- 无标题文档
查看论文信息

论文中文题名:

 基于深度学习的会话序列推荐    

姓名:

 陈少剑    

学号:

 19208049012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0812    

学科名称:

 工学 - 计算机科学与技术(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 计算机技术    

研究方向:

 推荐系统    

第一导师姓名:

 冯健    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Session Sequence Recommendation Based on Deep Learning    

论文中文关键词:

 会话推荐 ; 图神经网络 ; 注意力机制 ; 特征多样性    

论文外文关键词:

 session-based recommendation ; graph neural networks ; attention mechanism ; feature diversity    

论文中文摘要:

在当今大数据时代下,信息过载问题日益严重。会话序列推荐系统是缓解该问题的有效工具之一,能通过用户与物品交互的行为序列来捕获用户的兴趣偏好,并为用户推荐合适的物品。而由于会话序列数据存在匿名性及信息缺失等问题,如何充分利用有限的会话序列数据来提高推荐准确率已成为会话序列推荐的重要研究任务。

针对已有结合自注意力的会话推荐方法存在无法准确衡量物品重要性及自注意力计算复杂度高的问题,提出一种多兴趣感知的自适应自注意力网络会话推荐模型。模型设计了一个自适应自注意力网络,通过引入一类高稀疏性的计算函数替换softmax函数,提高了输出物品重要性分数的稀疏性;同时考虑到每条序列的差异性,设计了一个序列自适应因子模块,使每条序列能基于上下文动态地选择合适的计算函数,从而加强了模型能准确衡量物品重要性的能力。针对自注意力计算复杂度高的问题,提出一个兴趣聚合层去捕获常数个用户兴趣,从而通过将物品两两之间的关联性转换成计算物品与常数个兴趣之间的关联性,降低了计算复杂度。此外,模型采用了一种解耦位置编码方案降低物品与位置信息的编码耦合度,避免引入噪声信息。最后,为了充分考虑用户特征,设计了用户总体偏好模块以捕获用户的偏好。在多个公开数据集上的实验结果表明所提模型的有效性及可行性。与基线方法相比,所提模型在HR@10和NDCG@10上分别获得了6.54%和5.71%的最大增益百分比。

在电商场景中,针对应用图神经网络的会话推荐方法采用信息有损的会话图构建方式,以及未能充分考虑特征建模的影响因素等问题,提出一种价格感知的信息无损会话推荐模型。模型采用信息无损的会话图构建方式以便充分编码会话信息,降低构图时的信息损失。为了探索影响用户偏好的新因素,设计了一个价格容忍因子模块,建模用户对各类物品的价格容忍度。此外,提出了一种新的用户意图编码方案,从物品类别层面捕获用户意图,以提高对用户意图捕获的准确性。最后,为了全面考虑用户特征的建模,设计了一个动态兴趣模块去捕获用户随时间演化的动态兴趣。实验结果表明,所提模型与多个代表性基线相比整体上取得较好的性能,在HR@20和MRR@20上分别获得了1.52%和1.58%的最大增益百分比。

论文外文摘要:

In today's big data era, the problem of information overload is becoming more and more serious. Session sequence recommendation system is one of the effective tools to alleviate this problem. It captures users' interests and preferences through the interaction sequence between users and items, and recommends appropriate items for them. However, due to the anonymity and lack of information in session sequence data, how to make full use of limited session sequence data to improve the accuracy of recommendation has become an important research task of session sequence recommendation.

Aiming at the problems of the high computational complexity of self-attention and unable to accurately measure the importance of items in the existing session-based recommendation methods combined with self-attention, a multi-interest aware adaptive self-attention network model is proposed for session-based recommendation. In the model, an adaptive self-attention network is designed to improve the sparsity of the output item importance score by introducing a class of highly sparse computing functions to replace the softmax function. At the same time, considering the differences of each sequence, a sequence adaptive factor module is designed to enable each sequence to dynamically select the appropriate computing function based on the context, thus enhancing the ability of the model to accurately measure the importance of items. To solve the problem of the high computational complexity of self-attention, an interest aggregation layer is proposed to capture constant user's interests, which reduces the computational complexity by converting the correlation between items into the correlation between items and constant interests. In addition, the model adopts a decoupled position coding scheme to reduce the coding coupling between items and position information, to avoid the introduction of noise information. Finally, to fully consider the user characteristics, the user global preference module is designed to capture the user preferences. Experimental results on several public datasets show the effectiveness and feasibility of the proposed model. Compared to the baseline methods, the maximum gain percentage of the proposed model is 6.54% on HR@10 and 5.71% on NDCG@10, respectively.

Aiming at the problems that the session-based recommendation method combined with graph neural network in e-commerce scene adopts the construction method of session graph with information loss, and fails to fully consider the influencing factors of feature modeling, a price-aware information lossless model is proposed for session-based recommendation. The model adopts a method of constructing a session graph with information lossless to fully encode the session information and reduce the information loss during construction. To explore the new factors that affect users' preferences, a price tolerance factor module is designed to model users' price tolerance for various items. In addition, a new user intention coding scheme is proposed to capture user intention from the item category level to improve the accuracy of capturing user intention. Finally, to fully consider the modeling of user characteristics, a dynamic interest module is designed to capture the dynamic interest of users over time. Experimental results show that the proposed model achieves better performance compared with multiple representative baselines. The maximum gain percentage of the proposed model is 1.52% on HR@20 and 1.58% on MRR@20, respectively.

参考文献:

中国信息通信研究院. 《大数据白皮书(2020 年)》[EB/OL]. 中国信息通信研究院, 2022-03-30.

于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J/OL]. http://kns.cnki.net/kcms/detail/51.1307.tp.20210922.1115.002.html, 2022-03-30.

黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.

ZHANG S, YAO L N, SUN A X, et al. Deep Learning Based Recommender System: A Survey and New Perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.

SHARMA A, HOFMAN J M, WATTS D J. Estimating the Causal Impact of Recommendation Systems from Observational Data[C]//Proceedings of the 16th ACM Conference on Economics and Computation. New York: ACM, 2015: 453-470.

DAS A S, DATAR M, GARG A, et al. Google News Personalization: Scalable Online Collaborative Filtering[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 271-280.

刘凯, 张立民, 周立军. 深度学习在信息推荐系统的应用综述[J]. 小 型 微 型 计 算 机 系 统, 2019, 40(4): 738-743.

PI Q, ZHOU G R, ZHANG Y J, et al. Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 2685-2692.

XIE R B, LING C, WANG Y L, et al. Deep Feedback Network for Recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2020: 2519-2525.

WANG S J, CAO L B, WANG Y, et al. A Survey on Session-based Recommender Systems[J]. ACM Computing Surveys, 2021, 54(7): 1-38.

赵海燕, 赵佳斌, 陈庆奎, 等. 会话推荐系统[J]. 小型微型计算机系统, 2019, 40(9): 1869-1875.

JANNACH D, LUDEWIG M, LERCHE L. Session-based Item Recommendation in E-commerce: on Short-term Intents, Reminders, Trends and Discounts[J]. User Modeling and User-Adapted Interaction, 2017, 27(3): 351-392.

LIU Y X, REN Z C, ZHANG W N, et al. Keywords Generation Improves E-commerce Session-based Recommendation[C]//Proceedings of the 29th International Conference on World Wide Web. New York: ACM, 2020: 1604-1614.

SYMEONIDIS P, KIRJACKAJA L, ZANKER M. Session-based News Recommendations Using SimRank on Multi-modal Graphs[J]. Expert Systems with Applications, 2021, 180: 115028.

SHEU H S, LI S. Context-aware Graph Embedding for Session-based News Recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 657-662.

WANG Z Y, WEI W, CONG G, et al. Global Context Enhanced Graph Neural Networks for Session-based Recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178.

CHOI M, KIM J, LEE J, et al. Session-aware Linear Item-Item Models for Session-based Recommendation[C]//Proceedings of the 30th International Conference on World Wide Web. New York: ACM, 2021: 2186-2197.

ABEL F, BITTENCOURT I I, HENZE N, et al. A Rule-based Recommender System for Online Discussion Forums[C]//Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. USA: Springer, 2008: 12-21.

LIN W Y, ALVAREZ S A, RUIZ C. Efficient Adaptive-support Association Rule Mining for Recommender Systems[J]. Data Mining and Knowledge Discovery, 2002, 6(1): 83-105.

SONG W, YANG K. Personalized Recommendation Based on Weighted Sequence Similarity[J]. Practical Applications of Intelligent Systems, 2014, 279: 657-666.

YAP G E, LI X L, YU P S. Effective Next-items Recommendation via Personalized Sequential Pattern Mining[C]//Proceedings of the International Conference on Database Systems for Advanced Applications. USA: Springer, 2012: 48-64.

ZHANG Y Q, CAO J. Personalized Recommendation Based on Behavior Sequence Similarity Measures[J]. Behavior and Social Computing, 2013, 8178: 165-177.

SARWAR B M, KARYPIS G, KONSTAN J A, et al. Item-based Collaborative Filtering Recommendation Algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York: ACM, 2001: 285-295.

JANNACH D, LUDEWIG M. When Recurrent Neural Networks Meet the Neighborhood for Session-based Recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 306-310.

RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing Personalized Markov Chains for Next-basket Recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 811-820.

LE D T, FANG Y, LAUW H W. Modeling Sequential Preferences with Dynamic User and Context Factors[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. USA: Springer, 2016: 145-161.

HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based Recommendations with Recurrent Neural Networks[C]//Proceedings of the 4th International Conference on Learning Representations. USA: DBLP, 2016: 1-10.

TAN Y K, XU X X, LIU Y. Improved Recurrent Neural Networks for Session-based Recommendations[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22.

岳新玉, 刘悦, 余志华. 基于会话信息的多粒度循环神经网络推荐模型[J]. 山西大学学报(自然科学版), 2019, 42(2): 332-339.

LI J, REN P J, CHEN Z M, et al. Neural Attentive Session-based Recommendation[C]//Proceedings of the 2017 ACM on Conference on Information & Knowledge Management. New York: ACM, 2017: 1419-1428.

LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-based Recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839.

袁涛, 牛树梓, 李会元. 一种基于CW-RNN的多时间尺度序列建模推荐算法[J]. 中文信息学报, 2020, 34(6): 97-105.

罗鹏宇, 吴乐, 吕扬, 等. 基于时序推理的分层会话感知推荐模型[J]. 计算机科学, 2020, 47(11): 73-79.

KANG W C, MCAULEY J. Self-Attentive Sequential Recommendation[C]//Proceedings of the 18th IEEE International Conference on Data Mining. USA: IEEE, 2018: 197-206.

FAN X Y, LIU Z, LIAN J X, et al. Lighter and Better: Low-Rank Decomposed Self-Attention Networks for Next-Item Recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1733-1737.

李太松, 贺泽宇, 王冰, 等. 基于循环时间卷积网络的序列流推荐算法[J].计算机科学, 2020, 47(3): 103-109.

TANG J X, WANG K. Personalized Top-n Sequential Recommendation via Convolutional Sequence Embedding[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 565-573.

YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 582-590.

ZHANG J J, MA C H, MU X D, et al. Recurrent Convolutional Neural Network for Session-based Recommendation[J]. Neurocomputing, 2021, 437: 157-167.

BACH N X, LONG D H, PHUONG T M. Recurrent Convolutional Networks for Session-based Recommendations[J]. Neurocomputing, 2020, 411: 247-258.

SHU W, TANG Y Y, ZHU Y Q, et al. Session-based Recommendation with Graph Neural Networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. USA: IEEE, 2019: 346-353.

孙鑫, 刘学军, 李斌, 等. 基于图神经网络和时间注意力的会话序列推荐[J]. 计算机工程与设计, 2020, 41(10): 2913-2920.

QIU R H, LI J J, HUANG Z, et al. Rethinking The Item Order in Session-based Recommendation with Graph Neural Networks[C]//Proceedings of the 28th ACM International Conference on Information & Knowledge Management. New York: ACM, 2019: 579-588.

XU C F, ZHAO P P, LIU Y C, et al. Graph Contextualized Self-attention Network for Session-based Recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2019: 3940-3946.

QIU R H, HUANG Z, LI J J, et al. Exploiting Cross-session Information for Session-based Recommendation with Graph Neural Networks[J]. ACM Transactions on Information Systems, 2020, 38(3): 1-23.

WANG M R, REN P J, MEI L, et al. A Collaborative Session-based Recommendation Approach with Parallel Memory Modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 345-354.

WANG Z Y, WEI W, CONG G, et al. Global Context Enhanced Graph Neural Networks for Session-based Recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178.

LUO A J, ZHAO P P, LIU Y C, et al. Collaborative Self-attention Network for Session-based Recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2020: 2591-2597.

TANJIM M M, SU C Z, BENJAMIN E, et al. Attentive Sequential Models of Latent Intent for Next Item Recommendation[C]//Proceedings of the 29th International Conference on World Wide Web. New York: ACM, 2020: 2528-2534.

LIN J, PAN W K, MING Z. FISSA: Fusing Item Similarity Models with Self-attention Networks for Sequential Recommendation[C]//Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 130-139.

WANG S J, HU L, WANG Y, et al. Modeling Multi-purpose Sessions for Next-item Recommendations via Mixture-channel Purpose Routing Networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2019: 3771-3777.

CHEN T W, WONG R C W. Handling Information Loss of Graph Neural Networks for Session-based Recommendation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1172-1180.

HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning Phrase Representations Using Rnn Encoder-decoder for Statistical Machine Translation[C]//Proceedings of the Empiricial Methods in Natural Language Processing. USA: Association for Computational Linguistics, 2014: 1724-1734.

KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]//Proceedings of the 5th International Conference on Learning Representations. USA: DBLP, 2017: 1-14.

VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph Attention Networks[C]//Proceedings of the 6th International Conference on Learning Representations. USA: DBLP, 2018: 1-12.

LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated Graph Sequence Neural Networks[C]//Proceedings of the 4th International Conference on Learning Representations. USA: DBLP, 2016: 1-20.

DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[C]//Proceedings of the 30th Conference on Neural Information Processing Systems. USA: MIT Press, 2016: 3837-3845.

ZHENG L, LU C T, JIANG F, et al. Spectral Collaborative Filtering[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 311-319.

VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems. USA: MIT Press, 2017: 5998-6008.

CHEN C, GENG H Y, YANG N Z, et al. Learning Self-modulating Attention in Continuous Time Space with Applications to Sequential Recommendation[C]//Proceedings of the 38th International Conference on Machine Learning. USA: MLResearchPress, 2021: 1606-1616.

WANG X, HE X N, CAO Y X, et al. KGAT: Knowledge Graph Attention Network for Recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958.

TANJIM M M, SU C Z, BENJAMIN E, et al. Attentive Sequential Models of Latent Intent for Next Item Recommendation[C]//Proceedings of the 29th International Conference on World Wide Web. New York: ACM, 2020: 2528-2534.

JI W D, WANG K Q, WANG X L, et al. Hybrid Sequential Recommender via Time-aware Attentive Memory Network[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 565-574.

LUO A J, ZHAO P P, LIU Y C, et al. Collaborative Self-Attention Network for Session-based Recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2020: 2591-2597.

KE G L, HE D, LIU T Y. Rethinking Positional Encoding in Language Pre-training[C]//Proceedings of the 9th International Conference on Learning Representations. USA: DBLP, 2021: 1-14.

PETERS B, NICULAE V, MARTINS A F T. Sparse Sequence-to-sequence Models[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics. USA: Association for Computational Linguistics, 2019: 1504-1519.

LIU C, LI X G, CAI G H, et al. Noninvasive Self-attention for Side Information Fusion in Sequential Recommendation[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. USA: IEEE, 2021: 4249-4256.

SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.

ZHAO W X, MU S L, HOU Y P, et al. RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 4653-4664.

YU F, ZHU Y Q, LIU Q, et al. TAGNN: Target Attentive Graph Neural Networks for Session-based Recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924.

ZHANG T T, ZHAO P P, LIU Y C, et al. Feature-level Deeper Self-Attention Network for Sequential Recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. USA: AAAI Press, 2019: 4320-4326.

MENG W J, YANG D Q, XIAO Y H. Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1091-1100.

中图分类号:

 TP391.3    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式