, 2020, 20(2): 50-58.

[76]李超.STADS软件与FLUENT风压计算软件接口的设计与开发[D].北京:北京建筑大学,2020.

中图分类号:

 TD714.4    

开放日期:

 2022-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式