- 无标题文档
查看论文信息

论文中文题名:

 车辆电动静液压主动悬架双滑模切换控制研究    

姓名:

 许家楠    

学号:

 17205020033    

保密级别:

 公开    

论文语种:

 chi    

学生类型:

 硕士    

学位年度:

 2020    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 车辆工程    

第一导师姓名:

 寇发荣    

论文外文题名:

 Research on double sliding mode switching control of EHA active suspension    

论文中文关键词:

 电动静液压 ; 主动悬架 ; 双滑模控制 ; 卡尔曼滤波 ; 复合切换    

论文外文关键词:

 Electrodynamic hydraulic pressure ; Active suspension ; Dual sliding mode control ; Kalman filtering ; Compound switch    

论文中文摘要:

采用电动静液压(Electro-Hydrostatic Actuator)作动器的主动悬架随着使用年限增加或工作环境变化,会出现一种实际产生主动力小于所需主动力的失效现象,减弱主动悬架系统对地面激励的抑制效果,降低驾驶员和乘员的舒适性与操纵稳定性。本文在提升主动悬架性能的基础上,考虑作动器失效现象,设计了一种双滑模切换控制策略,对电动静液压主动悬架进行控制研究。

在分析电动静液压主动悬架结构组成与工作原理的基础上,建立了电动静液压主动悬架动力学模型与失效模型。设计了一种包含主动模式与失效模式的双滑模切换控制策略:在主动模式下,设计了一种双滑模内外环控制,包含基于模型参考的外环滑模控制和电机内环滑模控制;采用卡尔曼滤波状态估计算法,估计悬架系统各项状态变量的值,判断悬架作动器是否失效,当作动器发生失效后的失效模式下,通过卡尔曼滤波估计算法计算得到作动器失效因子,对输出主动力进行补偿;并提出了一种复合切换条件,提升控制策略在模式切换时的切换稳定性。在MATLAB/Simulink环境下对采用双滑模切换控制策略的电动静液压主动悬架进行仿真分析;最后在二立柱式振动台和数据采集系统的基础上,制作试验样机、振动试验所需的控制器与驱动器等,开展了悬架主动控制试验与失效补偿试验。

仿真结果表明:在主动模式下,双滑模内外环控制策略可以大幅降低电动静液压主动悬架作动器输出力脉动;在失效模式下,能够进行模式切换,使电动静液压主动悬架性能恢复至与正常主动悬架相近的水平。试验结果表明:当悬架处于主动模式时,在正弦路面与随机路面激励下,与被动悬架相比簧载质量加速度分别降低37.86%31.07%;在失效模式下,相比于失效因子为0.6的悬架作动器,簧载质量加速度下降26.7%,改善了作动器失效造成车辆悬架性能恶化的问题。

论文外文摘要:

With the increase of service life or the change of working environment, the active suspension with electro-hydraulic actuator (EHA) actuator will have a failure phenomenon that the actual active force is less than the required one, which weakens the suppression effect of active suspension system on ground excitation, and reduces the comfort and handling stability of drivers and passengers. In this paper, on the basis of improving the performance of the active suspension and considering the failure of the actuator, a double sliding mode switching control strategy is designed to study the control of the active suspension.

Based on the analysis of the structure and working principle of the active suspension, the dynamic model and failure model of the active suspension are established. A double sliding mode control strategy including active mode and failure mode is proposed: in active mode, a double sliding mode inner and outer loop control is designed, including outer loop sliding mode control based on model reference and motor inner loop sliding mode control; Kalman filter state estimation algorithm is used to estimate the value of various state variables of suspension system and judge whether the suspension actuator is invalid In the failure mode of the actuator after failure, the failure factor of the actuator is calculated by Kalman filter estimation algorithm to compensate the output active force, and a compound switching condition is proposed to improve the switching stability of the control strategy in the mode switching. In the environment of MATLAB / Simulink, the dynamic characteristics and output active force characteristics of the electro-static hydraulic active suspension when the above control strategy is adopted are simulated and analyzed. Finally, the bench test system is trial manufactured in the laboratory environment. Based on the two column vibration table and data acquisition system, the test prototype, the controller and driver required for the vibration test are made and carried out the suspension active control test and failure compensation test are carried out.

The simulation results show that in the active mode, the double sliding mode inner and outer loop control strategy can significantly reduce the output force ripple of the actuator of the electro-static hydraulic active suspension; in the failure mode, the mode can be switched to restore the performance of the electro-static hydraulic active suspension to the level close to the normal suspension. The test results show that the acceleration of sprung mass is 37.86% and 31.07% lower than that of passive suspension on different roads in active mode, and 26.7% lower than that of suspension actuator with failure factor of 0.6 in failure mode, which improves the deterioration of vehicle dynamic characteristics caused by actuator failure.

中图分类号:

 U463.33    

开放日期:

 2020-07-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式