- 无标题文档
查看论文信息

论文中文题名:

 应变与缺陷调控二硫化钼基异质结 的光电性能研究    

姓名:

 靳鑫文    

学号:

 22201223074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 电子信息学    

研究方向:

 光电信息工程    

第一导师姓名:

 解忧    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王素芳    

论文提交日期:

 2025-06-26    

论文答辩日期:

 2025-05-30    

论文外文题名:

 Strain and Defect manipulating the optoelectronic properties of two dimensional heterostructures based on molybdenum disulfide    

论文中文关键词:

 MoS2基异质结 ; 电子结构 ; 光学性质 ; 太阳能转化效率 ; 光电流 ; 第一性原理    

论文外文关键词:

 MoS2-based heterostructures ; Electronic structure ; Optical properties ; Solar energy conversion efficiency ; Photocurrent ; First-principles    

论文中文摘要:

过渡金属硫族化物作为后石墨烯时代最具潜力的二维材料研究热点之一,因其丰富的物理性质比如半导体性、半金属性等而受到广泛关注。作为过渡金属硫族化物的典型代表,二硫化钼(MoS2)凭借其卓越的化学稳定性、机械强度、大比表面积、高空穴迁移率及接近理论极限的亚阈值摆幅,在光电子器件、磁性纳米材料、电化学能源存储与太阳能转换等领域展现出巨大潜力。二维光电探测器在灵敏度、响应速度、波长选择性以及可集成性等方面的研究取得了重要进展,但在材料稳定性、器件性能优化和大规模制备等方面仍面临诸多挑战,限制了其在光电领域的广泛应用。因此,构建范德华异质结成为改善二维材料物理化学性能、拓展其应用范围的有效途径。纵向异质结通过垂直堆叠不同二维材料形成原子级界面耦合,可协同调控层间电荷传输、激子动力学及自旋相互作用等物理过程,为材料体系引入新颖的物理化学特性。横向异质结(面内键合型)因较强的相互作用,使二维材料呈现独特的物理及化学特性,在光电器件领域展现出广阔的应用潜力。然而,二维异质结在制备或者使用过程中,不可避免会出现材料缺陷或者应力应变,其存在形式与分布状态对器件性能具有决定性影响。因此,通过缺陷与应变工程,可实现局域电子结构的精准调制,有效调控载流子迁移率,对开发低噪声光电探测器、高灵敏度光响应器件具有重要意义。

本文聚焦MoS2基异质结,从应变、构型及空位缺陷三个角度展开深入探讨。采用基于密度泛函理论的第一性原理计算方法,研究双轴应变对纵向MoS2/BC6N异质结的电子结构、光学性质和太阳能转化效率的影响。构建对称接触与非对称接触沿扶手椅形和锯齿形方向MoS2/BC6N异质结构的光电器件,利用非平衡格林函数方法,探究了其伏安特性以及线偏振光作用下的光电流强度。搭建横向MoS2/VSe2异质结,引入单原子Se、S、V、Mo空位以及双原子V和Se、Mo和S、2Se、2S、2V、2Mo空位,探究MoS2/VSe2光电探测器的光吸收率和光生电流效应。研究结果不仅揭示了MoS2基异质结的物理性能调控机制,还通过应变、接触构型和缺陷工程等多维度调控策略,为开发新型高效的电子和光电器件提供了理论基础。主要研究内容与结果如下:

(1)系统研究了新型MoS2/BC6N范德华异质结在–8%至8%双轴应变下的太阳能转换效率、电子结构和光学性质。半导体MoS2/BC6N异质结具有间接带隙(1.02 eV)和II型能带。MoS2/BC6N的带隙随着拉伸应变增加减小到0.57 eV,随着压缩应变增加而增大到1.57 eV;当应变超过–4%时,能带类型向由II型转变为I型,呈现直接带隙。MoS2/BC6N异质结在可见光和紫外区均有较强的光吸收,最大吸收峰随拉伸应变增加产生红移,随压缩应变增加产生蓝移。本征MoS2/BC6N异质结的太阳能转换效率(PCE)为11.5%;其PCE随压缩应变增大而逐渐增大,随拉伸应变增大而减小。在应变为4%、2%、–2%和–4%时,PCE分别为5.6%、8.0%、16.1%和22.8%。因此,双轴应变可以有效地调制MoS2/BC6N异质结的电子结构、光学性质和PCE。MoS2/BC6N异质结优异的光学性能和超高的PCE,表明它们在光伏器件中应用潜力巨大。

(2)进一步构建了对称和非对称的MoS2/BC6N范德华异质结光电器件,通过第一性原理和非平衡格林函数方法,深入探讨其伏安特性曲线和光电流的产生机制,研究对称与非对称结构对器件性能的影响规律,旨在发掘其在新型光电器件中实现高光电导增益的潜力。研究发现,光生电流的大小同时受入射光的偏振率和光子能量的影响。在施加–1至+1 V电压范围内,对称电极结构的光电流比非对称电极结构的光电流高出一个数量级。沿锯齿形方向对称电极的MoS2/BC6N异质结在开关装置中适用性更强,电流迅速响应,随电压增加而线性增长,能有效提升开关速度及器件性能。MoS2/BC6N异质结在扶手椅方向展现出较高的光电流,相比对称电极,非对称电极能产生更高且明显变化的光电流,表明非对称电极在扶手椅形方向对光信号具有优异的响应速度和灵敏度。不对称接触扶手椅形方向MoS2/BC6N异质结非常适合开发高性能光电器件,在光学调制器中具有非凡潜力。

(3)通过构建MoS2/VSe2横向异质结,系统地分析了该异质结在本征状态及单原子、双原子空位缺陷状态下的光吸收特性,并评估了其在线偏振光照射下的光生电流效应。MoS2/VSe2异质结具有较高的本征光吸收率,且可通过引入空位缺陷来调节其在不同能量范围内的光吸收。在单原子和双原子空位调控下,MoS2/VSe2的吸收峰分别出现红移和蓝移现象。空位的引入进一步降低了材料的结构对称性,导致光电流的变化,包括反向光电流的产生和相位偏移现象。单原子空位的引入使光电流整体下降,而含Se的双空位则有效阻碍了电子-空穴的复合,增强了光电流。适当的空位缺陷可以显著提高消光比。因此MoS2/VSe2异质结光电探测器在光检测方面表现出较高的偏振灵敏度,在开发高响应度的偏振光检测设备领域展现巨大应用潜力。

 

论文外文摘要:

Transition metal chalcogenides, as one of the most promising research hotspots in the post-graphene era of two-dimensional materials, have attracted widespread attention due to their rich physical properties, such as semiconducting and semimetallic behaviors. As a typical representative of transition metal chalcogenides, MoS2 has demonstrated great potential in various fields, including optoelectronic devices, magnetic nanomaterials, electrochemical energy storage, and solar energy conversion, owing to its excellent chemical stability, mechanical strength, large specific surface area, high hole mobility, and subthreshold swing close to the theoretical limit. Significant progress has been made in the research of two-dimensional photodetectors in terms of sensitivity, response speed, wavelength selectivity, and integrability. However, challenges in material stability, device performance optimization, and large-scale fabrication still persist, limiting their widespread application in the optoelectronic field. Therefore, constructing van der Waals heterostructures has emerged as an effective strategy to improve the physicochemical properties of two-dimensional materials and expand their application scope. Vertical heterostructures, formed by vertically stacking different two-dimensional materials, enable atomic-level interfacial coupling, which allows for the synergistic modulation of interlayer charge transport, exciton dynamics, and spin interactions, introducing novel physicochemical properties to the material system. Lateral heterostructures (in-plane bonded type), due to stronger interlayer interactions, exhibit unique physical and chemical properties, showing great potential in optoelectronic devices. However, during the fabrication or usage of two-dimensional heterostructures, material defects or strain inevitably occur. The form and distribution of these defects and strain play a decisive role in device performance. Consequently, defect and strain engineering can achieve precise modulation of the local electronic structure, effectively tuning carrier mobility, which is of great significance for the development of low-noise photodetectors and high-sensitivity light-responsive devices.

This paper focuses on MoS2-based heterostructures and conducts an in-depth discussion from three perspectives: strain, configuration, and vacancy defects. By employing the first-principles calculation method based on density functional theory, the effects of biaxial strain on the electronic structure, optical properties, and solar energy conversion efficiency of the longitudinal MoS2/BC6N heterostructure are investigated. Optoelectronic devices of symmetric and asymmetric contacts along the armchair and zigzag directions of MoS2/BC6N heterostructures are constructed. Using the non-equilibrium Green's function method, their current-voltage characteristics and photovoltaic response under linearly polarized light illumination are explored. Additionally, a lateral MoS2/VSe2 heterostructure is fabricated, and single-atom vacancies of Se, S, V, and Mo, as well as diatomic vacancies such as V and Se, Mo and S, 2Se, 2S, 2V, and 2Mo, are introduced to investigate the light absorption rate and photogenerated current effects of the MoS2/VSe2 photodetector. The research findings not only reveal the physical performance regulation mechanisms of MoS2-based heterostructures but also provide a theoretical basis for the development of novel and efficient electronic and optoelectronic devices through multi-dimensional regulation strategies, including strain engineering, contact configuration design, and defect engineering. The main research contents and results are as follows:

(1) The power conversion efficiency (PCE), electronic structures, and optical properties of a novel MoS2/BC6N van der Waals heterostructure (vdWH) were systematically investigated under different biaxial strains ranging from –8% to 8% by first-principles density functional theory calculations. The semiconductive MoS2/BC6N vdWH exhibited indirect bandgap (1.02 eV) with type-II band alignment. The bandgap of the MoS2/BC6N vdWH decreased to 0.57 eV with increasing tensile strain, and increased to 1.57 eV with increasing compressive strain. When the strain exceeded –4%, the band alignment of the vdWH transformed from type-II to type-I, exhibiting a direct bandgap. Strong optical absorption of the MoS2/BC6N vdWH was observed in the visible and ultraviolet regions. The maximum absorption peak produced a redshift with increasing tensile strain and a blueshift as increasing compressive strain. The PCE of the intrinsic MoS2/BC6N vdWH was 11.5%, which gradually increased with increasing compressive strain but decreased with increasing tensile strain, that is, PCEs of 5.6%, 8.0%, 16.1%, and 22.8% for strain of 4%, 2%, –2%, and –4%, respectively. Therefore, the biaxial strain can effectively modulate the electronic structures, optical properties, and PCE of MoS2/BC6N vdWH. Moreover, their excellent optical properties and ultrahigh PCE indicate their significant potential for use in photovoltaic devices.

(2) We further constructed symmetric and asymmetric MoS2/BC6N van der Waals heterostructure photonic devices. By employing first-principles calculations and the non-equilibrium Green's function method, we conducted an in-depth investigation into their current-voltage (I-V) characteristics and the mechanisms of photocurrent generation. The study explored the influence of symmetric and asymmetric structures on the performance of the devices, aiming to uncover their potential for achieving high photoconductivity gain in novel photonic applications. The research findings reveal that the magnitude of the photocurrent is influenced by both the polarization rate of the incident light and the photon energy. Within the applied voltage range of –1 to +1 V, the photocurrent of the device with a symmetric electrode structure is one order of magnitude higher than that of the device with an asymmetric electrode structure. The MoS2/BC6N heterostructure with symmetric electrodes along the armchair direction exhibits stronger applicability in switching devices, with rapid current response and linear growth as the voltage increases, effectively enhancing the switching speed and device performance. The MoS2/BC6N heterostructure in the zigzag direction demonstrates higher photocurrents. Compared to symmetric electrodes, asymmetric electrodes generate higher and more pronounced photocurrents, indicating that asymmetric electrodes exhibit excellent response speed and sensitivity to optical signals in the zigzag direction. Asymmetric-contact MoS2/BC6N heterostructure in the zigzag direction are highly suitable for the development of high-performance photonic devices and hold extraordinary potential in optical modulators.

(3) By constructing a MoS2/VSe2 lateral heterostructure, the photovoltaic absorption properties of the heterostructure in its intrinsic state, as well as under single-atom and double-atom vacancy defect states, were systematically analyzed. Additionally, the photogenerated current effect under linearly polarized light illumination was evaluated. The MoS2/VSe2 heterostructure exhibits a high intrinsic absorption rate, and its light absorption in different energy ranges can be tuned by introducing vacancy defects. Under single-atom and double-atom vacancy modulation, the absorption peaks of MoS2/VSe2 exhibit redshift and blueshift phenomena, respectively. The introduction of vacancies further reduces the structural symmetry of the material, leading to changes in the photovoltaic current, including the generation of reverse photovoltaic current and phase shift phenomena. The introduction of single-atom vacancies generally reduces the photovoltaic current, while the presence of Se-containing double vacancies effectively suppresses electron-hole recombination, thereby enhancing the photovoltaic current. Appropriate vacancy defects can significantly improve the extinction ratio. Therefore, the MoS2/VSe2 heterostructure based photodetector demonstrates high polarization sensitivity in light detection, showcasing great potential for the development of high-response polarized light detection devices. 

参考文献:

[1] Chen L Y, Sun T, Zhang T J, et al. Modulating the band alignment, carrier mobility and optical absorption of graphene/MoS2 heterostructure via synergistic effects of doping and strain [J]. Surfaces and Interfaces, 2024, 46: 104024.

[2] Miró P, Ghorbani‐Asl M, Heine T. Two dimensional materials beyond MoS2: noble‐transition‐metal dichalcogenides [J]. Angewandte Chemie International Edition, 2014, 53(11): 3015-3018.

[3] Niu S, Cai J, Wang G. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation [J]. Nano Research, 2021, 14: 1985-2002.

[4] Zhang Y, Zhang R, Guo Y, et al. A review on MoS2 structure, preparation, energy storage applications and challenges [J]. Journal of Alloys and Compounds, 2024, 998: 174916.

[5] Wang V, Tang G, Liu Y-C, et al. High-throughput computational screening of two-dimensional semiconductors [J]. The Journal of Physical Chemistry Letters, 2022, 13(50): 11581-11594.

[6] Choudhary N, Park J, Hwang J Y, et al. Growth of large-scale and thickness-modulated MoS2 nanosheets [J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21215-21222.

[7] Hussain S, Singh J, Vikraman D, et al. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method [J]. Scientific Reports, 2016, 6(1): 30791.

[8] Jeon W, Cho Y, Jo S, et al. Wafer‐Scale Synthesis of Reliable High‐Mobility Molybdenum Disulfide Thin Films via Inhibitor‐Utilizing Atomic Layer Deposition [J]. Advanced Materials, 2017, 29(47): 1703031.

[9] Abbas O A, Zeimpekis I, Wang H, et al. Solution-based synthesis of few-layer WS2 large area continuous films for electronic applications [J]. Scientific Reports, 2020, 10(1): 1696.

[10] Xu J, Shao G, Tang X, et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution [J]. Nature Communications, 2022, 13(1): 2193.

[11] Lei Z, Zhan J, Tang L, et al. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage [J]. Advanced Energy Materials, 2018, 8(19): 1703482.

[12] Xu X, Robertson S J, Yang T, et al. Interfacial space charge design with desired electron density to enhance sodium storage of MoS2@ Nb2O5 anode [J]. Nano Energy, 2024, 127: 109739.

[13] Wang H, Li C, Fang P, et al. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures [J]. Chemical Society Reviews, 2018, 47(16): 6101-6127.

[14] Matsui K, Oda S, Yoshiura K, et al. Correction to “One-Shot Multiple Borylation toward BN-Doped Nanographenes” [J]. Journal of the American Chemical Society, 2018, 140 (4), 1195−1198.

[15] Liu X, Ma X, Gao H, et al. Valley-selective circular dichroism and high carrier mobility of graphene-like BC6N [J]. Nanoscale, 2018, 10(27): 13179-13186.

[16] Mortazavi B, Shahrokhi M, Raeisi M, et al. Outstanding strength, optical characteristics and thermal conductivity of graphene-like BC3 and BC6N semiconductors [J]. Carbon, 2019, 149: 733-742.

[17] Muthaiah R, Garg J. Ultrahigh thermal conductivity in hexagonal BC6N-An efficient material for nanoscale thermal management-A first principles study [J]. Computational Materials Science, 2021, 200: 110773.

[18] Abdullah N R, Abdullah B J, Tang C S, et al. Properties of BC6N monolayer derived by first-principle computation: Influences of interactions between dopant atoms on thermoelectric and optical properties [J]. Materials Science Semiconductor Processing, 2021, 135: 106073.

[19] Ahmadi S, Raeisi M, Eslami L, et al. Thermoelectric Characteristics of Two-Dimensional Structures for Three Different Lattice Compounds of B-C-N and Graphene Counterpart BX (X = P, As, and Sb) Systems [J]. Journal of Physical Chemistry C, 2021, 125(27): 14525-14537.

[20] Shi L B, Yang M, Cao S, et al. Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations [J]. Journal Materials Chemistry C, 2020, 8(17): 5882-5893.

[21] Abdullah N R, Rashid H O, Tang C S, et al. Modeling electronic, mechanical, optical and thermal properties of graphene-like BC6N materials: Role of prominent BN-bonds [J]. Physics Letters A, 2020, 384(32): 126807.

[22] Jiang X, Luo X. BC6N monolayer as a potential VOC adsorbent in mitigation of environmental pollution: a theoretical perspective [J]. ACS omega, 2023, 8(49): 46841-46850.

[23] Alghamdi N M, Fadlallah M M, Al-Qahtani H M, et al. Electronic and Molecular Adsorption Properties of Pt-Doped BC6N: An Ab-Initio Investigation [J]. Nanomaterials, 2024, 14(9): 762.

[24] Yu J, He C, Huo J, et al. Electric field controlled CO2 capture and activation on BC6N monolayers: A first-principles study [J]. Surfaces and Interfaces, 2022, 30: 101885.

[25] Karmakar S, Pillai A A, Dutta S. Pristine BC6N monolayer as highly efficient reversible hydrogen storage material under ambient temperature and pressure [J]. International Journal of Hydrogen Energy, 2024, 53: 193-199.

[26] Aasi A, Mehdi Aghaei S, Panchapakesan B. Outstanding performance of transition-metal-decorated single-layer graphene-like BC6N nanosheets for disease biomarker detection in human breath [J]. ACS omega, 2021, 6(7): 4696-4707.

[27] Mortazavi B. Ultrahigh thermal conductivity and strength in direct-gap semiconducting graphene-like BC6N: A first-principles and classical investigation [J]. Carbon, 2021, 182: 373-383.

[28] Li D, Wang X, Kan C-m, et al. Structural Phase Transition of Multilayer VSe₂ [J]. ACS Applied. Materials & Interfaces, 2020, 12(22): 25143–25149.

[29] Davoudiniya M, Sanyal B. Tuning of spin-transfer torque in VSe2 -based vdW magnetic tunnel junctions by electrode polytypes [J]. npj 2D Materials and Applications, 2025,9: 40.

[30] Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates [J]. Nature Nanotechnology, 2018, 13(4): 289-293.

[31] Zhu T, O’Hara D J, Noesges B A, et al. Coherent growth and characterization of van der Waals 1 T-VSe2 layers on GaAs (111) B using molecular beam epitaxy [J]. Physical Review Materials, 2020, 4(8): 084002.

[32] Liu H, Bao L, Zhou Z, et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2 [J]. Nano Letters, 2019, 19(7): 4551-4559.

[33] Ming F, Liang H, Lei Y, et al. Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance [J]. Nano Energy, 2018, 53: 11-16.

[34] Luo C, Huang Z, Qiao H, et al. Valleytronics in two-dimensional magnetic materials [J]. Journal of Physics: Materials, 2024, 7(2): 022006.

[35] Ci W, Yang H, Xue W, et al. Thickness-dependent and strain-tunable magnetism in two-dimensional van der Waals VSe2 [J]. Nano Research, 2022, 15(8): 7597-7603.

[36] Yang J-Y, Gao J-J, Wang W-W, et al. Optoelectrical properties and back contact characteristic of VSe2 thin films [J]. Journal of Inorganic Materials, 2013, 28(3): 312-316.

[37] Wang B, Han H, Yu L, et al. Generation and dynamics of soliton and soliton molecules from a VSe2/GO-based fiber laser [J]. Nanophotonics, 2021, 11(1): 129-137.

[38] Lv M-H, Li C-M, Sun W-F. Spin-orbit coupling and spin-polarized electronic structures of Janus vanadium-dichalcogenide monolayers: First-principles calculations [J]. Nanomaterials, 2022, 12(3): 382.

[39] Kim B, Lee S, Park J-H. Innovations of metallic contacts on semiconducting 2D transition metal dichalcogenides toward advanced 3D-structured field-effect transistors [J]. Nanoscale Horizons, 2024,9(9):1417-1431.

[40] Yang J, Luo J, Kuang Y, et al. Exploring the Efficient Na/K Storage Mechanism and Vacancy Defect-Boosted Li⁺ Diffusion Based on VSe2/MoSe2 Heterostructure Engineering [J]. ACS Applied Materials & Interfaces, 2021, 13, 1, 2072–2080

[41] Liu X, Chen H, Li Y, et al. Controllable spin rectification behavior of vertical and lateral VSe2/WSe2 heterojunction Schottky diodes [J]. Physical Chemistry Chemical Physics, 2025, 27(4): 2083-2089.

[42] Xu H, Xu S, Xu X, et al. Recent advances in two-dimensional van der Waals magnets [J]. Microstructures, 2022, 2, 2022011.

[43] Tang Jia-Xin L Z-H, Deng Xiao-Qing, Zhang Zhen-Hua. Electrical contact characteristics and regulatory effects of GaN/VSe2 van der Waals heterojunction [J]. Acta Physica Sinica, 2023, 72 (16) , 167101.

[44] Mahajan V, Sharma N K, Adhikari R, et al. Effect of biaxial strain on electronic and optical properties of vertically stacked HfS2/HfSe2 heterostructures [J]. Physica Scripta, 2024, 99(4): 045925.

[45] Zhao J, Qi Y, Yao C, et al. Modulating the electronic properties and band alignments of the arsenene/MoSi2N4 van der Waals heterostructure via applying strain and electric field [J]. Physical Chemistry Chemical Physics, 2023, 25(48): 33023-33030.

[46] Jun-Ling L, Yu-Jie B, Ning X, et al. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure [J]. ACTA PHYSICA SINICA, 2024, 73(13): 137103.

[47] Tang H, Tan C, Yang H, et al. Tunable electronic and optical properties of the WS2/IGZO heterostructure via an external electric field and strain: a theoretical study [J]. Physical Chemistry Chemical Physics, 2019, 21(27): 14713-14721.

[48] Yu X, Li Y, He R, et al. Mechanical regulation to interfacial thermal transport in GaN/diamond heterostructures for thermal switch [J]. Nanoscale Horizons, 2024, 9(9): 1557-1567.

[49] Zhang Y, Jiang H-H, Luo Y-H, et al. Defect-control electron transport behavior of gallium nitride/silicon nonplanar-structure heterojunction [J]. Journal of Physics D: Applied Physics, 2022, 55(36): 364003.

[50] Lei W, Zhou R, Zhuang F, et al. Electric field and strain tuned the electronic and optical properties of Zr2CO2/MoSe2 van der Waals heterojunction [J]. Physica E: Low-dimensional Systems and Nanostructures, 2024, 162: 116006.

[51] Sorkin V, Zhou H, Yu Z G, et al. The effects of point defect type, location, and density on the Schottky barrier height of Au/MoS2 heterojunction: a first-principles study [J]. Scientific Reports, 2022, 12(1): 18001.

[52] Azarov A, Venkatachalapathy V, Mei Z, et al. Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: Zinc vacancy energetics [J]. Physical Review B, 2016, 94(19): 195208.

[53] Liu L, Mei Z, Tang A, et al. Oxygen vacancies: The origin of n-type conductivity in ZnO [J]. Physical Review B, 2016, 93(23): 235305.

[54] Hrytsak R, Kempisty P, Grzanka E, et al. Modeling of the point defect migration across the AlN/GaN interfaces—Ab initio study [J]. Materials, 2022, 15(2): 478.

[55] Siwakoti P. Effects of Structure, Crystallographic Orientation, and Dimensionality on Emergent Properties of Transition Metal Oxide Thin Films [M]. Louisiana State University and Agricultural & Mechanical College,  2021. 29704300.

[56] Liu J, Zhang S, Qu D, et al. Defects-Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption [J]. Nano-Micro Letters, 2025, 17(1): 24.

[57] Wang X, Wang X, Huang J, et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution [J]. Nature Communications, 2021, 12(1): 4112.

[58] Li J, Yang H, Wu J, et al. Harnessing the defects at hetero‐interface of transition metal compounds for advanced charge storage: a review [J]. Small Structures, 2022, 3(9): 2200022.

[59] Irfan M, Ehsan S A, Pang W, et al. Bandgap engineering and tuning of optoelectronic properties of 2D NbSe2/MoS2 heterostructure using first principle computations [J]. Physica Scripta, 2023, 99(1): 015928.

[60] Qi J, Li Q, Huang M, et al. First-principles investigation of Boron-doped graphene/MoS2 heterostructure as a potential anode material for Mg-ion battery [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 132998.

[61] Cui Z, Wu H, Bai K, et al. Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation [J]. Physica E: Low-dimensional Systems and Nanostructures, 2022, 144: 115361.

[62] Wang T, Qi Y, Li M, et al. First-principles study of penta-graphene/MoS2 vdW heterostructure as anode material for lithium-ion batteries [J]. Diamond and Related Materials, 2023, 136: 109928.

[63] Cai X, Jia X, Liu Y, et al. Enhanced carrier mobility and tunable electronic properties in α-tellurene monolayer via an α-tellurene and h-BN heterostructure [J]. Physical Chemistry Chemical Physics, 2020, 22(11): 6434-6440.

[64] Tian K, Li M, Li T, et al. Modulation of contact type in BAs/Hf3C2 heterostructure via surface functionalization and strain [J]. Materials Today Communications, 2023, 37: 107192.

[65] Guan Y, Cheng Y, Cheng Z, et al. Effects of atom doping on the electronic and magnetic properties of BAs/WSe2 heterostructure [J]. Materials Today Communications, 2023, 37: 107108.

[66] Liu J, Ma N, Wu W, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses [J]. Chemical Engineering Journal, 2020, 393: 124719.

[67] Liu B, Long M, Cai M, et al. Interfacial charge behavior modulation in 2D/3D perovskite heterostructure for potential high-performance solar cells [J]. Nano Energy, 2019, 59: 715-720.

[68] Chala S, Sengouga N, Yakuphanoğlu F, et al. Extraction of ZnO thin film parameters for modeling a ZnO/Si solar cell [J]. Energy, 2018, 164: 871-880.

[69] Vasilopoulou M, Soultati A, Filippatos P-P, et al. Charge transport materials for mesoscopic perovskite solar cells [J]. Journal of Materials Chemistry C, 2022, 10(31): 11063-11104.

[70] Liu J, Wu X, Xie Y, et al. Tuning electronic structures and optical properties of graphene/phosphorene heterostructure via electric field [J]. Micro and Nanostructures, 2022, 164: 107184.

[71] Jiang N N, Xie Y, Wang S F, et al. Electronic structure and carrier mobility of BC6N/BN van der Waals heterostructure induced by in-plane strains [J]. Applied Surface Science, 2023, 623: 157007.

[72] Liang T, Hu C, Lou M, et al. High carrier mobility and controllable electronic property of the h-BN/SnSe2 heterostructure [J]. Langmuir, 2023, 39(31): 10769-10778.

[73] Li Z, Ma S, Jiao Z. Influence of S vacancy and O doping in MoS2/GaN heterostructure on charge carrier dynamics: A time-domain ab initio study [J]. Physica E: Low-dimensional Systems and Nanostructures, 2024, 156: 115860.

[74] Zheng H, Fan J, Chen A, et al. Enhancing Solar-Driven Water Purification by Multiscale Biomimetic Evaporators Featuring Lamellar MoS2/GO Heterojunctions [J]. ACS nano, 2024, 18(4): 3115–3124.

[75] Enebral-Romero E, Gutiérrez-Gálvez L, Del Caño R, et al. Pathogen sensing device based on 2D MoS2/graphene heterostructure [J]. Sensors and Actuators B: Chemical, 2023, 392: 134105.

[76] Tu J, Lei X, Li P. Strain-induced ultrahigh power conversion efficiency in BP-MoSe2 vdW heterostructure [J]. Nanotechnology, 2022, 34(8): 085403.

[77] Cui Z, Yang K, Shen Y, et al. WS2 and WSSe bilayer with excellent carrier mobility and power conversion efficiency [J]. Materials Science in Semiconductor Processing, 2023, 167: 107820.

[78] Li S, Zhang C, Wang C, et al. First principles study on the electronic structure and optical properties of Janus WSeTe with defects and strains [J]. Physica E: Low-dimensional Systems and Nanostructures, 2024, (163): 116030.

[79] Taghinejad H, Taghinejad M, Eftekhar A A, et al. Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides [J]. ACS Nano, 2020, 14(5): 6323-6330.

[80] Xie Y, Jiang N-N, Han W, et al. Electric field tunable electronic structures and ultrahigh power conversion efficiency of BC6N/MoSe2 van der Waals heterostructure: A promising material for high-efficiency solar cell applications [J]. Journal of Physics and Chemistry of Solids, 2024, 192: 112067.

[81] Wang G, Guo Z, Chen C, et al. Exploring a high-carrier-mobility black phosphorus/MoSe2 heterostructure for high-efficiency thin film solar cells [J]. Solar Energy, 2022, 236: 576-585.

[82] Mohanta M K, De Sarkar A. Interfacial hybridization of Janus MoSSe and BX (X= P, As) monolayers for ultrathin excitonic solar cells, nanopiezotronics and low-power memory devices [J]. Nanoscale, 2020, 12(44): 22645-22657.

[83] Zhou B, Cui A, Gao L, et al. Enhancement effects of interlayer orbital hybridization in Janus MoSSe and tellurene heterostructures for photovoltaic applications [J]. Physical Review Materials, 2021, 5(12): 125404.

[84] He X, Deng X, Sun L, et al. Electronic and optical properties and device applications for antimonene/WS2 van der Waals heterostructure [J]. Applied Surface Science, 2022, 578: 151844.

[85] Liu Y L, Shi Y, Yang C L. Two-dimensional MoSSe/g-GeC van der waals heterostructure as promising multifunctional system for solar energy conversion [J]. Applied Surface Science, 2021, 545: 148952.

[86] Lin S, Wang P, Li X, et al. Gate tunable monolayer MoS2/InP heterostructure solar cells [J]. Applied Physics Letters, 2015,107: 153904.

[87] Ali M H, Al Mamun M A, Haque M D, et al. Performance enhancement of an MoS2-based heterojunction solar cell with an In2Te3 back surface field: a numerical simulation approach [J]. ACS Omega, 2023, 8(7): 7017-7029.

[88] Saeed M A, Faizan M, Kim T H, et al. Phase-engineered two-dimensional MoO3/MoS2 hybrid nanostructures enable efficient indoor organic photovoltaics [J]. Journal of Materials Chemistry A, 2023, 11(40): 21828-21838.

[89] Li Y, Cai C, Sun B, et al. Novel electronic properties of 2D MoS2/TiO2 van der Waals heterostructure [J]. Semiconductor Science and Technology, 2017, 32(10): 105011.

[90] Zeng P, Wang W, Han D, et al. MoS2/WSe2 vdW heterostructures decorated with PbS quantum dots for the development of high-performance photovoltaic and broadband photodiodes [J]. ACS Nano, 2022, 16(6): 9329-9338.

[91] Beshir B T, Obodo K O, Asres G A. Janus transition metal dichalcogenides in combination with MoS2 for high-efficiency photovoltaic applications: a DFT study [J]. RSC advances, 2022, 12(22): 13749-13755.

[92] Matsui K, Oda S, Yoshiura K, et al. One-shot multiple borylation toward BN-doped nanographenes [J]. Journal of the American Chemical Society, 2018, 140(4): 1195-1198.

[93] Han W, Xie Y, Song Y L, et al. Effect of tensile strain on the electronic structure, optical absorptivity, and power conversion efficiency of the BC6N/ZnO van der Waals heterostructure [J]. Physica E: Low-dimensional Systems and Nanostructures, 2024, 158: 115908.

[94] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169.

[95] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865.

[96] Heyd J, Scuseria G E. Assessment and validation of a screened Coulomb hybrid density functional [J]. The Journal of Chemical Physics, 2004, 120(16): 7274-7280.

[97] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758.

[98] Bucko T, Hafner J, Lebègue S, et al. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections [J]. The Journal of Physical Chemistry A, 2010, 114(43): 11814-11824.

[99] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188.

[100] Kumar A, Ahluwalia P. A first principle comparative study of electronic and optical properties of 1H–MoS2 and 2H–MoS2 [J]. Materials Chemistry and Physics, 2012, 135(2-3): 755-761.

[101] Liang J, Ai Q, Wen X, et al. Strong interlayer coupling and long-lived interlayer excitons in two-dimensional perovskite derivatives and transition metal dichalcogenides van der Waals heterostructures [J]. Materials Today, 2024, 74: 77-84.

[102] Dean C R, Wang L, Maher P, et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire´ superlattices [J]. Nature, 2013, 497: 598-602.

[103] Cazalilla M, Ochoa H, Guinea F. Quantum spin Hall effect in two-dimensional crystals of transition-metal dichalcogenides [J]. Physical Review Letters, 2014, 113(7): 077201.

[104] Cao L, Wu Q, Ang Y S, et al. Tunable band alignment in boron carbon nitride and blue phosphorene van der Waals heterostructure [J]. Nano Express, 2020, 1(2): 020021.

[105] Alsubaie F, Muraykhan M, Zhang L, et al. Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material [J]. Frontiers of Physics, 2024, 19(1): 13201.

[106] Wei D, Li Y, Feng Z, et al. Electronic and optical properties of 3N-doped graphdiyne/MoS2 heterostructures tuned by biaxial strain and external electric field [J]. Chinese Physics B, 2021, 30(11): 117103.

[107] Wang S F, Liang J, Xue D, et al. Synergistic effects of uniaxial strain and vacancy defect on the mechanical and magnetic properties of the C3N monolayer [J]. Materials Today Communications, 2023, 37: 107295.

[108] Sukhanova E V, Popov Z I. Band alignment type I, II transformations in Hf2CO2/MoS2 heterostructures using biaxial strain, external electric field, and interlayer coupling: a first principal investigation [J]. Physical Chemistry Chemical Physics, 2023, 25(46): 32062-32070.

[109] Xia R, Peng Y, Fang L, et al. Electrical field and biaxial strain tunable electronic properties of the PtSe2/Hf2CO2 heterostructure [J]. RSC Advances, 2023, 13(38): 26812-26821.

[110] Zhang Q, Chen P, Liu Q, et al. Tunable electronic structures in C3N/WSe2 van der Waals heterostructure by biaxial strain and external electric field [J]. The European Physical Journal Plus, 2023, 138(11): 976.

[111] Hou L L, Li J H, Cui C C, et al. Biaxial strain tunable electronic properties, photocatalytic properties and quantum capacitance of Sc2CO2 MXenes [J]. Vacuum, 2023, 212: 112016.

[112] Rezania H, Nourian E, Abdi M, et al. Biaxial strain and magnetic field effects on electronic and optical properties of β-graphyne structure [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2024, 158: 115905.

[113] Liu J, Du C, Zou L. Electronic and optical properties of of GaSe/ZnSe vdW heterojunction as photocatalyst by biaxial strain: A DFT study [J]. Chemical Physics Letters, 2023, 814: 140333.

[114] Liu C, Dai Z, Hou J, et al. Tunable electronic and optical properties of GeC/g-C3N4 vdWH by electric field and biaxial strain [J]. Journal of Physics and Chemistry of Solids, 2024, 185: 111782.

[115] Liang T, Tian Y, Dai Z, et al. Dual in-plane/out-of-plane Ni2P-BP/MoS2 Mott-Schottky heterostructure for highly efficient hydrogen production [J]. Journal of Alloys and Compounds, 2023, 965: 171416.

[116] Rodin A, Carvalho A, Neto A C. Strain-induced gap modification in black phosphorus [J]. Physical Review Letters, 2014, 112(17): 176801.

[117] Cui Z, Ren K, Zhao Y, et al. Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides [J]. Applied Surface Science, 2019, 492: 513-519.

[118] Wang V, Xu N, Liu J-C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Computer Physics Communications, 2021, 267: 108033.

[119] Luo Y, Wang S, Shu H, et al. A MoSSe/blue phosphorene vdw heterostructure with energy conversion efficiency of 19.9% for photocatalytic water splitting [J]. Semiconductor Science and Technology, 2020, 35(12): 125008.

[120] Linghu J, Yang T, Luo Y, et al. High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells [J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32142-32150.

[121] Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells [J]. Science, 2022, 376(6591): 416-420.

[122] Kaur S, Kumar A, Srivastava S, et al. Monolayer, bilayer, and heterostructures of green phosphorene for water splitting and photovoltaics [J]. The Journal of Physical Chemistry C, 2018, 122(45): 26032-26038.

[123] Dalsaniya M H, Gajaria T K, Som N N, et al. Type-II GeAs/GaSe heterostructure as suitable candidate for solar power conversion efficiency [J]. Solar Energy, 2021, 223: 87-99.

[124] Mao Y, Xu C, Yuan J, et al. A two-dimensional GeSe/SnSe heterostructure for high performance thin-film solar cells [J]. Journal of Materials Chemistry A, 2019, 7(18): 11265-11271.

[125] Liang K, Huang T, Yang K, et al. Dipole Engineering of Two-Dimensional van der Waals Heterostructures for Enhanced Power-Conversion Efficiency: The Case of Janus Ga2SeTe/InS [J]. Physical Review Applied, 2021, 16(5): 054043.

[126] Kadantsev E S, Hawrylak P. Electronic structure of a single MoS2 monolayer [J]. Solid State Communications, 2012, 152(10): 909-913.

[127] Liang X, Tang X, Zhao Y, et al. High energy region formation with increased electron density located on the MoS2 layer within MoS2/Gr heterostructure induced by C60 decoration [J]. Surfaces and Interfaces, 2023, 41: 103237.

[128] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.

[129] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271-1275.

[130] Li H, Zhang Y, Du W, et al. Point-defect improved photogalvanic effect in Janus WSSe monolayer [J]. Materials Today Communications, 2022, 33: 104680.

[131] Shi L-B, Yang M, Cao S, et al. Prediction of high carrier mobility for a novel two-dimensional semiconductor of BC6N: first principles calculations [J]. Journal of Materials Chemistry C, 2020, 8(17): 5882-5893.

[132] Karmakar S, Dutta S. Strain-tuneable photocatalytic ability of BC6N monolayer: A first principle study [J]. Computational Materials Science, 2022, 202: 111002.

[133] Abdullah N R, Abdullah B J, Tang C-S, et al. Properties of BC6N monolayer derived by first-principle computation: Influences of interactions between dopant atoms on thermoelectric and optical properties [J]. Materials Science in Semiconductor Processing, 2021, 135: 106073.

[134] Abdullah N R, Rashid H O, Tang C-S, et al. Modeling electronic, mechanical, optical and thermal properties of graphene-like BC6N materials: Role of prominent BN-bonds [J]. Physics Letters A, 2020, 384(32): 126807.

[135] Ahmadi S, Raeisi M, Eslami L, et al. Thermoelectric characteristics of two-dimensional structures for three different lattice compounds of B–C–N and graphene counterpart BX (X= P, As, and Sb) systems [J]. The Journal of Physical Chemistry C, 2021, 125(27): 14525-14537.

[136] Yu J, Jin Y, Hu M, et al. BC6N as a promising sulfur host material for lithium-sulfur batteries [J]. Applied Surface Science, 2022, 577: 151843.

[137] Wang W, Gao S-S, Meng Y. Tuning carrier confinement in the MoS2/WS2 heterostructure [J]. Superlattices and Microstructures, 2015, 88: 12-17.

[138] Cui Z, Wang H, Shen Y, et al. MoSe2 and WSSe heterojunction with exceptional power conversion efficiency and photogalvanic effect [J]. Materials Today Physics, 2024, 40: 101317.

[139] Xiao Y, He S, Fan X, et al. Realizing enhanced photoresponse for self-powered broadband photodetector with asymmetric contacts based MoTe2/WSe2 van der Waals heterostructure [J]. Journal of Alloys and Compounds, 2024, 1006: 176358.

[140] Liu C, Cui Z, Zhang S, et al. High sensitivity photodetectors of PtS2/AlN and PtSe2/AlN heterostructures [J]. Journal of Physics and Chemistry of Solids, 2024, 194: 112255.

[141] Li S, Lei T, Yan Z, et al. High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect [J]. Chinese Physics B, 2024, 33(1): 018501.

[142] Wang H, Cui Z, Li E, et al. Heterojunction photoelectric device with fast response speed and low power consumption composed of WSSe and AlN [J]. Journal of Physics: Condensed Matter, 2024, 36(48): 485701.

[143] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices [J]. Physical Review B, 2001, 63(24): 245407.

[144] Waldron D, Haney P, Larade B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions [J]. Physical Review Letters, 2006, 96(16): 166804.

[145] Henrickson L E. Nonequilibrium photocurrent modeling in resonant tunneling photodetectors [J]. Journal of Applied Physics, 2002, 91(10): 6273-6281.

[146] Belinicher V I, Sturman B I. The photogalvanic effect in media lacking a center ofsymmetry [J]. Soviet Physics Uspekhi, 1980, 23(3): 199.

[147] Ganichev S, Ketterl H, Prettl W, et al. Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells [J]. Applied Physics Letters, 2000, 77(20): 3146-3148.

[148] Wang Y, Cui Z, Zhang C. Vertical heterojunction photodetector of In2Se3/PtS2 with high polarization sensitivity and tunable electronic characteristics [J]. Materials Today Communications, 2024, 40: 109857.

[149] Hao J, Wu J, Wang D, et al. High‐Sensitivity Polarized Light Detector of 2D WS2/Mo2CF2 Van Der Waals Heterostructure [J]. Physica Status Solidi (a), 2023, 220(6): 2200686.

[150] Cui Z, Gao X, Zhang S, et al. High carrier mobility and polarization sensitivity of AlN/Hf2CO2 heterojunction photodetector [J]. Chinese Journal of Physics, 2024, 91: 421-431.

[151] Xu Z, Luo B, Chen M, et al. Enhanced photogalvanic effects in the two-dimensional WTe2 monolayer by vacancy-and substitution-doping [J]. Applied Surface Science, 2021, 548: 148751.

[152] Fu X, Lin J, Cheng X, et al. Enhanced photogalvanic effect in the B3C2P3 photodetector by vacancy, substitution-doping and interstitial atom [J]. Materials Today Communications, 2023, 35: 106175.

[153] Remskar M, Skraba Z, Cleton F, et al. MoS2 as microtubes [J]. Applied physics Letters, 1996, 69(3): 351-353.

[154] Ma J-J, Zheng J-J, Zhu X-L, et al. First-principles calculations of thermal transport properties in MoS2/MoSe2 bilayer heterostructure [J]. Physical Chemistry Chemical Physics, 2019, 21(20): 10442-10448.

[155] Saini H, Jyothirmai M, Waghmare U V, et al. Role of van der Waals interaction in enhancing the photon absorption capability of the MoS2/2D heterostructure [J]. Physical Chemistry Chemical Physics, 2020, 22(5): 2775-2782.

[156] Luo W-M, Shao Z-G, Yang M. Photogalvanic Effect in Nitrogen-Doped Monolayer MoS2 from First Principles [J]. Nanoscale Research Letters, 2019, 14: 1-8.

[157] Liu P-P, Shao Z-G, Luo W-M, et al. Photogalvanic effect in chromium-doped monolayer MoS2 from first principles [J]. Physica E: Low-dimensional Systems and Nanostructures, 2021, 128: 114577.

[158] Liu J, Hou W-J, Cheng C, et al. Intrinsic valley polarization of magnetic VSe2 monolayers [J]. Journal of Physics: Condensed Matter, 2017, 29(25): 255501.

[159] Hossain M, Zhang H, Huangfu Y, et al. 2D metallic vanadium dichalcogenides and related heterostructures [J]. Materials Today Advances, 2024, 21: 100451.

[160] Li D, Wang X, Kan C-m, et al. Structural phase transition of multilayer VSe2 [J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25143-25149.

[161] Zhou J, Qiao J, Duan C-G, et al. Large tunneling magnetoresistance in VSe2/MoS2 magnetic tunnel junction [J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17647-17653.

[162] Ortiz Jimenez V, Pham Y T H, Liu M, et al. Light‐controlled room temperature ferromagnetism in vanadium‐doped tungsten disulfide semiconducting monolayers [J]. Advanced Electronic Materials, 2021, 7(8): 2100030

中图分类号:

 TN36    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式