论文中文题名: | 砂卵石地层盾构施工中管片上浮控制技术研究 |
姓名: | |
学号: | 21204228104 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 - 土木水利 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 防灾减灾理论与技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-13 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Research on Segment Uplift Control Technology in Shield Tunneling through Sand and Gravel Strata |
论文中文关键词: | |
论文外文关键词: | shield tunnel ; Floating of pipe segments ; Slurry ratio test ; Numerical simulation ; Sand and Gravel strata |
论文中文摘要: |
盾构法因其高度的机械化和自动化以及对环境扰动小等优点,已经成为地铁隧道施工的主要技术。由于砂卵石地层结构松散,对扰动极为敏感,盾构在该地层掘进过程中,管片上浮尤其突出,而过度的上浮会导致管片开裂、错台和渗漏等多种结构问题。这类问题的发生,不仅给隧道防水带来隐患,而且还会影响工程质量以及后期运营安全。本文以西安地铁6号线砂卵石地层盾构隧道施工为背景,采用现场监测、室内试验及数值模拟相结合的方式,开展西安地区砂卵石地层盾构施工期管片上浮控制技术研究,主要工作及研究成果如下: (1)通过现场监测数据分析,得到管片上浮的基本规律。上浮过程可分为三阶段即初期激增段、过渡平缓段及末期稳定段,其中初期激增段为管片刚从盾尾脱离后的0至4环范围内,上浮量急剧增加,约占最终上浮总量的80%-90%;过渡平缓段位于4至12环,期间上浮位移缓慢而平稳,约占最终上浮总量的10%-20%;在末期稳定段,管片位置基本保持稳定,仅呈现微小的波动。 (2)系统分析管片受力状态,揭示了影响管片上浮的关键因素。将管片受到的上浮力分为由浆液浮力产生的静态上浮力和注浆压力引起的动态上浮力,推导出计算管片上浮力的理论公式。研究浆液的扩散过程,并将扩散过程分成:充填、渗透、压密和劈裂注浆4个阶段。 (3)通过正交试验方法进行了同步注浆浆液配比的试验,探究浆液中不同组分含量对其物理性能的影响规律。凝结时间、密度、固结收缩率和抗压强度被选为评估浆液抗浮性能的关键指标,利用极差分析法和方差分析法,进行了浆液配比的优化设计,最终确定的优化配比为水泥:粉煤灰:膨润土:细砂:水=240:410:50:600:350,有利于控制盾构隧道管片上浮。 (4)采用有限元仿真分析软件建立了该区域盾构隧道模型,经后处理获取管片上浮的相关数据并对此进行分析。研究结果表明:随着注浆压力的增加,管片的上浮量相应增大;当浆液弹性模量提高时,其压缩性下降,相应减小了管片的上浮空间和上浮量;浆液密度的提高虽然会增加上浮量,但影响较为有限;而增加的注浆层厚度会导致更大的上浮空间,从而增加上浮量。基于这些研究,提出了减少管片上浮的具体措施,并为后续工程实践提供指导。 |
论文外文摘要: |
The shield tunneling method, due to its high level of mechanization and automation, as well as minimal environmental disturbance, has become the predominant technology for subway tunnel construction. In gravelly sand strata, where the structure is loose and highly sensitive to disturbances, shield tunneling often results in significant floating of tunnel segments, especially notable during the excavation process. Excessive floating can lead to various structural issues, such as cracking, misalignment, and leakage of the segments. These problems not only pose risks to tunnel waterproofing but also affect the quality of the construction and the safety of future operations. This paper focuses on the construction of the shield tunnel in the gravelly sand strata of Xi'an Metro Line 6. It combines field monitoring, laboratory experiments, and numerical simulations to study the control technology for segment floating during shield tunneling in the Xi'an area. The main work and findings are as follows; (1) Analysis of field monitoring data revealed the basic pattern of segment floating, which can be divided into three stages: an initial surge within the first 0 to 4 rings after the segment detaches from the shield tail, accounting for about 80% of the total floating; a transitional smooth phase from 4 to 12 rings, during which the floating displacement is slow and steady; and a final stable phase, where the segment position remains largely constant with only minor fluctuations; (2) A systematic analysis of the stress states of tunnel segments has revealed the key factors influencing segment floating. The floating forces acting on the segments are divided into static floating force, which is generated by the buoyancy of the slurry, and dynamic floating force, which is caused by grouting pressure. A theoretical formula for calculating the floating forces on the segments has been derived. The study also examines the diffusion process of the slurry, categorizing it into four stages: filling, permeation, compaction, and splitting grouting; (3) Orthogonal experiments were carried out to explore the physical properties of different slurry compositions through synchronous grouting tests. Key indicators for assessing the anti-floating performance of the slurry, such as setting time, density, shrinkage rate, and compressive strength, were evaluated using range analysis and variance analysis. The optimized slurry composition was determined to be cement : fly ash: bentonite: fine sand: water =240 : 410 :50 :600 :350 , which aids in controlling the floating of tunnel segments during shield construction; (4) Finite element simulation software was used to build a model of the shield tunnel in this region, and post-processing was performed to analyze data related to segment floating. The results indicate that segment floating increases with grouting pressure; a higher elastic modulus of the slurry reduces its compressibility, thereby decreasing both the floating space and the amount of floating. Although an increase in slurry density slightly raises the floating amount, the impact is relatively limited. However, increasing the thickness of the grouting layer results in a larger floating space, thereby increasing the floating amount. Based on these findings, specific measures to reduce segment floating are proposed, providing guidance for subsequent engineering practices. |
参考文献: |
[1] 王赟.硬岩地区地铁隧道管片上浮机理及防治技术研究[J].铁道建筑技术,2022,No.357(12):170-173+206. [4] 谭章涛,刘东方,孙翠华等.富水承压地层盾构管片上浮规律及控制措施探讨[J].都市快轨交通,2022,35(06):137-144. [5] 苟长飞,叶飞,张金龙,刘燕鹏.盾构隧道同步注浆充填压力环向分布模型[J].岩土工程学报,2013,35(03):590-598. [6] 王新,李庭平,王印昌.软土大直径泥水盾构隧道施工期上浮的控制措施[J].隧道建设,2014,34(12):1168-1174. [8] 吉冰冰,许文明,马振世,翁厚洋.软土地层中隧道上浮分析及控制[J].中国市政工程,2015(04):75-78+104. [9] 王道远,袁金秀,朱永全,等.软土盾构隧道施工阶段上浮计算模型探讨[J].现代隧道技术,2018,55(1):154-161. [10] 魏纲,洪杰,魏新江.盾构隧道施工阶段管片上浮的力学分析[J].岩石力学与工程学报,2012,31(6):1257-1263. [11] 岳诚东,寇佳泰.大断面盾构隧道管片上浮原因与纠正措施研究[J].城市建设理论研究(电子版),2022,No.424(34):70-72. [12] 潘茁,付秀勇,江华.大直径泥水盾构穿越海河管片上浮控制问题探究[C].中国盾构技术学术研讨会,2011. [13] 朱令,丁文其,杨波.壁后注浆引起盾构隧道上浮对结构的影响[J].岩石力学与工程学报,2012,31(s1):3377-3382. [14] 刘智,钟长平.超大直径泥水盾构管片上浮原因分析及对策[J].广东土木与建筑,2022,29(11):52-55+68. [15] 施有志,阮建凑,林树枝.海底盾构隧道管片上浮分析及控制研究[J].地下空间与工程学报,2022,18(05):1665-1677. [16] 杨永强,武金城.盾构隧道管片上浮原因分析及主要控制措施[C].施工技术杂志社,亚太建设科技信息研究院有限公司. [17] 沈林冲,钟小春,秦建设,闵凡路.钱塘江盾构越江隧道最小覆土厚度的确定[J].岩土力学,2011,32(1):111-115. [18] 马蕾,韩玉琪,倪静,汤俊杰,李林.浅埋大直径盾构隧道施工期衬砌上浮及地表隆起的模型研究[J].隧道建设(中英文),2019,39(s1):194-201. [21] 孙谋,谭忠盛.盾构法修建水下隧道的关键技术问题[J].中国工程科学,2009,11(07):18-23. [22] 李云丽.盾构隧道施工过程管片结构受力特征研究[D].北京交通大学,2008. [24] 胡辉,张恒,刘晓迪,等.泥岩地层盾构隧道施工管片上浮影响因素分析[J].公路,2018,63(12):312 -318. [26] 王成,王国义.盾构隧道同步注浆新型双液注浆材料的研究与应用[J].隧道建设,2017,37(04):416-420. [28] 张海涛.盾构同步注浆材料试验及隧道上浮控制技术[D].同济大学,2007. [30] 殷明伦,张阳玉,王睿.某软土地层盾构隧道管片上浮事故分析[J].市政技术,2014,32(05):70-72+82.[2017-09-11]. [33] 阮文军. 注浆扩散与浆液若干基本性能研究[J]. 岩土工程学报, 2005, 27(1): 69-73. [34] 张莎莎,戴志仁,白云.盾构隧道同步注浆浆液压力分布规律模型试验研究[J].中国铁道科学,2015, 36(5): 43-53. [35] 韩月旺,钟小春,虞兴福.盾构壁后注浆体变形及压力消散特性试验研究[J].地下空间与工程学报,2007(6): 1142-1147. [36] 李利平,李术才,张庆松,等.一种新型高分子注浆材料的试验研究[J].岩石力学与工程学报,2010,29(增1):3150-3155. [37] 舒计城.超大直径盾构双液注浆试验及应用效果[J].铁道建筑,2022,62(05):117-122. [38] 侯永茂,彭加强,龚晓南等.同步注浆浆液抗浮性能试验研究[J].地基处理,2019,1(01):53-56. [39] 杨宏波,曹耀东,崔学军等.盾构新型轻质浆液配合比研究及应用[J].隧道建设(中英文),2021,41(04):554-560. [40] 杨方勤,段创峰,吴华柒,袁勇.上海长江隧道抗浮模型试验与理论研究[J].地下空间与工程学报,2010,6(3):454-459. [41] 张君,赵林,周佳媚等.盾构隧道管片上浮的机制研究[J].铁道标准设计,2016,60(10):88-93. [42] 董赛帅,杨平,姜春阳等.盾构隧道管片上浮机理与控制分析[J].地下空间与工程学报,2016,12(01):49-54. [44] 张强.盾构隧道通缝拼装管片的上浮和错台研究[D].上海交通大学,2007. [45] 张海波,殷宗泽,朱俊高,等.盾构法隧道衬砌施工阶段受力特性的三维有限元模拟[J].岩土力学, 2005(06):990-994. [46] 陈仁朋,刘源,刘声向,等.盾构隧道管片施工期上浮特性[J].浙江大学学报(工学版),2014,48(06):1068-1074. [47] 刘源.盾构掘进载荷特性及管片施工期上浮规律研究[D].浙江大学,2013. [48] 宋克志,袁大军,王梦恕.盾构法隧道施工阶段管片的力学分析[J].岩土力学, 2008, No.147(03):619-623+628. [49] 赵晋.盾构隧道管片位移因素分析及控制措施研究[D].西南交通大学,2015. [50] 艾国平,陈刚,刘维正等.富水硬岩地层盾构管片上浮机理及控制对策[J].现代交通技术,2021,18(04):71-76. [51] 黄仁东.金浩,蒙水儒.基于理想点法的盾构隧道管片上浮致伤诊断[J].中国安全科学学报,2013,23(1):48-54. [52] 赵文,王钊宇,李建强,孙海霞.盾构隧道施工中上浮管片的受力分布研究[C].第八届海峡两岸隧道与地下工程学术与技术研讨会,2009. [53] 余群舟,孙乐胜,周诚等.盾构掘进富水硬岩地层管片上浮控制[J].土木工程与管理学报,2022,39(01):61-67. [54] 王其炎,杨建辉,薛永利,陈自海.盾构在软土地层掘进过程中的管片上浮研究[J].现代隧道技术,2014,(1):144-152. [55] 舒瑶,周顺华,季昌,徐润泽,黄钟晖.多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J].岩石力学与工程学报,2017,36(s1):3464-3474. [56] 王道远,袁金秀,朱正国,朱永全.水下盾构隧道纵向上浮理论解及工程应用[J].岩土力学,2014,35(11):3079-3085. [59] 施有志,王晨飞,赵花丽,等.海底盾构隧道掘进过程数值模拟研究[J].工程地质学报,2021,29(06):1887-1897. [63] 吴薪柳,刘惠敏.地铁盾构隧道下穿停机坪的地表沉降研究[J].石家庄铁道大学学报(自然科学版),2013,26(S2):81-84. [64] 叶俊能,周顺华,季昌,等.软土地区类矩形盾构隧道施工期变形规律[J].现代隧道技术,2016,(S1):254-262. [65] 王新强,晏启祥,孙明辉等.盾构隧道同步注浆对管片上浮的影响分析[J].铁道建筑,2022,62(02):118-122. [66] 傅鹤林,史越,陈俐光,等.盾构隧道施工期管片上浮机理数值模拟研宄[J],中外公路,2019,39(01);174-179. [68] 陈自海.软土地层中盾构施工参数对管片上浮的影响研究[D].浙江:浙江工业大学,2013. [69] 艾国平,陈刚,刘维正,等.富水硬岩地层盾构管片上浮机理及控制对策[J].现代交通技术,2021,18(04):71-76. [70] 苟长飞.盾构隧道壁后注浆浆液扩散机理研究[D].[硕士学位论文].西安:长安大学,2013. [71] 叶飞,王斌,韩鑫,等.盾构隧道壁后注浆试验与浆液扩散机理研究进展[J].中国公路学报,2020,33(12):92-104. |
中图分类号: | U455 |
开放日期: | 2024-06-13 |