论文中文题名: |
植被恢复区生态系统服务内部交互与外部驱动归因研究—以延安市为例
|
姓名: |
任宇
|
学号: |
22210226085
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
地理空间信息技术与应用
|
第一导师姓名: |
李婷
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-05-29
|
论文外文题名: |
Study on internal interaction and external driving attribution of ecosystem services in vegetation restoration areas: A case study of Yan’an
|
论文中文关键词: |
生态系统服务 ; 因果关系 ; 驱动因素 ; 地理交叉收敛映射模型 ; 时空地理加权 回归模型 ; 延安市
|
论文外文关键词: |
Ecosystem service ; Causal relationship ; Driving factors ; Geographical convergent cross mapping ; Geographically and temporally weighted regression ; Yan’an City
|
论文中文摘要: |
︿
<p>为解决土地退化实现可持续发展目标,自上世纪末中国开展了大范围的植被恢复计划,以缓解土地退化并提高生态系统功能。然而,长时间植被恢复导致生态系统服务关系变得复杂且具有不确定性,限制了植被恢复区社会—生态系统的可持续发展。 因此,全面认识植被恢复引起的生态系统服务权衡协同关系、 综合考虑其内部交互和外部驱动作用机制,对区域生态管理具有重要意义。本文以典型植被恢复区延安市作为研究区,利用 InVEST 模型和 CASA 模型量化了 1990、 2000、 2010 和 2020 年固碳量、土壤保持、产水量和基流调节 4 项生态系统服务;采用相关性分析和双变量空间自相关方法量化了生态系统服务关系总体时空分布与变化特征;采用地理交叉收敛映射模型和景观连通性分析检测了生态系统服务内部交互关系并进行交互区域的可视化;应用时空地理加权回归模型揭示了驱动因子对生态系统服务关系的时空作用机制。主要研究结果如下:<br />
( 1) 1990—2020 年,延安市固碳量和土壤保持服务得到了有效改善,高值区位于西南和东南原生林区。相比之下,产水和基流调节分别下降 3.40%和 10.05%, 低值区主要分布在延安市北部吴起、志丹和安塞等县区。<br />
( 2)生态系统服务协同关系主要集中在固碳、产水和土壤保持之间,而基流调节与其他服务关系较弱。空间上,除基流调节与土壤保持外,其他服务关系呈现出不同的空间格局。北部半干旱区,生态系统服务关系主要表现为“低—低” 协同。相比之下,南部半湿润地区生态系统服务关系(固碳—产水除外)表现出“低—高” 权衡,占研究区总面积 20.00%以上。<br />
( 3) 固碳和产水因果关系较强,固碳和基流调节、产水和基流调节的因果关系较弱。植被恢复导致的景观连通性增强是内部交互关系增多的原因,空间上内部交互主要发生在东南和西南高连通性林区。<br />
( 4)温度、降水和植被覆盖度为植被恢复前后生态系统服务关系的主导驱动因子。在北部半干旱区植被覆盖度和气候因子对生态系统服务的“低—低”协同产生负影响,导致协同面积减少。相比之下,植被覆盖度显著改善了中南部半湿润区的权衡关系。在气候和植被覆盖度强影响下,提高干旱区碳、土壤与水之间的协同关系,已成为当前植被恢复管理的优先事项。</p>
<p>综上所述,本研究揭示了植被恢复前后生态系统服务关系时空变化, 并基于内部交互和外部驱动双重视角, 探讨了其形成机制,为植被恢复区生态系统服务的科学管理提供依据。<br />
</p>
﹀
|
论文外文摘要: |
︿
<p>In order to address land degradation and achieve sustainable development goals, China has launched a large-scale vegetation restoration program since the end of the last century to alleviate land degradation and improve ecosystem functions. However, the sustainable development of socio-ecological systems in vegetation restoration areas is limited by the complex and uncertain relationships between ecosystem services in long-term vegetation restoration. Therefore, a full understanding of the trade-offs and synergies of ecosystem services caused by vegetation restoration, as well as a comprehensive consideration of their internal interactions and external driving mechanisms, is of great importance for regional ecological management. Yan’an City, a typical vegetation restoration area, as a case study, this paper used the InVEST model and the CASA model to quantify four ecosystem services: carbon sequestration, soil conservation, water yield and baseflow regulation in 1990, 2000, 2010 and 2020; The methods of correlation analysis and bivariate spatial autocorrelation have been used to quantify the spatiotemporal distribution and changes in the overall relationship of ecosystem services; The geographical convergent cross mapping model and landscape connectivity analysis were used to detect the internal interaction of ecosystem services and visualize the interaction area; The geographically and temporally weighted regression model was used to reveal the spatio-temporal mechanism of driving factors on the relationship of ecosystem services. The main conclusions are as follows:<br />
(1) Carbon sequestration and soil conservation were effectively improved between 1990 and 2020, with high value areas located in the original forest areas in the southwest and southeast of Yan’an City. In contrast, water yield and baseflow regulation decreased by 3.40% and 10.05%, respectively, and the low value areas were mainly distributed in Wuqi, Zhidan and Ansai counties in the north of Yan’an City.<br />
(2) The synergistic relationship between ecosystem services is mainly concentrated between carbon sequestration, water yield and soil conservation, while the relationship between baseflow regulation and other services is weak. Spatially, other ecosystem service relationships show different spatial patterns, with the exception of baseflow regulation and soil conservation. Ecosystem service relationships in the northern semi-arid region mainly showed a “low-low” synergy. In contrast, the ecosystem service relationship (except carbon sequestration-water yield) in the southern semi-humid region shows a “low-high” trade-off, accounting for more than 20.00% of the total study area.<br />
(3) The causal relationship between carbon sequestration and water yield was stronger, while the causal relationship between carbon sequestration and baseflow regulation and between water yield and baseflow regulation was weaker. The increased landscape connectivity caused by vegetation restoration is the reason for the increase in internal interactions. Spatially, internal interactions mainly occur in the highly connected forest areas in the southeast and southwest.<br />
(4) Temperature, precipitation and fractional vegetation cover are the dominant drivers of ecosystem service relationships before and after vegetation restoration. In the northern semiarid region, vegetation cover and climate factors have a negative impact on the “low-low” synergy of ecosystem services, resulting in the synergistic area being reduced. In contrast, in the semi-humid areas of central and southern area, fractional vegetation cover significantly improves the trade-off relationship. Under the strong influence of climate and vegetation cover, improving the coordination relationship between carbon, soil and water in arid areas has become a priority for current vegetation restoration management.<br />
In summary, this study has revealed the spatiotemporal changes in ecosystem service relationships before and after vegetation restoration, and explored their formation mechanism based on the dual perspectives of internal interaction and external driving, providing a basis for the scientific management of ecosystem services in vegetation restoration areas.<br />
</p>
﹀
|
参考文献: |
︿
[1] Visser S, Keesstra S, Maas G, et al. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030 [J]. Sustainability, 2019, 11(23): 6792. [2] Tripathi V, Edrisi S A, Chen B, et al. Biotechnological advances for restoring degraded land for sustainable development [J]. Trends in Biotechnology, 2017, 35(9): 847-859. [3] Lü Y, Lü D, Feng X M, et al. Multi-scale analyses on the ecosystem services in the Chinese Loess Plateau and implications for dryland sustainability [J]. Current Opinion in Environmental Sustainability, 2021, 48: 1-9. [4] Zhu H H, Du M L, Yin X J. Oasification in arid and semi-arid regions of China: new changes and re-examination [J]. Sustainability, 2023, 15(4): 3335. [5] Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands [J]. Nature Reviews Earth Environment, 2021, 2(12): 858-873. [6] Jia X X, Shao M A, Zhu Y J, et al. Soil moisture decline due to afforestation across the Loess Plateau, China [J]. Journal of Hydrology, 2017, 546: 113-122. [7] Jiang C, Zhang H Y, Zhao L L, et al. Unfolding the effectiveness of ecological restoration programs in combating land degradation: Achievements, causes, and implications [J]. Science of The Total Environment, 2020, 748: 141552. [8] 杨磊, 冯青郁, 陈利顶. 黄土高原水土保持工程措施的生态系统服务[J]. 资源科学, 2020, 42: 87-95. [9] Fan X, Yu H R, Tiando D S, et al. Impacts of Human Activities on Ecosystem Service Value in Arid and Semi-Arid Ecological Regions of China [J]. International Journal of Environmental Research and Public Health, 2021, 18(21): 11121. [10] 韩磊, 杨梅丽, 刘钊, 等. 黄土高原典型退耕区生态系统服务权衡与协同关系研究——以延安市为例[J]. 生态学报, 2022, 42: 8115-8125. [11] Zhao H F, He H M, Wang J J, et al. Vegetation restoration and its environmental effects on the Loess Plateau [J]. Sustainability, 2018, 10(12): 4676. [12] 李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状, 问题及对策[J]. 生态学报, 2019, 39: 7398-7409. [13] Ni R, Wang F E, Yu J. Spatiotemporal changes in sustainable development and its driving force in the Yangtze River Delta region, China [J]. Journal of Cleaner Production, 2022, 379: 134751. [14] Cingolani A M, Poca M, Giorgis M A, et al. Water provisioning services in a seasonally dry subtropical mountain: Identifying priority landscapes for conservation [J]. Journal of Hydrology, 2015, 525: 178-187. [15] Salemi L F, Groppo J D, Trevisan R, et al. Riparian vegetation and water yield: A synthesis [J]. Journal of Hydrology, 2012, 454: 195-202. [16] Bennett E M, Peterson G D, Gordon L J. Understanding relationships among multiple ecosystem services [J]. Ecology Letters, 2009, 12(12): 1394-1404. [17] Zhang Y Q, Zhao X, Gong J, et al. Effectiveness and driving mechanism of ecological restoration efforts in China from 2009 to 2019 [J]. Science of The Total Environment, 2024, 910: 168676. [18] 侯孟阳, 姚顺波, 邓元杰, 等. 格网尺度下延安市生态服务价值时空演变格局与分异特征——基于退耕还林工程的实施背景[J]. 自然资源学报, 2019, 34: 539-552. [19] 张小勇, 卫海燕. 延安市 1999-2008 年植被恢复的成效分析[J]. 水土保持通报, 2013, 33: 218-222. [20] Su C H, Dong M, Fu B J, et al. Scale effects of sediment retention, water yield, and net primary production: A case‐study of the Chinese Loess Plateau [J]. Land Degradation Development, 2020, 31(11): 1408-1421. [21] 朴世龙, 方精云, 郭庆华. 利用 CASA 模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25: 603. [22] Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade [J]. Nature Geoscience, 2015, 8(10): 739-741. [23] Tsunekawa A, Liu G, Yamanaka N, et al. Restoration and development of the degraded Loess Plateau, China [M]. Springer, 2014. [24] Jiang C, Zhang H Y, Zhang Z D. Spatially explicit assessment of ecosystem services in China's Loess Plateau: Patterns, interactions, drivers, and implications [J]. Global Planetary Change, 2018, 161: 41-52. [25] Liu G B, Shao Q Q, Fan J W, et al. Assessment of restoration degree and restoration potential of key ecosystem-regulating services in the three-river headwaters region based on vegetation coverage [J]. Remote Sensing, 2023, 15(2): 523. [26] 佟小刚, 韩新辉, 吴发启, 等. 黄土丘陵区三种典型退耕还林地土壤固碳效应差异[J]. 生态学报, 2012, 32: 6396-6403. [27] Ma R M, Lü Y H, Fu B J, et al. A modified habitat quality model to incorporate the effects of ecological restoration [J]. Environmental Research Letters, 2022, 17(10): 104029. [28] Wang G, Yue D P, Niu T, et al. Regulated Ecosystem Services Trade-Offs: Synergy Research and Driver Identification in the Vegetation Restoration Area of the Middle Stream of the Yellow River [J]. Remote Sensing, 2022, 14(3): 718 [29] Wang X F, Ma X, Feng X M, et al. Spatial-temporal characteristics of trade-off and synergy of ecosystem services in key vulnerable ecological areas in China [J]. Acta Ecologica Sinica, 2019, 39(20): 7344-7355. [30] 戴尔阜, 王晓莉, 朱建佳, 等. 生态系统服务权衡:方法, 模型与研究框架[J]. 地理研究, 2016, 35: 1005-1016. [31] 王晓峰, 马雪, 冯晓明, 等. 重点脆弱生态区生态系统服务权衡与协同关系时空特征[J]. 生态学报, 2019, 39: 7344-7355. [32] Li T, Ren Y, Ai Z M, et al. Revealing the Spatial Interactions and Driving Factors of Ecosystem Services: Enlightenments under Vegetation Restoration [J]. Land, 2024, 13(4): 511. [33] 赵兵兵, 刘殿锋. 多情景退耕还林对林地生物多样性保护价值的潜在影响[J]. 农业工程学报, 2022, 38(20): 239-249. [34] Lei M, Ma G X, Yu F, et al. Study on the ecosystem service flow based on the relationship of between supply and demand in Yangtze River Economic Belt [J]. Frontiers in Earth Science, 2024, 12: 1432037. [35] Qiu S J, Peng J, Dong J Q, et al. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China [J]. Progress in Physical Geography: Earth Environment, 45(1): 98-114. [36] Gomes L C, Bianchi F J, Cardoso I M, et al. Land use change drives the spatio-temporal variation of ecosystem services and their interactions along an altitudinal gradient in Brazil [J]. Landscape Ecology, 2020, 35: 1571-1586. [37] Li T, Lü Y H, Fu B J, et al. Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: Enhanced services while depressed synergies [J]. Ecological Indicators, 2019, 99: 332-342. [38] Xu S N, Liu Y F, Wang X, et al. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China [J]. Science of the Total Environment, 2017, 598: 297-306. [39] Yang M H, Gao X D, Zhao X N, et al. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau [J]. Science of The Total Environment, 2021, 785: 147389. [40] Yoon E J, Kim B, Lee D K. Multi-objective planning model for urban greening based on optimization algorithms [J]. Urban Forestry Urban Greening, 2019, 40: 183-194. [41] Dade M C, Mitchell M G E, McAlpine C A, et al. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach [J]. Ambio, 2019, 48(10): 1116-1128. [42] Deng Z Y, Cao J S. Incorporating ecosystem services into functional zoning and adaptive management of natural protected areas as case study of the Shennongjia region in China [J]. Scientific Reports, 2023, 13(1): 18870. [43] 余兆武, 郭青海, 曾瑜皙, 等. 城镇化过程土地利用变化及效应研究进展[J]. 生态科学, 2015, 34: 193-200. [44] Feng Q, Zhao W W, Fu B J, et al. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China [J]. Science of The Total Environment, 2017, 607-608: 1250-1263. [45] Landuyt D, Broekx S, Goethals P L M. Bayesian belief networks to analyse trade-offs among ecosystem services at the regional scale [J]. Ecological Indicators, 2016, 71: 327-335. [46] Shen J S, Li S C, Liang Z, et al. Exploring the heterogeneity and nonlinearity of trade-offs and synergies among ecosystem services bundles in the Beijing-Tianjin-Hebei urban agglomeration [J]. Ecosystem Services, 2020, 43: 101103. [47] Ahmadi Mirghaed F, Souri B. Monitoring ecosystem services through land use change in a semiarid region: a case study of the Taluk watershed, southwestern Iran [J]. International Journal of Environmental Science Technology, 2022, 19(12): 12523-12536. [48] Li F Z, Yin X X, Shao M. Natural and anthropogenic factors on China's ecosystem services: Comparison and spillover effect perspective [J]. Journal of Environmental Management, 2022, 324: 116064. [49] Wang S J, Liu Z T, Chen Y X, et al. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance [J]. Resources, Conservation and Recycling, 2021, 168: 105477. [50] Xu X H, Yu J, Wang F E. Analysis of ecosystem service drivers based on interpretive machine learning: a case study of Zhejiang Province, China [J]. Environmental Science and Pollution Research, 2022, 29(42): 64060-64076. [51] 张甜, 彭建, 刘焱序, 等. 基于植被动态的黄土高原生态地理分区[J]. 地理研究, 2015, 34: 1643-1661. [52] 薛桦, 刘萍. 基于 RSEI 的黄河中游地区生态环境质量时空演化特征及驱动因素[J]. 水土保持研究, 2024, 31(1) : 373-384. [53] 赵安周, 张安兵, 刘海新, 等. 退耕还林 (草) 工程实施前后黄土高原植被覆盖时空变化分析[J]. 自然资源学报, 2017, 32: 449-460. [54] 张舒婷, 王晓慧, 彭道黎, 等. 黄土高原丘陵沟壑区植被覆盖度变化监测[J]. 浙江农林大学学报, 2020, 37: 1045-1053. [55] 杨强, 何立恒, 鲍其胜. 延安市 1980—2010 年气温和降水的年际变化特征[J]. 南京林业大学学报, 2014, 38: 179. [56] 王雪峰. 延安市水资源现状分析及开发利用的基本思路[J]. 陕西水利, 2008, 47-8. [57] 徐冉, 张碧辉, 安林昌, 等. 2000~ 2021年中国沙尘传输路径特征及气象成因分析[J]. 中国环境科学, 2023, 43: 4450-4458. [58] 马朝琦, 刘传磊, 李小娜. 延安市农民收入可持续增长机制探析[J]. 人文地理, 2010, 25: 96-99. [59] 徐世才, 王莉, 沈雪健, 等. 陕西子午岭国家级自然保护区不同生境蝶类昆虫多样性[J]. 林草资源研究, 2016, 103. [60] 汤青, 徐勇, 李扬. 黄土高原农户可持续生计评估及未来生计策略——基于陕西延安市和宁夏固原市 1076 户农户调查[J]. 地理科学进展, 2013, 32: 161-169. [61] 马涛, 王昊, 谭乃榕, 等. 流域主体功能优化与黄河水资源再分配[J]. 自然资源学报, 2021, 36: 240-255. [62] 王秀明, 刘谞承, 龙颖贤, 等. 基于改进的 InVEST 模型的韶关市生态系统服务功能时空变化特征及影响因素[J]. 水土保持研究, 2020, 27: 381-388. [63] Vallet A, Locatelli B, Levrel H, et al. Relationships between ecosystem services: comparing methods for assessing tradeoffs and synergies [J]. Ecological Economics, 2018, 150: 96-106. [64] Chen X B, Ding W R. Spatial-temporal evolution and trade-off synergy relationships of ecosystem services in karst area of shilin [J]. Research of Soil and Water Conservation, 2023, 30(02): 285-293. [65] Sugihara G, May R, Ye H, et al. Detecting causality in complex ecosystems [J]. Science, 2012, 338(6106): 496-500. [66] Goward S N, Tucker C J, Dye D G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer [J]. Journal of Plant Ecology, 1985, 64(1): 3-14. [67] 王智. 基于 CASA 模型的杭州市森林碳储量时空变化及影响因子研究[J]. 2021. [68] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31: 413-424. [69] 高海东, 李占斌, 李鹏, 等. 基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究[J]. 地理学报, 2015, 70: 1503-1515. [70] 程昊, 韩庚友, 包会之, 等. 基于 EPIC 模型的粉粒含量与土壤可蚀性关系研究[J]. 水土保持, 2022, 10(1): 6-12. [71] 蔡崇法, 丁树文, 史志华, 等. 应用 USLE 模型与地理信息系统 IDRISI 预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24. [72] 程琳, 杨勤科, 谢红霞, 等. 基于 GIS 和 CSLE 的陕西省土壤侵蚀定量评价方法研究[J]. 水土保持学报, 2009, 23(5) 61-66. [73] Anjinho P d S, Barbosa M A G A, Mauad F F. Evaluation of InVEST’s water ecosystem service models in a Brazilian Subtropical Basin [J]. Water, 2022, 14(10): 1559. [74] Turner K G, Odgaard M V, Bøcher P K, et al. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape [J]. Landscape Urban Planning, 2014, 125: 89-104. [75] Droogers P, Allen R G. Estimating reference evapotranspiration under inaccurate data conditions [J]. Irrigation Drainage Systems, 2002, 16: 33-45. [76] Williams J R, Jones C A, Kiniry J R, et al. The EPIC Crop Growth Model [J]. Transactions of the ASAE, 1989, 32(2): 497-511. [77] Sone J S, Gesualdo G C, Zamboni P A, et al. Water provisioning improvement through payment for ecosystem services [J]. Science of the Total Environment, 2019, 655: 1197-1206. [78] Lu H T, Yan Y, Zhu J Y, et al. Spatiotemporal water yield variations and influencing factors in the Lhasa River Basin, Tibetan Plateau [J]. Water, 2020, 12(5): 1498. [79] Hoeft C C. Incorporating updated runoff curve number technology into NRCS directives; proceedings of the Watershed Management Conference 2020. Reston, VA: American Society of Civil Engineers, 2020: 78-87. [80] Lovie S, Lovie P. Commentary: Charles Spearman and correlation: a commentary on 'The proof and measurement of association between two things' [J]. International Journal of Epidemiology, 2010, 39(5): 1151-1153. [81] Lorilla R S, Poirazidis K, Detsis V, et al. Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece) [J]. Ecological Modelling, 2020, 422: 108994. [82] Rousseeuw P J, Ruts I, Tukey J W. The bagplot: a bivariate boxplot [J]. The American Statistician, 1999, 53(4): 382-387. [83] Schirpke U, Candiago S, Egarter Vigl L, et al. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services [J]. Science of The Total Environment, 2019, 651(Pt 1): 928-941. [84] Jopke C, Kreyling J, Maes J, et al. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns [J]. Ecological Indicators, 2015, 49: 46-52. [85] Chang H S, Lin Z H, Hsu Y Y. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the Yanshuei River Basin, Taiwan [J]. Urban Forestry & Urban Greening, 2021, 65: 127325. [86] 张路, 肖燚, 郑华, 等. 2010 年中国生态系统服务空间数据集[J]. 中国科学数据, 2014, 3. [87] 裴渊杰, 罗漫雅, 赵永华, 等. 多尺度生态系统服务权衡与协同关系——以延安市为例[J]. 生态学杂志, 2022, 41(7): 1351-1360. [88] Chen H, Fleskens L, Schild J, et al. Impacts of large-scale landscape restoration on spatio-temporal dynamics of ecosystem services in the Chinese Loess Plateau [J]. Landscape Ecology, 2022, 37: 329-346. [89] Kundu S, Rana N K, Mahato S. Unravelling blue landscape fragmentation effects on ecosystem services in urban agglomerations [J]. Sustainable Cities Society, 2024, 102: 105192. [90] 陈昕, 彭建, 刘焱序, 等. 基于 “重要性—敏感性—连通性” 框架的云浮市生态安全格局构建[J]. 地理研究, 2017, 36(3): 471-484. [91] Guo H Q, Yu Q, Pei Y R, et al. Optimization of landscape spatial structure aiming at achieving carbon neutrality in desert and mining areas [J]. Journal of Cleaner Production, 2021, 322: 129156. [92] 彭建, 刘志聪, 刘焱序, 等. 京津冀地区县域耕地景观多功能性评价[J]. 生态学报, 2016, 36(8): 2274-2285. [93] Wang X, Ma X, Feng X, et al. Spatial-temporal characteristics of trade-off and synergy of ecosystem services in key vulnerable ecological areas in China [J]. Acta Ecologica Sinica, 2019, 39(20): 7344-7355. [94] Renard D, Rhemtulla J M, Bennett E M. Historical dynamics in ecosystem service bundles [J]. Proceedings of the National Academy of Sciences, 2015, 112(43): 13411-6. [95] 杨宜男, 李敬, 王立, 等. 长三角地区城市化对典型生态系统服务供需的影响[J]. 自然资源学报, 2022, 37(6): 1555-1571. [96] Daryanto S, Wang L X, Fu B J, et al. Vegetation responses and trade‐offs with soil‐related ecosystem services after shrub removal: A meta‐analysis [J]. Land Degradation Development, 2019, 30(10): 1219-1228. [97] Rötzer T, Rahman M, Moser-Reischl A, et al. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions [J]. Science of the Total Environment, 2019, 676: 651-664. [98] 李茜, 王芳, 曹扬, 等. 陕西省森林土壤固碳特征及其影响因素[J]. 植物生态学报, 2017, 41(9): 953-63. [99] 潘红丽, 田雨, 刘兴良, 等. 卧龙自然保护区华西箭竹 (Fargesia nitida) 生态学特征随海拔梯度的变化[J]. 生态环境学报, 2010, 19(12): 2832-2839. [100] Prinz A L. Chocolate consumption and noble laureates [J]. Social Sciences Humanities Open, 2020, 2(1): 100082. [101] Zhou Z Q, Ding Y B, Zhao Y Y, et al. A new perspective for assessing hydro-meteorological drought relationships at large scale based on causality analysis [J]. Environmental Research Letters, 2023, 18(10): 104046. [102] Gao B B, Yang J Y, Chen Z Y, et al. Causal inference from cross-sectional earth system data with geographical convergent cross mapping [J]. Nature Communications, 2023, 14(1): 5875. [103] Deng X Y, Yu W P, Shi J N, et al. Characteristics of surface urban heat islands in global cities of different scales: Trends and drivers [J]. Sustainable Cities and Society, 2024, 107: 105483. [104] 苏常红, 傅伯杰. 景观格局与生态过程的关系及其对生态系统服务的影响[J]. 自然杂志, 2012, 34(5): 277-283. [105] 刘华军, 雷名雨. 交通拥堵与雾霾污染的因果关系——基于收敛交叉映射技术的经验研究[J]. 统计研究, 2019, 36(10): 43-57. [106] Pelorosso R, Gobattoni F, Geri F, et al. Evaluation of Ecosystem Services related to Bio-Energy Landscape Connectivity (BELC) for land use decision making across different planning scales [J]. Ecological Indicators, 2016, 61: 114-129. [107] 李俊生, 李岱青, 宋婷. 优化生态空间连通性, 提升区域生态质量[J]. 环境经济, 2021, 21: 46-4. [108] Yahner R H. Changes in wildlife communities near edges [J]. Conservation Biology, 1988, 2(4): 333-339. [109] Agudelo C A R, Bustos S L H, Moreno C A P. Modeling interactions among multiple ecosystem services. A critical review [J]. Ecological Modelling, 2020, 429: 109103. [110] Swanson F, Kratz T, Caine N, et al. Landform effects on ecosystem patterns and processes [J]. BioScience, 1988, 38(2): 92-98. [111] Jiang Y, Hou W J, Gao J B, et al. Refined revealing the chain path of multiple ecosystem services under diverse environmental factor gradients [J]. Science of the Total Environment, 2023, 865: 161187. [112] Lovejoy T E. Edge and other effects of isolation on Amazon forest fragments [J]. Conservation Biology the ence of Scarcity & Diversity, 1986: 257-285. [113] Storelvmo T, Tan I, Korolev A V. Cloud phase changes induced by CO2 warming—A powerful yet poorly constrained cloud-climate feedback [J]. Current Climate Change Reports, 2015, 1: 288-296. [114] Rosenfeld D, Andreae M O, Asmi A, et al. Global observations of aerosol‐cloud‐precipitation‐climate interactions [J]. Reviews of Geophysics, 2014, 52(4): 750-808. [115] Spracklen D, Baker J, Garcia-Carreras L, et al. The effects of tropical vegetation on rainfall [J]. Annual Review of Environment Resources, 2018, 43(1): 193-218. [116] Van Lanen H A, Alderlieste M A, Van der Heijden A, et al. Likelihood of future drought hazards: selected European case studies [J]. Drought-R Spi Technical Report, 2013, 11. [117] Sheng S T, Liu Y F, Liu Y L, et al. Spatial pattern and driving forces of the synergy and trade-off of ecosystem services in the coastal areas of Shandong [J]. Research of Soil and Water Conservation, 2023, 30: 384-392. [118] Li R, Zheng H, O'Connor P, et al. Time and space catch up with restoration programs that ignore ecosystem service trade-offs [J]. Science Advances, 2021, 7(14): eabf8650. [119] Zuo L Y, Gao J B, Du F J. The pairwise interaction of environmental factors for ecosystem services relationships in karst ecological priority protection and key restoration areas [J]. Ecological Indicators, 2021, 131: 108125. [120] Xu J L, Chen J X, Liu Y X. Partitioned responses of ecosystem services and their tradeoffs to human activities in the Belt and Road region [J]. Journal of Cleaner Production, 2020, 276: 123205. [121] Zhang H Y, Jiang C, Wang Y X, et al. Linking land degradation and restoration to ecosystem services balance by identifying landscape drivers: insights from the globally largest loess deposit area [J]. Environmental Science and Pollution Research, 2022, 29(55): 83347-83364. [122] Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices [J]. International Journal of Geographical Information Science, 2010, 24(3): 383-401. [123] Yanagihara H, Kamo K-i, Imori S, et al. Bias-corrected AIC for selecting variables in multinomial logistic regression models [J]. Linear Algebra and its Applications, 2012, 436(11): 4329-4341. [124] Jiang W, Fu B J, Gao G Y, et al. Exploring spatial-temporal driving factors for changes in multiple ecosystem services and their relationships in West Liao River Basin, China [J]. Science of the Total Environment, 2023, 904: 166716. [125] Li G Y, Jiang C H, Gao Y, et al. Natural driving mechanism and trade-off and synergy analysis of the spatiotemporal dynamics of multiple typical ecosystem services in Northeast Qinghai-Tibet Plateau [J]. Journal of Cleaner Production, 2022, 374: 134075. [126] Ebabu K, Tsunekawa A, Haregeweyn N, et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia [J]. Science of The Total Environment, 2019, 648: 1462-1475. [127] Erb K H, Kastner T, Plutzar C, et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass [J]. Nature, 2018, 553(7686): 73-76. [128] Ke X, Liu W W. Factors affecting forest carbon sequestration [J]. Forestry and Ecology, 2021, 3: 40-41.
﹀
|
中图分类号: |
X171.1
|
开放日期: |
2025-06-18
|