- 无标题文档
查看论文信息

论文中文题名:

 小保当二号井煤层群错距开采减损方案优化及对覆岩影响规律    

姓名:

 卢明皎    

学号:

 18209212038    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 地质灾害预测与防治    

第一导师姓名:

 孙学阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-28    

论文外文题名:

 The scheme optimization of staggered distance mining and law of influence on overburden of multiseam in Xiaobaodang No.2 Coal Mine    

论文中文关键词:

 煤层群 ; 错距开采 ; 方案优化 ; 导水裂隙带 ; 数值模拟    

论文外文关键词:

 Multiseam ; Staggered Distance Mining ; Scheme Optimization ; Water-conducting Fissure Zone ; Numerical Simulation    

论文中文摘要:

陕北地区是我国煤炭资源的主产区,但该区域水资源短缺、生态脆弱,由煤炭开采引起的地表开裂和地下水渗漏等环境问题日益突出。因此,如何实现煤炭安全、高效开采的同时最大限度减小对生态脆弱区环境的损害,达到煤炭资源大开发与生态环境保护协调发展是当下的主要目标。

为深入研究陕北煤层群重复采动下覆岩导水裂隙发育及错距开采应力传递规律,从根本上揭示煤层群错距开采对覆岩的影响机理,本文从煤层群开采区段煤柱错距方面入手,以小保当二号井为工程背景,综合运用理论分析、数值模拟和相似材料模拟等研究手段,对煤层群错距开采减损力学机理进行分析,并对煤层群错距方案进行了优化。主要结果如下:

通过对煤层群错距开采区段煤柱应力传递机理进行分析,推导出合理的错距范围表达式;概化出煤层群错距开采模型,并结合小保当二号井工程实例计算出合理错距范围。

错距煤柱范围σzz曲线呈“峰”状分布,煤柱中心出现主应力峰值;错距煤柱中心范围Z方向下沉值呈现“几”字形分布,煤柱中心下沉值最小。覆岩应力分布、煤柱中心应力峰值及煤柱Z方向下沉值,三者存在一致的最佳状态。双煤层错距开采时,最优错距为40m,最不利(最劣)错距为0m;煤层群错距开采时,在保持双煤层最优错距(40m)不变的情况下,其最优错距也为40m,最不利(最劣)错距为0m。

最不利错距开采方案, 导水裂隙带最大发育高度210m,为最优方案的1.1倍;覆岩6条裂隙导通地表,是最优方案的1.5倍;地表裂缝最大宽度为0.75m,为最优方案的 1.67倍;地表裂缝最大错台为1.2m,是最优方案的20倍;地表下沉曲线发生2次突变,地表可见明显裂缝及隆起区3处。

煤层群错距减损最优方案能够有效降低覆岩导水裂隙带发育高度,减轻地表裂缝发育强度,充分地实现保水减损开采。研究结果可为陕北煤层群减损开采提供一定的理论依据和参考。

论文外文摘要:

Northern Shaanxi is the main production area of ​​in China coal resources, but the short of water resources, ecologically fragile and environmental problems such as surface cracks and groundwater leakage caused by coal mining in the region have become increasingly enormous. Therefore, how to attain safe and efficient coal mining while minimizing environmental damage to ecologically fragile areas and achieving coordinated development of coal resource development and ecological environmental protection is the main goal at the moment.

In order to fundamentally reveal the influence mechanism on overburden of staggered distance mining in multiseam, the development law of water-conducting fissure zone and the stress transfer law of the staggered distance mining under repeated mining was been systematically studied in this paper. First, the coal pillar staggered distance mining in multiseam was consided. The theoretical analysis, numerical simulation and similar material simulation were comprehensively used to analyze the reduction damage mechanical mechanism of the staggered distance mining. And the staggered distance mining plans were optimized by the engineering background of the Xiaobaodang No.2 coal mine. The results are as follows:

Subsequence, the staggered distance mining model of the multiseam was generalized and a reasonable staggered distance range was derived. A reasonable range of staggered distance mining was calculated coupled with the of Xiaobaodang No.2 Coal Mine geological condition.

The σzz curve showed a “peak” shape and the principal stress peak value appeared in the center of the coal pillar. The Z displacement curve domenstrated a “Л” shape and the smallest settlement value illustrated in the center of the coal pillar. The optimal of stress distribution, the optimal of peak stress, and the optimal of Z displacement appeared in the same scheme. The optimal staggered distance value was 40 m, and the most unfavorable (worst) distance value was 0 m, in staggered distance mining of double seams. The optimal staggered distance value was 40 m, and the most unfavorable (worst) distance value was 0 m, under the condition of keeping the optimal staggered distance value of the double seams (40m) , in staggered distance mining of multiseam.

The most unfavorable staggered distance mining scheme had a maximum development height of 210 m in the water-conducting fissure zone, which was 1.1 times that of the optimal scheme. There was six fractured in the overburden conduct to the ground, which was 1.5 times the optimal scheme. The maximum width of surface cracks was 0.75 m, which was 1.67 times that of the optimal scheme, and the maximum vertical displacement of surface cracks was 1.2 m, which was 20 times that of the optimal scheme. The surface subsidence curve had two sudden changes, and the surface had three obvious cracks and heave areas.

The optimal scheme of reduction damage staggered distance mining in multiseam could effectively reduce the development height of water-conducting fissure zone in the overburden, sligten the development intensity of surface cracks, and fully realize water conservation and reduction damage mining. The research results could provide a certain theoretical basis and reference for the reduction damage mining of multiseam in northern Shaanxi.

参考文献:

[1] 钱鸣高, 许家林, 缪协兴. 煤矿绿色开采技术[J]. 中国矿业大学学报, 2003, 32(4): 343-347.

[2] 范立民. 保水采煤是神府东胜煤田开发可持续发展的关键[J]. 地质科技管理, 1998, (5): 28-29.

[3] 王双明, 黄庆享, 范立民, 等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报, 2010, 35(1): 7-14.

[4] 范立民, 向茂西, 彭捷. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 2016, 41(11): 2672-2678.

[5] 范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展[J]. 煤炭学报, 2015, 40(08): 1711-1717.

[6] 范立民. 保水采煤的科学内涵[J]. 煤炭学报, 2017, 42(1): 27-35.

[7] 孙学阳, 梁倩文, 苗霖田. 保水采煤技术研究现状及发展趋势[J]. 煤炭科学技术, 2017, 45(1): 54-59.

[8] 钱鸣高, 缪协兴, 许家林, 等. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2003.

[9] 缪协兴, 陈荣华, 白海波. 保水采煤隔水关键层的基本概念及力学分析[J]. 煤炭学报, 2007, 32(6): 561-564.

[10] 缪协兴, 浦海, 白海波. 隔水关键层原理及其在保水采煤中的应用研究[J]. 中国矿业大学学报, 2008, 37(1): 1-4.

[11] 李春意, 崔希民, 袁德宝, 等. 隔水关键层水文地质概念模型的建立与分析[J]. 煤矿安全, 2009, 40(4): 11-15.

[12] 李文平, 王启庆, 李小琴. 隔水层再造—西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报, 2017, 42(1): 88-97.

[13] M. Chi, D. Zhang, G. Fan, et al. Prediction of water resource carrying capacity by the analytic hierarchy process-fuzzy discrimination method in a mining area[J]. Ecological Indicators, 2019; 96: 647-655.

[14] D. Zhang, G. Fan, Y. Liu, et al. Field trials of aquifer protection in longwall mining of shallow coal seams in China[J]. International Journal of Rock Mechanics and Mining Sciences, 2010; 47(6): 908-914.

[15] J. Zhang and B. Shen. Coal mining under aquifers in China: a case study[J]. International Journal of Rock Mechanics and Mining Sciences, 2004; 41(4): 629-639.

[16] 马立强, 张东升, 金志远, 等. 近距煤层高效保水开采理论与方法[J]. 煤炭学报, 2019, 44(3): 727-738.

[17] 徐智敏, 孙亚军, 高尚, 等. 干旱矿区采动顶板导水裂隙的演化规律及保水采煤意义[J]. 煤炭学报, 2019, 44(3): 767-776.

[18] 曹建涛, 来兴平, 葛睿智. 浅埋近距煤层群开采扰动载荷传递作用分析[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 215-219.

[19] 程志恒, 齐庆新, 李宏艳, 等. 近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J]. 煤炭学报, 2016, 41(2): 367-375.

[20] 杜君武, 黄庆享. 浅埋煤层群同采工作面合理走向错距研究[J]. 煤炭科学技术, 2017, 45(9): 122-127.

[21] 方新秋, 郭敏江, 吕志强. 近距离煤层群回采巷道失稳机制及其防治[J]. 岩石力学与工程学报, 2009, 28(10): 2059-2067.

[22] 胡永忠, 刘长郄, 刘长友, 等. 煤层群混合开采采动裂隙发育规律研究[J]. 采矿与安全工程学报, 2015, 32(3): 396-400.

[23] 黄庆享, 曹健, 杜君武, 等. 浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J]. 煤炭学报, 2019, 44(3): 681-689.

[24] 姜鹏飞, 康红普, 张剑, 等. 近距煤层群开采在不同宽度煤柱中的传力机制[J]. 采矿与安全工程学报, 2011, 28(3): 345-349.

[25] 李树清, 何学秋, 李绍泉, 等. 煤层群双重卸压开采覆岩移动及裂隙动态演化的实验研究[J]. 煤炭学报, 2012, 38(12): 2146-2152.

[26] Y. Zhang, Z. Zhang, S. Xue, et al. Stability analysis of a typical landslide mass in the Three Gorges Reservoir under varying reservoir water levels[J]. Environmental Engineering Science, 2020; 79(1): 1-14.

[27] G. Ren, G. Li and M. Kulessa. Application of a Generalised Influence Function Method for Subsidence Prediction in Multi-seam Longwall Extraction[J]. Geotechnical and Geological Engineering, 2014; 32(4): 1123-1131.

[28] H. Yan, M.-y. Weng, R.-m. Feng, et al. Layout and support design of a coal roadway in ultra-close multiple-seams[J]. Journal of Central South University, 2015; 22(11): 4385-4395.

[29] I. B. Tulu, G. S. Esterhuizen, T. Klemetti, et al. A case study of multi-seam coal mine entry stability analysis with strength reduction method[J]. International Journal of Mining Science and Technology, 2016; 26(2): 193-198.

[30] 彭高友, 高明忠, 吕有厂, 等. 深部近距离煤层群采动力学行为探索[J]. 煤炭学报, 2019, 44(7): 1971-1980.

[31] 索永录, 商铁林, 郑勇, 等. 极近距离煤层群下层煤工作面巷道合理布置位置数值模拟[J]. 煤炭学报, 2013, 38(增2): 277-282.

[32] 张百胜, 杨双锁, 康立勋, 等. 极近距离煤层回采巷道合理位置确定方法探讨[J]. 岩石力学与工程学报, 2008, 27(1): 97-101.

[33] 张勇, 张春雷, 赵甫. 近距离煤层群开采底板不同分区采动裂隙动态演化规律[J]. 煤炭学报, 2015, 40(4): 786-792.

[34] 李胜, 周利峰, 罗明坤, 等. 煤层群下行开采煤柱应力传递规律[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(6): 661-667.

[35] Adhikary D, Khanal M, Jayasundara C, et al. Deficiencies in 2D Simulation: A Comparative Study of 2D Versus 3D Simulation of Multi-seam Longwall Mining[J]. Rock Mechanics and Rock Engineering, 2015, 49(6): 2181-2185.

[36] Ghabraie B, Ghabraie K, Ren G, et al. Numerical modelling of multistage caving processes: insights from multi-seam longwall mining-induced subsidence[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(7): 959-975.

[37] Ghabraie B, Ren G, Smith J V. Characterising the multi-seam subsidence due to varying mining configuration insights from physical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 269-279.

[38] 潘瑞凯, 曹树刚, 李勇, 等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报, 2018, 43(8): 2261-2268.

[39] T. Chenglin, Y. Xuelin, S. Haitao, et al. Experimental study on the overburden movement and stress evolution in multi-seam mining with residual pillars[J]. Environmental Engineering Science, 2019; 7(6): 3095-3110.

[40] B. Ghabraiea, G. Rena, J. Smitha, et al. Application of 3D laser scanner, optical transducers and digital image processing techniques in physical modelling of mining-related strata movemen[J]. International Journal of Rock Mechanics and Mining Sciences, 2015; 80: 219-230.

[41] Lorig LJ, Darcel C, Damjanac B, et al. Application of discrete fracture networks in mining and civil geomechanics[J]. Mining Technology, 2015, 124(4): 239-254.

[42] Wang G, Wu M, Wang R, et al. Height of the mining-induced fractured zone above a coal face[J]. Engineering Geology, 2016, 216.

[43] Wang J, Yang S, Li Y, Wei L, Liu H. Caving mechanisms of loose top-coal in longwall top-coal caving mining method[J]. International Journal of Rock Mechanics and Mining Sciences, 2014;71:160-170.

[44] Wang J, Zhang J, Li Z. A new research system for caving mechanism analysis and its application to

sublevel top-coal caving mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2016; 88: 273-285.

[45] Zhao L, Wang J A. Accident Investigation of Mine Subsidence with Application of Particle Flow Code[J]. Procedia Engineering, 2011, 26: 1698-1704.

[46] 张志祥, 张永波, 赵志怀, 等. 多煤层开采覆岩移动及地表变形规律的相似模拟实验研究[J]. 水文地质工程地质, 2011, 38(4): 130-134.

[47] 赵高博, 郭文兵, 娄高中, 等. 厚松散层高强度开采岩层与地表移动模拟[J]. 中国安全科学学报, 2018, 28(1): 130-136.

[48] 左建平, 孙运江, 王金涛, 等. 充分采动覆岩“类双曲线”破坏移动机理及模拟分析[J]. 采矿与安全工程学报, 2018, 35(1): 71-77.

[49] 高保彬, 刘云鹏, 潘家宇, 等. 水体下采煤中导水裂隙带高度的探测与分析[J]. 岩石力学与工程学报, 2014, 33(增1): 3384-3390.

[50] 黄万朋, 高延法, 王波, 等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报, 2017, 34(2): 330-335.

[51] Wu G, Fang X, Bai H, et al. Optimization of roadway layout in ultra-close coal seams: A case study[J]. PLoS One, 2018, 13(11): e0207447.

[52] 刘伟韬, 陈志兴, 张茂鹏. 覆岩裂隙带发育高度数值模拟和现场实测[J]. 矿业安全与环保, 2016, 43(1): 57-60.

[53] 吕文宏. 覆岩顶板导水裂隙带发育高度模拟与实测[J]. 西安科技大学学报, 2014, 34(3): 309-313.

[54] 杨国勇, 陈超, 高树林, 等. 基于层次分析-模糊聚类分析法的导水裂隙带发育高度研究[J]. 采矿与安全工程学报, 2015, 32(2): 206-212.

[55] 周泽, 赵维生, 朱川曲, 等. 基于塑性铰理论的导水裂隙带发育高度预判[J]. 地下空间与工程学报, 2018, 14(5): 1305-1312.

[56] 付宝杰, 高明中, 涂敏, 等. 组合硬岩层顶板破断规律及导水裂隙带电法探测[J]. 水文地质工程地质, 2015, 42(2): 140-144.

[57] 安宏图. 极近距离煤层采空区下回采巷道布置与围岩控制技术研究[D]. 太原理工大学, 2015.

[58] S Xueyang, L Mingjiao, L Chen. Optimization of staggered distance of coal pillars in multiseam mining: Theoretical analysis and numerical simulation[J]. Energy Science & Engineering, 2021, 9(3): 357-374.

[59] 阳生权, 阳军生. 岩体力学[M]. 北京: 机械工业出版社, 2008.

[60] Itasca Consulting Group Inc.PFC2D (particle flow code in 2D) theory and background[R]. Minnesota: Itasca Consulting Group Inc., 2008.

[61] 石崇, 张强, 王盛年. 颗粒流(PFC5.0)数值模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2018.

[62] Potyondy DO, Cundall PA. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004; 41(8): 1329-1364.

[63] 李坤蒙,李元辉,徐帅, 等. PFC2D数值计算模型微观参数确定方法[J].东北大学学报(自然科学版), 2016, 37(04): 563-567.

[64] 陈亚东, 于艳, 佘跃心. PFC3D模型中砂土细观参数的确定方法[J].岩土工程学报, 2013, 35(S2): 88-93.

[65] 徐金明, 黄大勇, 朱洪昌. 基于细观组分实际分布的花岗岩宏细观参数关系[J]. 岩石力学与工程学报, 2016, 35(S1): 2635-2643.

[66] 温韬. 加卸荷条件下岩石破坏机理及应用[D]. 中国地质大学(武汉), 2018.

[67] Koyama T, Jing L. Effects of model scale and particle size on micromechanical properties and failure processes of rocks-A particle mechanics approach[J]. Engineering Analysis with Boundary Elements, 2007, 31(5): 458-472.

[68] Tawadrous AS, Degagné D, Pierce M, et al. Prediction of uniaxial compression PFC3D model microproperties using artificial neural networks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 33(18): 1953-1962.

[69] Yang B, Jiao Y, Lei S. A study on the effects of microparameters on macroproperties for specimens created by bonded particles[J]. Engineering Computations, 2006, 23(6): 607-631.

[70] 夏明, 赵崇斌. 簇平行黏结模型中微观参数对宏观参数影响的量纲研究[J]. 岩石力学与工程学报, 2014, 33(2): 327-338.

[71] 张国凯, 李海波, 夏祥,等. 岩石细观结构及参数对宏观力学特性及破坏演化的影响[J].岩石力学与工程学报, 2016, 35(7): 1341-1352.

[72] 王晨龙. 浅埋近距离煤层覆岩结构失稳致灾机理及颗粒流分析[D]. 太原理工大学, 2018.

[73] 孙学阳, 卢明皎, 李成, 等. 双煤层错距开采优选及对隔水关键层影响研究[J]. 采矿与安全工程学报, 2021, 38(01): 51-57, 67.

[74] 马立强, 张东升, 金志远, 等. 近距煤层高效保水开采理论与方法[J]. 煤炭学报, 2019, 44(3): 727-738.

[75] 杨达明, 郭文兵, 赵高博, 等. 厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J]. 煤炭学报, 2019, 44 (11): 3308-3316.

[76] Zhou D-W, Wu K, Cheng G-L, et al. Mechanism of mining subsidence in coal mining area with thick alluvium soil in China[J]. Arabian Journal of Geosciences, 2014, 8(4): 1855-1867.

[77] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017, 42(1): 17-26.

[78] 胡振琪, 王新静, 贺安民. 风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J]. 煤炭学报, 2014, 39(1): 11-18.

[79] Arabameri A, Pradhan B, Rezaei K, et al. Gully erosion susceptibility mapping using GIS based multi-criteria decision analysis techniques[J]. Catena, 2019, 180: 282-297.

[80] 孙学阳, 卢明皎, 李成, 等. 榆神矿区双煤层开采错距方案优化数值模拟[J]. 煤矿安全, 2021, 52(2): 182-187, 193.

[81] 王方田, 屠世浩, 张艳伟, 等. 冲沟地貌下浅埋煤层开采矿压规律及顶板控制技术[J]. 采矿与安全工程学报, 2015, 32(6): 877-882.

中图分类号:

 TD325    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式