- 无标题文档
查看论文信息

题名:

 多尺度下地质灾害风险评价研究 —以宁陕县为例    

作者:

 叶勇    

学号:

 21209226086    

保密级别:

 秘密    

语种:

 chi    

学科代码:

 085217    

学科:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2021    

学校:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 地质灾害风险调查    

导师姓名:

 王贵荣    

导师单位:

 西安科技大学    

提交日期:

 2024-06-27    

答辩日期:

 2024-06-06    

外文题名:

 Research on multi-scale geological hazard risk assessment: A case study of Ningshan County    

关键词:

 单体地质灾害风险评价 ; 滑坡形成机理 ; 颗粒流 ; 运动特征    

外文关键词:

 Geological hazard risk assessment ; slope unit ; landslide formation mechanism ; granular flow ; motion characteristics    

摘要:

地质灾害风险评价是近年来国内外工程地质领域研究的热难点之一。我国目前常见的地质灾害风险评价方法主要是基于县域-镇域大尺度的评价,其特点是效率较高,但得到的结论往往是区域性、普遍性的,不能就某具体单体地质灾害进行针对性分析,评价的精准性不够;而小尺度的单体地质灾害风险评价具有相对精准的优点,有利于提高地质灾害防治措施的针对性、有效性,但目前开展相对较少。本文以宁陕县城关镇为例,将集镇区域风险评价和单体风险评价相结合,探索多尺度地质灾害风险评价的新途径、新方法。本文取得研究成果如下:

(1)根据镇域地质灾害风险调查和影响因素分析,选取坡度、坡向、坡高、坡型、地层岩性、植被覆盖指数、河流缓冲区、道路缓冲区、断层缓冲区、切坡高度等10个影响因子作为宁陕县集镇地质灾害风险分析的指标,采用综合指数法构建了研究区地质灾害风险分析的方法、流程并进行了风险区划,划分出高风险斜坡单元4个,中风险斜坡单元61个,低风险斜坡单元108个,使镇域风险区划更为精准。

(2)以镇域内卫生小区210国道内侧滑坡为研究对象,采用GeoStudio软件进行稳定性分析评价,得出该滑坡在滑前的稳定性为不稳定,滑后的稳定性为基本稳定,进一步验证了该软件分析的可靠性。基于SIGMA/W与SEEP/W耦合的数值模拟结果表明:随着降雨强度增大,滑坡孔隙水压力升高明显,体积含水量由坡底向坡面逐渐增大,坡体有效应力从深层至表层逐渐减小,土体的抗剪强度受到影响从而导致土体逐步失稳从而引发滑坡灾害,进一步证明了降雨对滑坡形成的影响。

(3)采用PFC3D软件对卫生小区210国道内侧滑坡进行颗粒流运动模拟,得到了相应的运动特征参数:卫生小区210国道内侧滑坡模型运行共30s,最大距离为54m,最大速度为3.67m/s。根据运动速度分布和运动特征,将滑坡整个运动过程分为滑移启动、滑动加速、滑后稳定三个阶段。整体运动能量主要变化为重力势能转换为动能、摩擦耗能、房屋冲击动能、应变能等,共消耗重力势能1.89×1010J,动能最大值达3.63×107J,能量主要消耗为颗粒间摩擦耗能以及滑体对房屋冲击动能,分别占45.87%与44.89%,证明滑坡对房屋具有较大的破坏性。

(4)依据滑坡灾害风险估算经验公式计算,确定了卫生小区210国道内侧滑坡影响范围以及风险程度,结果表明该滑坡在当前已发生滑移的状态下财产风险和人员风险极高,需要采取相应防治措施以减轻人员财产风险。

外文摘要:

Geological hazard risk assessment has always been one of the difficulties in the field of engineering geology at home and abroad. At present, the common geological hazard risk assessment methods in China are mainly based on large-scale, such as county-town area, and the conclusions obtained are often universal and efficient, which are more suitable for local conditions, but can not be targeted for a specific geological disaster analysis. The single geological hazard risk assessment has the advantages of precision and more clear prevention and control measures. In this paper, the multi-scale geological hazard risk assessment of Ningshan County town area is studied. The main results are as follows:

(1) The slope unit of set of towns in Ningshan County was established, and 10 influencing factors including slope, slope direction, slope height, slope type, stratigraphic lithology, vegetation cover index, river buffer zone, road buffer zone, fault buffer zone and cut slope height were selected as the index system for geological hazard risk analysis in the study area through geological hazard risk investigation and analysis of influencing factors. The method and process of geological hazard risk analysis in the study area were established and risk zoning was carried out, including 4 high-risk slope units, 61 medium-risk slope units and 108 low-risk slope units.

(2) Taking the landslide measured inside National Highway 210 in the health district as the research object, the stability analysis of the landslide is carried out, and the stability of the landslide before and after sliding is unstable and basically stable, respectively. The numerical simulation results based on the coupling of SIGMA/W and SEEP/W show that with the increase of rainfall intensity, the pore water pressure of landslide increases significantly, the volumetric water content gradually increases from the slope bottom to the slope surface, and the effective stress of slope body gradually decreases from the deep layer to the surface layer, which affects the shear strength of soil mass and leads to the gradual instability of soil mass, resulting in landslide disaster.

(3) The particle flow motion simulation of the landslide measured on National Highway 210 in the health district was carried out by PFC3D and the corresponding physico-mechanical characteristic parameters were obtained, and the results showed that: the model of the landslide measured on National Highway 210 in the health district ran for a total of 30s with the maximum distance of 54m, located at the front edge of the landslide at National Highway G210, and the maximum velocity was 3.67m/s. According to the distribution of the motion velocity and the motion characteristics, the whole motion of the landslide was divided into three stages: occurrence of slip, acceleration of slip, and stabilization of the landslide. process is divided into three stages: occurrence of slip, slip acceleration, and landslide stabilization. The overall movement energy is mainly converted from gravitational potential energy to kinetic energy, friction dissipation energy, kinetic energy of house impact, strain energy, etc. The total consumption of gravitational potential energy is 1. 89×1010J, and the maximum value of kinetic energy reaches 3. 63×107J, which is mainly consumed as the friction dissipation energy between particles and the kinetic energy of the slide body's impact on the house, which account for 45.87% and 44.89%, respectively.

(4) According to the maximum slip distance, the influence range of landslide measured inside National Highway 210 in the health district was determined, the temporal and spatial probability of landslide was determined, the landslide risk was calculated and quantitative evaluation was carried out. The results showed that the property risk and personnel risk of the landslide were extremely high in the current state of slip, and timely prevention and control measures were needed to mitigate the risk.

参考文献:

[1] 史玲, 吕涛. 地质灾害风险评价与风险管理[J]. 四川建材, 2017, 43(6): 73-74.

[2] 向喜琼, 黄润秋. 地质灾害风险评价与风险管理[J]. 地质灾害与环境保护, 2000(1): 38-41.

[3] 杨顺安, 晏同珍. 预测滑坡学概要[J]. 中国地质灾害与防治学报, 1998(S1): 4-9.

[4] 陈涛. 滑坡引发的次生与衍生灾害危险性评估研究[D]. 宁波大学, 2013.

[5] 黄润秋, 向喜琼, 巨能攀. 我国区域地质灾害评价的现状及问题[J]. 地质通报, 2004(11): 1078-1082.

[6] Wang Q, Li W, Chen W, et al. GIS-based assessment of landslide susceptibility using certainty factor and index of entropy models for the Qianyang County of Baoji city, China[J]. Journal of Earth System Science, 2015, 124(7): 1399-1415.

[7] Zhao X, Chen W. Optimization of Computational Intelligence Models for Landslide Susceptibility Evaluation[J]. Remote Sensing, 2020, 12(14): 2180.

[8] Pham B T, Prakash I. A Novel Hybrid Intelligent Approach of Random Subspace Ensemble and Reduced Error Pruning Trees for Landslide Susceptibility Modeling: A Case Study at Mu Cang Chai District, Yen Bai Province, Viet Nam[J]. 2018.

[9] Mathew J, Jha V K, Rawat G S. Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India[J]. International Journal of Remote Sensing, 2007, 28(10): 2257-2275.

[10] Mathew J, Jha V K, Rawat G S. Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method[J]. Landslides, 2009, 6(1): 17-26.

[11] Binh Thai Pham, Dieu Tien Bui, Hamid Reza Pourghasemi, et al. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods[J]. Theoretical and Applied Climatology, 2017.

[12] Chen W, Shirzadi A, Shahabi H, et al. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China[J]. Geomatics, Natural Hazards and Risk, 2017.

[13] Sadighi M, Motamedvaziri B, Ahmadi H, et al. Assessing landslide susceptibility using machine learning models: a comparison between ANN, ANFIS, and ANFIS-ICA[J]. Environmental Earth Sciences, 2020, 79(24): 1-14.

[14] Liu T L Yanyan. Susceptibility mapping of damming landslide based on slope unit using frequency ratio model[J]. Arabian journal of geosciences, 2020, 13(16).

[15] Lee J H, Sameen M I, Pradhan B, et al. Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods[J]. Geomorphology, 2018.

[16] Zhou, Chao, Yin, et al. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China[J]. Computers & Geosciences, 2018.

[17] 孙冉, 王成都, 夏哲兵, 等. 基于AHP-信息量法的费县地质灾害风险评价[J]. 环境科学与技术, 2015, 38(S1): 430-435.

[18] 李巍林. 基于AHP-信息量法的柳林县地质灾害风险评价及风险管控研究[D]. 河北地质大学, 2023.

[19] 史少斌. 基于叠加赋权与信息量模型的地质灾害风险评估[D]. 长安大学, 2023.

[20] 王磊, 常鸣, 邢月龙. 基于信息量法模型与GIS的滑坡地质灾害风险性评价[J]. 地质灾害与环境保护, 2021, 32(2): 14-20.

[21] 李军, 阮凡, 李东明. 信息量法在凤冈县重点区地质灾害风险评价中的应用[J]. 世界有色金属, 2021(14): 190-191.

[22] 唐辉明. 重大滑坡预测预报研究进展与展望[J]. 地质科技通报: 1-13.

[23] 杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报, 2022, 41(2): 228-238.

[24] 黄发明, 胡松雁, 闫学涯, 等. 基于机器学习的滑坡易发性预测建模及其主控因子识别[J]. 地质科技通报, 2022, 41(2): 79-90.

[25] 董佳慧, 牛瑞卿, 亓梦茹, 等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报, 2022, 41(2): 187-196.

[26] 张抒, 唐辉明, 龚文平, 等. 基于物理力学机制的滑坡数值预报模式:综述、挑战与机遇[J]. 地质科技通报, 2022, 41(6): 14-27.

[27] Clague J J, Souther J G. The Dusty Creek landslide on Mount Cayley, British Columbia[J]. Can. J. Earth Sci., 1982.

[28] Hewitt K. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan[J]. 1998, 26(1-3): 0-80.

[29] Kobayashi Y. Effect of basal guided waves on landslides[J]. pure and applied geophysics, 1994, 142(2): 329-346.

[30] 方玉树. 超大型滑坡动力学问题研究[J]. 水文地质工程地质, 1988(6): 20-24.

[31] 廖小平, 徐峻龄, 郑静. 高速远程滑坡的动力分析和运动模拟[J]. 中国地质灾害与防治学报, 1993(2): 28-32.

[32] 程谦恭, 胡厚田, 胡广韬, 等. 高速岩质滑坡撞击弹落冲击夯实成坝的动力学机理[J]. 岩石力学与工程学报, 2000(1): 43-46.

[33] 方华, 崔鹏. 汶川地震大型高速远程滑坡力学机理及控制因子分析[J]. 灾害学, 2010, 25(S1): 120-126+130.

[34] Chang C, Bo J, Qi W H, et al. Study on instability and damage of a loess slope under strong ground motion by numerical simulation[J]. Soil dynamics and earthquake engineering, 2022(Jan.): 152.

[35] Yang T, Rao Y, Chen H, et al. Failure Characteristics and Mechanism of Multiface Slopes under Earthquake Load Based on PFC Method[J]. Shock and Vibration, 2021, 2021: e9329734.

[36] Wang X, Xiao L, Zhao J, et al. Correction to: Analysis of the formation mechanism of a landslide in the lacustrine sediment of the Diexi ancient dammed lake in the upper reaches of the Minjiang River[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8): 1-1.

[37] Yang C, Shi W, Peng X, et al. Numerical simulation of layered anti-inclined mining slopes based on different free face characteristics[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 1-17.

[38] Liu H D, Chen J X, Han W X, et al. Centrifuge Model Tests and Numerical Simulations of the Landslide Evolution Process[J]. KSCE Journal of Civil Engineering, 2022, 26(6): 2588-2599.

[39] 冯兴波, 奚悦, 宋丹青, 等. 基于PFC2D岩石颗粒破碎强度和能量的分形模型[J]. 工程地质学报, 2016, 24(4): 629-634.

[40] 万江. 基于PFC2D边坡失稳破坏研究[J]. 施工技术, 2016, 45(S2): 92-94.

[41] 王培涛, 杨天鸿, 朱立凯, 等. 基于PFC2D岩质边坡稳定性分析的强度折减法[J]. 东北大学学报(自然科学版), 2013, 34(1): 127-130.

[42] 谷东京, 李建林, 黄宜胜. 基于PFC数值模拟的土石混合体剪切特性研究[J]. 人民长江, 2022, 53(7): 193-200.

[43] 李启月, 孙丽. 基于颗粒流法的岩石断裂韧度确定[J]. 科技导报, 2012, 30(22): 55-59.

[44] 赵洲, 魏江波. 基于颗粒流方法的滑坡破坏机理与强度分析[J]. 西安科技大学学报, 2018, 38(4): 611-619.

[45] 胡丁文. 倾倒式崩塌PFC数值模拟研究[J]. 价值工程, 2023, 42(3): 145-147.

[46] 白雪松. 双湖峪滑坡机理及其运动特征预测研究[D]. 西安科技大学, 2022.

[47] 陈兴. 陕南堆积层滑坡运动特征及致灾强度预测研究[D]. 西安科技大学, 2022.

[48] 罗浩. 鸡场镇滑坡成因机制与碎屑流运动特征研究[D]. 成都理工大学, 2023.

[49] 王文睿. 建筑抗震设计: GB50011-2010[M]. 建筑抗震设计: GB50011-2010, 2011.

[50] 中国地震动参数区划图: GB 18306-2015[M]. 国内-国家标准-国家市场监督管理总局 CN-GB, 2015.

[51] 郑小乐, 王鹏, 潘宏彬. 安康市宁陕县地质灾害风险调查评价报告[R]. 西安: 陕西核工业工程勘察院有限公司, 2021.

[52] 毛军. 评价单元对山地村镇区域建设用地适宜性评价影响的研究[D]. 重庆大学, 2016.

[53] 黄启乐, 陈伟, 唐绪波, 等. 区域地质灾害评价中斜坡单元划分方法研究[J]. 自然灾害学报, 2017, 26(5): 157-164.

[54] 罗江. 地质灾害易发性评价研究[J]. 江西建材, 2023(11): 196-197+202.

[55] 兰盈盈, 郭昶成, 朱云福. 地质灾害易发性评价方法综述[J]. 地质与资源, 2024, 33(1): 65-73.

[56] 程飞, 邓良, 陈俊, 等. 基于遗传算法优化信息量法的地灾易发性评价[J]. 地矿测绘, 2023, 39(3): 1-6+22.

[57] 黄佳星, 丁园军, 欧阳东波. 基于综合指数法在地质灾害易发性评价中的应用[J]. 中国金属通报, 2023(11): 132-134.

[58] 翟文华, 王小东, 吴明堂, 等. 基于频率比模型和随机森林模型耦合的地质灾害易发性评价[J]. 自然灾害学报, 2023, 32(6): 74-82.

[59] 彭军. 基于层次分析法的地质灾害易发性评价[J]. 世界有色金属, 2022(21): 205-207.

[60] 王成楠, 宋勇, 赵影, 等. 基于加权信息量法和逻辑回归信息量法的定南县地质灾害易发性评价[C]//2023江西地学进展. 江西省地质学会, 2023: 15.

[61] 殷跃平. 地质灾害风险调查评价方法与应用实践[J]. 中国地质灾害与防治学报, 2022, 33(4): 5-6.

[62] 邓猛聪, 王昕, 吴尚纯, 等. 受试者工作特征曲线(ROC曲线)的应用分析[J]. 中国计划生育学杂志, 2024, 32(2): 467-473.

[63] 李仲秋, 薛志峰. 森林火灾经济损失风险评价[J]. 森林防火, 2013(4): 39-42.

[64] 张立春, 禹燕生. 基于Geostudio的露天矿山边坡的稳定性分析[J]. 水泥工程, 2023(4): 74-77.

[65] 张伍, 童柳华. 基于GeoStudio的小岭后滑坡稳定性分析[J]. 陕西水利, 2023(10): 115-117+120.

[66] 温永福, 王凤春, 韩超, 等. 基于GeoStudio南运河冲刷作用下谢家坝稳定性分析[J]. 河北水利电力学院学报, 2023, 33(2): 63-69.

[67] 王艳昆, 温韬, 王鲁琦, 等. GeoStudio与FLAC3D互馈的库岸滑坡多场信息模拟方法[J]. 土木与环境工程学报(中英文): 1-9.

[68] 本社. GB500212001岩土工程勘察规范(2009年版)[M]. GB500212001岩土工程勘察规范(2009年版), 2009.

[69] 赵尚毅, 时卫民, 郑颖人. 边坡稳定性分析的有限元法[J]. 地下空间, 2001(S1): 450-454+589.

[70] 杨涛, 黄国东, 谢江伟, 等. 滑坡稳定性分析的点安全系数计算方法[J]. 工程地质学报: 1-10.

[71] 刘云鹏. 土壤结构的分形特征及土壤水分运动模型研究[D]. 西北农林科技大学, 2002.

[72] 张泽铭, 张翠翠, 侯红运, 等. 《降水量等级》(GB/T 28592—2012)应用实例[J]. 现代农业科技, 2016(19): 223+226.

[73] 赵鹏飞. 粗粒土颗粒多点接触下的破碎研究[D]. 大连理工大学, 2023.

[74] 张崇帅. 考虑球体颗粒胶结的三维颗粒流模拟研究[D]. 西安理工大学, 2019.

[75] 智斌. 基于PFC3D的土体渗透破坏数值模拟[D]. 中国地质大学(北京), 2017.

[76] 刘艺梁, 陈健翔, 高晨曦, 等. 基于滑面分区段力学模型的高速滑坡运动过程能量转化研究[J]. 地质科技通报, 2022, 41(2): 139-146.

[77] 刘福臻, 王灵, 肖东升, 等. 基于模糊综合评判法的宁南县滑坡易发性评价[J]. 自然灾害学报, 2021, 30(5): 237-246.

[78] 卢坤林. 基于极限平衡理论的土质边坡空间效应研究及应用[D]. 合肥工业大学, 2014.

[79] 凌云. 区域滑坡灾害风险分析的模糊评价方法研究[D]. 华北电力大学, 2013.

[80] 李红英, 谭跃虎. 滑坡灾害风险可接受准则计算模型研究[J]. 地下空间与工程学报, 2013, 9(S2): 2047-2052.

[81] 赵洲, 侯恩科. 中国地质灾害生命可接受风险标准研究[J]. 科技导报, 2011, 29(36): 17-22.

中图分类号:

 P642    

开放日期:

 2026-07-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式