- 无标题文档
查看论文信息

论文中文题名:

 柴家沟富油煤大分子模型构建及其热解分子模拟    

姓名:

 屈伸    

学号:

 21213225026    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 材料与化工    

研究方向:

 煤炭清洁利用    

第一导师姓名:

 杨志远    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-11    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Construction of macromolecular model of Chaijiagou oil-rich coal and its pyrolysis molecular simulation    

论文中文关键词:

 柴家沟富油煤 ; 小分子 ; 结构模型 ; 热解 ; 分子模拟    

论文外文关键词:

 Chaijiagou Oil-rich coal ; small molecules ; structural model ; Pyrolysis ; molecular simulation    

论文中文摘要:

我国能源的特点是“缺油、少气、富煤”,煤炭一直以来都作为我国重要的一次能源。煤是生产油气和高附加值化学品的重要原料,其中富油煤最大的特点是富含较多热解可生成油气的富氢结构,焦油产率较高,近年来获得了人们的广泛关注。实现富油煤资源的低碳高附加值利用,将是支持实现碳达峰,碳中和战略目标的重要举措。煤中的小分子物质是以游离或镶嵌的形式赋存在煤大分子结构中并且分子量低于500的有机化合物,其对富油煤的化学及物理性质有着重要影响。本论文基于实验研究结果,构建了柴家沟富油煤分子模型,借助分子模拟手段进一步探究不同小分子对富油煤热解的作用机制,旨在从分子层面上揭示富油煤热解产物机理,为富油煤的清洁利用提供一定的理论依据和技术支持。

本文以柴家沟富油煤作为研究对象,采用了N-甲基吡咯烷酮-二硫化碳(NMP-CS2)萃取和去离子水反萃取法分离了柴家沟富油煤中主要的小分子物质,采用正己烷、苯和四氢呋喃进行逐级萃取实现了不同类型小分子物质的组分分离,通过气相色谱质谱联用仪(GC/MS)分析了各级萃取物中小分子物质的组成,通过格金干馏仪研究了小分子物质萃取前后富油煤热解产物产率的变化。结果表明:NMP-CS2混合溶剂对柴家沟富油煤样进行萃取的最大萃取率为18%。煤中小分子物质主要包含脂肪烃类(7.63%)、芳烃类(21.11%)和杂原子类(71.26%)。随着柴家沟富油煤中小分子物质的去除,柴家沟富油煤热解的半焦产率最高下降了16.18wt.%,焦油产率最高下降了3.39wt.%。证实了小分子物质对柴家沟富油煤热解的半焦及焦油产率有明显影响。

使用13C 固体核磁共振仪(13C NMR)、傅里叶红外光谱仪(FTIR)、X射线光电子能谱技术(XPS)、X射线衍射仪(XRD)、高分辨率透射电子显微镜(HRTEM)等设备,结合工业分析、元素分析的结果,构建了柴家沟富油煤的大分子结构模型,通过对比模拟的核磁谱图与实验谱图调整其大分子结构。结果表明:柴家沟富油煤结构中芳香碳含量为0.66,芳香结构单元主要以苯、萘、蒽、菲等芳香基团为主;脂肪结构单元主要以侧链、环烷烃等结构为主;氧原子主要以羰基,醚氧或羟基键,羧基结构为主,三种官能团在柴家沟煤中的比值约为4:11:3;氮的存在形式主要为吡咯型氮和吡啶型氮。最终构建了与实际特征相匹配的柴家沟富油煤大分子结构模型(分子式为C180H152O24N2,分子量为2724),为从分子层面上研究柴家沟富油煤热解奠定了基础。

使用Materials Studio 2020(MS)软件,结合柴家沟富油煤萃取及GC/MS结果分析,对柴家沟富油煤大分子空间结构模型进行分子模拟,构建并优化了含有不同种类小分子的5种煤晶胞模型。

使用Amsterdam Modeling Suite(AMS)软件对5种煤晶胞模型进行了基于反应力场(Reax FF)的分子动力学模拟。

结果表明,随着热解温度的升高,小分子物质使热解模拟中的总分子数有明显增加;含烷烃及芳烃小分子的煤模型热解轻质焦油C5-C13组分的生成及焦油组分二次裂解的温度都更低;在2400K下含芳烃小分子的煤模型在热解过程中产生了更多的羟基及羧基自由基,使得生成了较多的H2O和CO2分子。随着热解温度的升高,含烷烃小分子物质煤模型热解重质焦油C14-C40的最大产率提高为1800K下的37.23wt.%,焦炭C40+的产率在2200K的转变温度下达到最低的53.88wt.%;在2400K温度下,含烷烃小分子物质的煤模型热解生成了较多的CH4及C2H4分子,含烷烃小分子物质煤模型热解程度最高,焦炭C40+产率为53.95wt.%。随着热解温度的升高,含杂原子小分子物质的煤模型热解产生的轻质焦油C5-C13产率在1800K下达到了5种煤模型中最高的18.8wt.%;在2400K温度下,含杂原子小分子物质煤模型热解产生的轻质焦油C5-C13组分分子数较高,C5-C13组分产率为5种模型中最高,达到了15.91wt.%。

论文外文摘要:

The characteristics of my country's energy resources are "lack of oil, little gas and rich in coal". Coal has always been an important primary energy source in our country. Coal is an important raw material for the production of oil and gas and high value-added chemicals. The biggest feature of oil-rich coal is that it contains more hydrogen-rich structures that can be pyrolyzed to generate oil and gas. It has a high tar yield and has attracted widespread attention in recent years. Achieving low-carbon and high-value-added utilization of oil-rich coal resources will be an important measure to support the realization of the strategic goal of carbon peaking and carbon neutrality. Small molecular substances in coal are organic compounds with a molecular weight less than 500 that exist in the macromolecular structure of coal in free or embedded forms. They have an important impact on the chemical and physical properties of oil-rich coal. Based on the experimental research results, this paper constructed a molecular model of Chaijiagou oil-rich coal and used molecular simulation methods to further explore the mechanism of different small molecules on the pyrolysis of oil-rich coal, aiming to reveal the pyrolysis products of oil-rich coal at the molecular level. mechanism, providing certain theoretical basis and technical support for the clean utilization of oil-rich coal.

This paper takes Chaijiagou oil-rich coal as the research object. N-Methylpyrrolidone-Carbon disulfide (NMP-CS2) extraction and deionized water back-extraction methods are used to separate the main small molecular substances in Chaijiagou oil-rich coal. n-hexane, benzene and tetrahydrofuran are used to carry out step-by-step The extraction achieved the component separation of different types of small molecule substances. The composition of small molecule substances in the extracts at all levels was tested by Gas Chromatograph Mass Spectrometer (GC/MS). The changes in the pyrolysis products of oil-rich coal before and after the extraction of small molecule substances were studied by the Gray-King carbonization apparatus. The results show that the maximum extraction rate of NMP-CS2 mixed solvent for oil-rich coal samples from Chaijiagou is 18%. Small molecular substances in coal mainly include aliphatic hydrocarbons (7.63%), aromatic hydrocarbons (21.11%) and heteroatoms (71.26%). With the removal of small molecular substances in Chaijiagou oil-rich coal, the semi-coke yield of Chaijiagou oil-rich coal pyrolysis dropped by up to 16.18wt.%, and the tar yield dropped by up to 3.39wt.%. It was confirmed that small molecular substances have a significant impact on the semi-coke and tar yields of Chaijiagou oil-rich coal pyrolysis.

Using 13C solid-state nuclear magnetic resonance (13C NMR), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), high-resolution transmission electron microscope (HRTEM) and other equipment, Combining the results of industrial analysis and elemental analysis, a macromolecular structure model of Chaijiagou oil-rich coal was constructed, and its macromolecular structure was adjusted by comparing the simulated NMR spectrum with the experimental spectrum. The results show that the aromatic carbon content in the structure of Chaijiagou oil-rich coal is 0.66. The aromatic structural units are mainly composed of benzene, naphthalene, anthracene, phenanthrene and other aromatic groups; the fatty structural units are mainly composed of side chains, cycloalkanes and other structures; Oxygen atoms are mainly carbonyl, ether oxygen or hydroxyl bonds, and carboxyl structures. The ratio of the three functional groups in Chaijiagou coal is about 4:11:3; nitrogen mainly exists in the form of pyrrole nitrogen and pyridine nitrogen. Finally, a macromolecular structure model of Chaijiagou oil-rich coal was constructed that matched the actual characteristics (molecular formula is C180H152O24N2, molecular weight is 2724), which laid the foundation for studying the pyrolysis of Chaijiagou oil-rich coal at the molecular level.

Using Materials Studio 2020 (MS) software, combined with Chaijiagou oil-rich coal extraction and GC/MS result analysis, molecular simulation was performed on the macromolecular spatial structure model of Chaijiagou oil-rich coal, five coal unit cell models containing different types of small molecules were constructed and optimized.

Molecular dynamics simulations based on reaction force field (Reax FF) were performed on five coal unit cell models using Amsterdam Modeling Suite (AMS) software.

The results show that with the increase of pyrolysis temperature, the total number of molecules in the pyrolysis simulation increased significantly due to small molecules; the generation of C5-C13 components of light tar and the secondary cracking temperature of tar components in the pyrolysis of coal models containing alkane and aromatic small molecules are lower; at 2400K, the coal model containing aromatic small molecules produced more hydroxyl and carboxyl radicals during the pyrolysis process, resulting in the generation of more H2O and CO2 molecules. With the increase of pyrolysis temperature, the maximum yield of heavy tar C14-C40 in the pyrolysis of coal models containing alkane small molecules increased to 37.23wt.% at 1800K, and the yield of coke C40+ reached the lowest 53.88wt.% at the transition temperature of 2200K; at 2400K, the pyrolysis of coal models containing alkane small molecules generated more CH4 and C2H4 molecules, and the pyrolysis degree of coal models containing alkane small molecules was the highest, with a coke C40+ yield of 53.95wt.%. With the increase of pyrolysis temperature, the yield of light tar C5-C13 produced by pyrolysis of coal model containing heteroatom small molecules reached 18.8wt.%, the highest among the five coal models at 1800K; at 2400K, the molecular number of light tar C5-C13 component produced by pyrolysis of coal model containing heteroatom small molecules was higher, and the yield of C5-C13 component was the highest among the five models, reaching 15.91wt.%.

参考文献:

[1] Zhao L T, Liu Z T, Cheng L. How will China's coal industry develop in the future? A quantitative analysis with policy implications[J]. Energy, 2021, 235: 121406.

[2] 赵福阳.解读煤炭洗选加工在洁净煤技术发展中的现状和趋势[J]. 矿业装备, 2022(04): 184–186.

[3] 谢克昌. “十四五”期间现代煤化工发展的几点思考[J]. 煤炭经济研究, 2020, 40(5): 1.

[4] Solomon P R, Fletcher T, Pugmire R. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5): 587–597.

[5] Gavalas G R, Cheong P H-K, Jain R. Model of coal pyrolysis.1. Qualitative development[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(2): 113–122.

[6] Gavalas G R, Jain R, Cheong P H-K. Model of coal pyrolysis.2. Quantitative formulation and results[J]. Industrial & Engineering Chemistry Fundamentals, 1981, 20(2): 122–132.

[7] 王双明,师庆民,王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365–1377.

[8] Chen H, Ge L, Li J. Optimization of microwave-assisted extraction coal and analysis of soluble fraction and residue[J]. Journal of China Coal Society, 2009, 34(4): 46–50.

[9] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社. 2002.

[10] Liu Z, Guo X, Shi L, et al. Reaction of volatiles – A crucial step in pyrolysis of coals[J]. Fuel, 2015, 154: 361–369.

[11] Yu J, Tahmasebi A, Han Y, et al. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Processing Technology, 2013, 106: 9–20.

[12] Mathews J P, Chaffee A L. The molecular representations of coal – A review[J]. Fuel, 2012, 96: 1–14.

[13] Mathews J P, Duin A C T van, Chaffee A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718–728.

[14] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(09): 1431–1439.

[15] Domazetis G, James B D, Liesegang J. High-level computer molecular modeling for low-rank coal containing metal complexes and iron-catalyzed steam gasification[J]. Energy & fuels, 2008, 22(6): 3994-4005.

[16] 吕园, 王佳琪, 王苛宇, 等. 低阶煤热解及其工艺的研究进展[J]. 应用化工, 2022, 51(04): 1156–1159+1163.

[17] 周安宁, 黄定国. 洁净煤技术[M]. 中国矿业大学出版社. 2018.

[18] 吕波, 贺好伟, 马明明, 等. 中低温煤热解过程影响因素研究进展[J]. 榆林学院学报, 2022, 32(02): 14–18+24.

[19] 高晋生. 煤的热解、炼焦和煤焦油加工[M]. 化学工业出版社. 2010.

[20] 刘源, 杨伏生, 贺新福, 等. 影响煤炭热解产物分布的因素[J]. 湖南科技大学学报(自然科学版), 2016, 31(01): 19–24.

[21] 全翠, 王惠惠, 高宁博. 煤热解影响因素与油品提质研究进展[J]. 煤炭科学技术, 2020: 187–193.

[22] 岑可法. 高等燃烧学[M]. 浙江大学出版社. 2002.

[23] 朱学栋, 朱子彬, 韩崇家, 等. 煤的热解研究III.煤中官能团与热解生成物[J]. 华东理工大学学报, 2000: 14–17.

[24] Zeng D, Hu S, Sayre A N, et al. On the rank-dependence of coal tar secondary reactions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1707–1714.

[25] Gao M, Wang Y, Dong J, et al. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis[J]. Chemosphere, 2016, 158: 1–8.

[26] Zhu Y, Wen W, Li Y, et al. Pyrolysis study of Huainan coal with different particle sizes using TG analysis and online Py-PI-TOF MS[J]. Journal of the Energy Institute, 2020, 93(1): 405–414.

[27] Chen X, Zhao Y, Liu L, et al. Evaluation of chemical structure, pyrolysis reactivity and gaseous products of Shenmu coal of different particle sizes[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 294–304.

[28] 吕太, 张翠珍, 吴超. 粒径和升温速率对煤热分解影响的研究[J]. 煤炭转化, 2005(01): 17–20.

[29] 朱路路. 大柳塔煤/溶胀煤催化热解特性研究[D]. 西北大学. 2021.

[30] 白效言, 曲思建, 马栋, 等. 温度对内旋式移动床热解产物的影响规律研究[J]. 煤炭科学技术, 2020, 48(08): 216–223.

[31] Dong Q, Zhang H, Zhu Z. Evolution of Structure Properties during Zhundong Coal Pyrolysis[J]. Procedia Engineering, 2015, 102: 4–13.

[32] Zhang K, Li Y, Wang Z, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701–708.

[33] Chang Q, Gao R, Li H, et al. Effects of CO2 on coal rapid pyrolysis behavior and chemical structure evolution[J]. Journal of Analytical and Applied Pyrolysis, 2017, 128: 370–378.

[34] 穆合塔尔·斯依提. 流化床热解过程中气氛对煤热解特性影响的实验研究[D]. 浙江大学. 2018.

[35] 刘壮, 田宜水, 胡二峰, 等. 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(01): 50–59.

[36] Jiang Y, Zong P, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2019, 179: 72–80.

[37] Xu S, Zeng X, Han Z, et al. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Applied Energy, 2019, 242: 732–740.

[38] Han J, Wang X, Yue J, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122: 98–106.

[39] 张军兴, 周安宁, 柳娜, 等. 磷改性Mo/Al2O3-SiO2催化剂对神府煤催化热解产物的影响[J]. 煤炭转化 , 2019.

[40] Liang L, Huang W, Gao F, et al. Mild catalytic depolymerization of low rank coals: a novel way to increase tar yield[J]. RSC Advances, 2015, 5(4): 2493–2503.

[41] Song Q, Zhao H, Ma Q, et al. Catalytic upgrading of coal volatiles with Fe2O3 and hematite by TG-FTIR and Py-GC/MS[J]. Fuel, 2022, 313: 122667.

[42] 张靖彗. 西部三种煤热解特性研究[D]. 西北大学. 2017.

[43] Wender I. Catalytic Synthesis of Chemicals from Coal[J]. Catalysis Reviews, 1976, 14(1): 97–129.

[44] 王凤, 李光跃, 李莹莹, 等. 煤化学结构模型研究进展及应用[J].洁净煤技术,2016,22(01):26-32

[45] Hatcher P G. Chemical structural models for coalified wood (vitrinite) in low rank coal[J]. Organic Geochemistry, 1990, 16(4–6): 959–968.

[46] Ji H, Li Z, Peng Y, et al. Pore structures and methane sorption characteristics of coal after extraction with tetrahydrofuran[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 287-294.

[47] Zhu Z P, Gao J S. Coal chemistry[M]. Shanghai Science and Technology Publishing House. 1984: 194–198.

[48] 王晓华, 魏贤勇. 煤的溶剂萃取研究进展[J]. 现代化工, 2003, 7: 19–22.

[49] 王迎春. 煤中小分子物质的研究进展[J]. 天津化工, 2017, 31(05): 1–4.

[50] 叶翠平, 冯杰, 谢克昌. 煤的溶剂抽提与抽提物性质的研究[J]. 煤炭转化, 2002, 25(3): 1–6.

[51] 乐嘉炜, 张德祥. 低阶煤中小分子化合物的组成研究[J]. 煤炭技术, 2018, 37(5): 300–302.

[52] 冯婷婷, 孙晔, 王兴军, 等. 超临界CO2/NMP混合溶剂萃取萃余煤的结构与气化特性[D]. 华东理工大学. 2013.

[53] 秦志宏, 袁新华, 宗志敏, 等. 用XRD、TEM和FTIR研究镜煤在CS2-N-甲基-2-吡咯烷酮混合溶剂中的溶解行为[J]. 燃料化学学报, 1998, 3: 275–279.

[54] Yu X-Y, Wei X-Y, Li Z-K, et al. Comparison of three methods for extracting Liuhuanggou bituminous coal[J]. Fuel, 2017, 210: 290–297.

[55] Zhang S, Zhang X, Hao Z, et al. Dissolution behavior and chemical characteristics of low molecular weight compounds from tectonically deformed coal under tetrahydrofuran extraction[J]. Fuel, 2019, 257: 116030.

[56] Gao M, Li X, Ren C, et al. Construction of a Multicomponent Molecular Model of Fugu Coal for ReaxFF-MD Pyrolysis Simulation[J]. Energy & Fuels, 2019, 33(4): 2848–2858.

[57] Zheng M, Li X, Wang M, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910–920.

[58] 王小令. 曹村2号煤的大分子模型构建及HRTEM分析[D]. 太原理工大学. 2019.

[59] 蔡文生, Chipot C. 高性能大规模分子动力学的前沿进展——近35年生物体系的分子动力学模拟研究回顾[J]. 化学学报, 2013, 71(02): 24–33.

[60] 高明杰. 府谷次烟煤热解的反应分子动力学模拟[D]. 中国科学院大学(中国科学院过程工程研究所). 2019.

[61] Friesner R A. Ab initio quantum chemistry: Methodology and applications[J]. Proceedings of the National Academy of Sciences, 2005, 102(19): 6648-6653.

[62] 贾建波. 神东煤镜质组结构模型的构建及其热解甲烷生成机理的分子模拟[D]. 太原理工大学. 2010.

[63] 郑默. 基于GPU的煤热解化学反应分子动力学(ReaxFF MD)模拟[D]. 中国科学院研究生院(过程工程研究所). 2015.

[64] Zheng M, Li X, Nie F, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13–16): 1081–1088.

[65] Duin A C T van, Dasgupta S, Lorant F, et al. ReaxFF: A Reactive Force Field for Hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396–9409.

[66] Nomura K, Kalia R K, Nakano A, et al. A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations[J]. Computer Physics Communications, 2008, 178(2): 73–87.

[67] Zheng M, Li X, Liu J, et al. Pyrolysis of Liulin Coal Simulated by GPU-Based ReaxFF MD with Cheminformatics Analysis[J]. Energy &Fuels, 2013, 28(1): 522–534.

[68] Chenoweth K, Duin A C T van, Goddard W A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation[J]. The Journal of Physical Chemistry A, 2008, 112(5): 1040–1053.

[69] Qian Y, Xu W, Zhan J-H, et al. Atomic insights into the thermal runaway process of hydrogen peroxide and 1,3,5-trimethybenzene mixture: Combining ReaxFF MD and DFT methods[J]. Process Safety and Environmental Protection, 2021, 147: 578–588.

[70] Salmon E, Duin A C T van, Lorant F, et al. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195–1209.

[71] Zheng M, Wang Z, Li X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177: 130–141.

[72] Liu H, Liang J, He R, et al. Overall mechanism of JP-10 pyrolysis unraveled by large-scale reactive molecular dynamics simulation[J]. Combustion and Flame, 2022, 237: 111865.

[73] Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290.

[74] Hong D, Guo X. Molecular dynamics simulations of Zhundong coal pyrolysis using reactive force field[J]. Fuel, 2017, 210: 58–66.

[75] Liu J, Yang X, Jiang X, et al. Pyrolysis mechanisms of coal extracts based on TG-FTIR and ReaxFF MD study[J]. Fuel Processing Technology, 2022, 227: 107124.

[76] Lei Z, Cheng Z, Ling Q, et al. Investigating the trigger mechanism of Shenfu bituminous coal pyrolysis[J]. Fuel, 2022, 313: 122995.

[77] Castro-Marcano F, Russo M F, Duin A C T van, et al. Pyrolysis of a large-scale molecular model for Illinois no. 6 coal using the ReaxFF reactive force field[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 79–89.

[78] He X, Zhu H, Huo Y, et al. Study on the Formation Mechanism of the Pyrolysis Products of Lignite at Different Temperatures Based on ReaxFF-MD[J]. ACS Omega, 2021, 6(51): 35572–35583.

[79] Gao M, Li X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109.

[80] Qian Y, Zhan J-H, Xu W, et al. ReaxFF molecular dynamic simulation of primary and secondary reactions involving in sub-bituminous coal pyrolysis for tar production[J]. Carbon Resources Conversion, 2021, 4: 230–238.

[81] 刘利宝, 要惠芳, 姬新强. 13C-NMR 分析混合酸处理脱灰对构造煤结构的影响[J]. 煤炭转化, 2016, 39(04): 10–14.

[82] 华宗琪, 秦志宏, 刘鹏, 等. 超声波条件下煤中不同赋存形态小分子的溶出规律[J]. 中国矿业大学学报, 2012, 41(1): 91–94.

[83] 麻志浩, 阳虹, 张玉贵, 等. 不同煤级煤13C NMR结构特性及演化特征[J]. 煤炭转化, 2015, 38(04): 1–4+11.

[84] Yan J, Lei Z, Li Z, et al. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy[J]. Fuel, 2020, 268: 117038.

[85] Ibarra J V, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic geochemistry, 1996, 24(6-7): 725-735.

[86] Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187–1196.

[87] Niekerk D V, Mathews J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1): 73–82.

[88] Chenoweth K, Duin A C T van, Dasgupta S, et al. Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel[J]. The Journal of Physical Chemistry A, 2009, 113(9): 1740–1746.

[89] Ding J, Zhang L, Zhang Y, et al. A Reactive Molecular Dynamics Study of n-Heptane Pyrolysis at High Temperature[J]. The Journal of Physical Chemistry A, 2013, 117(16): 3266–3278.

[90] Salmon E, Duin A C T van, Lorant F, et al. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195–1209.

[91] So/rensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events[J]. The Journal of Chemical Physics, 2000, 112(21): 9599–9606.

[92] Fletcher T H, Kerstein A R, Pugmire R J, et al. Chemical percolation model for devolatilization. 3. Direct use of carbon-13 NMR data to predict effects of coal type[J]. Energy & Fuels, 1992, 6(4): 414–431.

[93] Zhang K, Li Y, Wang Z, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701–708.

中图分类号:

 TQ530.2    

开放日期:

 2025-06-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式