- 无标题文档
查看论文信息

论文中文题名:

 文家坡煤矿深埋综放工作面开采地表沉陷规律研究    

姓名:

 刘博    

学号:

 19209212061    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 矿区地质灾害防治    

第一导师姓名:

 侯恩科    

第一导师单位:

 西安科技大学    

第二导师姓名:

 姬亚东    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on Mining Surface subsidence Law of Deep-buried fully Mechanized caving face in Wenjiapo Coal Mine    

论文中文关键词:

 深埋煤层 ; 地表移动变形 ; 采煤地表裂缝 ; 数值模拟    

论文外文关键词:

 Deep buried coal seam ; Surface movement and deformation ; Surface cracks in coal mining ; Numerical simulation    

论文中文摘要:

近年来,西部黄土沟壑区深埋煤层综放工作面开采所导致的地表移动变形和地表裂缝等地质灾害,损害了矿区地表建筑物、水体及道路。因此开展黄土沟壑区深埋煤层综放工作面开采地表沉陷发育规律研究具有重要的理论与实际意义。

以西部黄土沟壑区彬长矿区文家坡煤矿4105深埋综放工作面为主要研究对象,进行了地表岩移观测和分析。4105深埋综放工作面开采(采高9m)地表最大下沉系数为0.25、最大下沉量为-1.82m、最大水平位移量为0.77m、最大下沉速度为-7.3mm/d;4105工作面地表下沉和地表水平移动整体偏向4104工作面采空区一侧,地表最大下沉点也偏向4104工作面采空区一侧,且靠近4104工作面采空区一侧地表下沉速率最大;4105工作面的开采使东邻4104工作面(采高7m)采空区发生二次下沉,倾向上二次下沉量较初次下沉量最大增加1.50m,最小增加了0.16m。确定了4105综放工作面开采过程中地表移动参数,采用概率积分法预计了相邻待采工作面开采后地表移动范围。

通过野外地质填图结合无人机遥感,将4105深埋综放工作面地表裂缝划分为平行切眼裂缝和平行顺槽裂缝两种类型。平行切眼裂缝表现为“开裂-减小-稳定”的变化规律,平行顺槽裂缝表现为“开裂-增大-稳定”的变化规律。通过现场示踪标记开挖观测,发现4105综放工作面地表裂缝剖面形态表现为“楔”型和“分叉”型。巨厚黄土层、大深厚比的煤层赋存条件不利于综放工作面地表裂缝的发育,覆岩破断来压步距、来压强度与裂缝发育有较密切的相关性,在地表下沉较大区域沉降量与地表裂缝的发育宽度呈正相关关系。确定了文家坡深埋综放工作面开采地表裂缝发育的临界条件,并对相邻工作面开采后地表裂缝的发育进行了预测。

FLAC3D数值模拟结果显示,4105工作面开采结束后覆岩塑性破坏区表现为“凹”型,剪切力表现为支撑性较强的“拱”形,地表移动变形区域可分为沉陷边缘区和沉陷中心区。4105工作面的开采使覆岩移动破坏波及面间煤柱区及4104工作面采空区,致使4104工作面采空区覆岩移动破坏高度增大,引起了采空区地表的二次下沉。

论文外文摘要:

In recent years, geological disasters such as surface movement, deformation and surface cracks caused by mining of fully mechanized top coal caving face in deep coal seam in western loess gully region have damaged the surface buildings, water bodies and roads in the mining area. Therefore, it is of great theoretical and practical significance to study the development law of surface subsidence in fully mechanized top coal caving face of deep coal seam in loess gully region.

Taking the 4105 deep buried fully mechanized top coal caving face of Wenjiapo Coal Mine in Binchang mining area of western loess gully region as the main research object, the surface rock movement was observed and analyzed. 4105 Deep buried fully mechanized top coal caving face (mining height 9m) the maximum surface subsidence coefficient is 0.25m, the maximum subsidence is-1.82m, the maximum horizontal displacement is 0.77m, and the maximum subsidence speed is-7.3mm/d; the surface subsidence and horizontal movement of 4105 working face are generally inclined to one side of the goaf of 4104 working face, and the maximum subsidence point of the surface is also inclined to one side of the goaf of 4104 working face, and the surface subsidence rate is the highest on the side near the goaf of 4104 working face; the mining of 4105 working face causes the secondary subsidence of the goaf of 4104 working face (mining height 7m) in the east, and the secondary subsidence is 1.50m and 0.16m higher than that of the primary subsidence. The parameters of surface movement in the mining process of 4105 fully mechanized top coal caving face are determined, and the range of surface movement after mining of adjacent working face is predicted by probability integration method.

Through field geological mapping and UAV remote sensing, the surface cracks in 4105 deep buried fully mechanized top coal caving face are divided into two types: parallel cut cracks and parallel trench cracks. The parallel cut crack shows the change law of "crack-decrease-stability", and the parallel groove crack shows the change law of "crack-increase-stability". Through the on-site tracer mark excavation observation, it is found that the surface crack profile of 4105 fully mechanized top coal caving face shows "wedge" type and "bifurcation" type. The occurrence condition of super-thick loess layer and large depth-thickness ratio coal seam is not conducive to the development of surface cracks in fully mechanized top-coal caving face, and the overlying rock fracture step and strength are closely related to the development of fissures. in the larger area of surface subsidence, there is a positive correlation between the subsidence and the development width of surface cracks. The critical conditions for the development of surface cracks in Wenjiapo deep buried fully mechanized top coal caving face are determined, and the development of surface cracks in adjacent faces after mining is predicted.

The results of FLAC3D numerical simulation show that the plastic failure zone of overlying rock in 4105 working face is "concave", the shear force is "arch" with strong support, and the area of surface movement and deformation can be divided into subsidence edge area and subsidence center area. The mining of 4105 working face causes the overlying rock movement to destroy the coal pillar area between the faces and the goaf of 4104 working face, which increases the failure height of the overlying rock movement in the goaf of 4104 working face, and causes the secondary subsidence of the surface of the goaf.

参考文献:

[1] 余学义,张恩强.开采损害学[M].煤炭工业出版社, 2010:25-27.

[2] 李树志.我国采煤沉陷区治理实践与对策分析[J].煤炭科学技术,2019,47(01):36-43.

[3] 邓喀中.变形监测及沉陷工程学[M].徐州:中国矿业大学出版社,2014:11-14.

[4] Howladar M F. Environmental impacts of subsidence around the Barapukuria Coal Mining area in Bangladesh [J]. Energy, Ecology and Environment.2016,01(06):370-385.

[5] 王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005:45-47.

[6] Ferrari C.R. .Residual coal mining subsidence-some facts [J].Mining Technology, 1997, 79(9): 177-183.

[7] Sheorey P. R, Loui J.P., Singh K.B. et.al. Ground subsidence observations and a modified influence function method for complete subsidence prediction [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(05): 801-818.

[8] Donnelly L.J, De La Cruz H, Asmar I. et.al. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia [J]. Engineering Geology, 2001, 59(01): 103-114.

[9] Asadi Ahmad, Shahriar Kourosh. Prediction of surface subsidence due to inclined coal seam mining using profile function (Pr·1ediction of surface subsidence due to inclined coal seam mining using profile function) [J]. Journal of Science and Technology, 2005, 16(61): 9-18.

[10] Orwat J. Mining terrain curvatures approximation using the polynomials and a subsidence trough profile fragmentation[J]. Journal of Physics: Conference Series,2021,1781(01):8-14.

[11] Kamila Pawluszek-Filipiak, Andrzej Borkowski. Integration of D-In-SAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland [J]. Remote Sensing,2020,12(02):24-28.

[12] 北京矿业学院矿山测量教研组等.矿山岩层与地表移动[M].北京:煤炭工业出版社,1960:12-14.

[13] 饶凌志.江西省雷溪石膏矿区地面沉陷机理及防治措施研究[D].成都:成都理工大学,2014.

[14] 贺圣林.黄土沟壑区煤层开采地表移动变形规律研究[D].西安:西安科技大学,2019.

[15] Bramier Subsidence due underground mining [M].US: Bureau of Mines,1973:88-94.

[16] Ryszard Mielimąka, Paweł Sikora. Subsidence through formation simulation with the use of cellular automata theory on the example of real, multi-longwall example [J]. IOP Conference Series: Earth and Environmental Science,2018,198(01):33-38

[17] Jaeger J M, Cook NGW Fub damentals of rock mechanics [M]. London: Methuen and CO,1969:102-111.

[18] Shi GH Block System Modelling by Discontinuous Deformation Analysis [M].Southampton, UK and Boston, USA: Computational Mechanics Publications,1993:89-93.

[19] R.E.Goodman. Introduction rock Mechanics [J]. Canada: jolm Wiley Sons,1980.28(4):211-226.

[20] Keatzsch H. Mining Subsidence Engineering Spring ever flag [M]. Springer: Berlin Heidelberg New York,1983:67-69.

[21] 刘宝琛.随机介质理论及其在开挖引起的地表下沉问题中的应用[J].中国有色金属学报,1992,02(03):8-1.

[22] 贾喜荣,翟英达.采场薄板矿压理论与实践综述[J].矿山压力与顶板管理,1999,22(25):234-238.

[23] 钱鸣高.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003:18-21.

[24] 刘文生.条带法开采采留宽度合理尺寸研究[D].阜新:阜新矿业学院,1988:62-65.

[25] 郭增长.极不充分开采地表移动预计方法及建筑物巧部压煤开采技术的研究[D].北京:中国矿业大学,2000.

[26] 张永波,斩钟铭,刘秀英.采动岩体裂隙分形相关规律的试验研究机.岩石力学与工程学报,2004,23(20):3426-3429.

[27] 徐必根,黄英华,刘小林.护顶层对石膏矿采空区稳定性影响研究[J].矿业研究与开发,2007(05):20-22.

[28] 王畔.用离散单元法研究深部开采岩层移动大变形问题[J].阜新矿业学院学报,1996,15(02);36-40.

[29] 王鹏.复杂开采条件覆岩移动和变形规律的模拟研究[D].太原:太原理工大学,2010.

[30] 任杰,王爱军,焦姗,等.开挖浅埋煤层条件下山区地表移动及变形规律预计[J].煤炭技术,2019,38(03):62-65.

[31] 江克贵,王磊,蒋创,等.基于选权迭代最小二乘的地表移动盆地边界角量参数估计[J].合肥工业大学学报(自然科学版),2019,42(08):1131-1136.

[32] 郭旭炜,杨晓琴,柴双武,等.基于变异函数的地表沉陷动态预计模型研究[J].煤炭科学技术,2021,49(09):159-166.

[33] 崔希民,车宇航, Malinowska A,等.采动地表沉陷全过程预计方法与存在问题分析[J/OL].煤炭学报,2022,04(08):1-14.

[34] 曹树刚,刘延保,黄昌文,等.近水平煤层开采地表移动规律研究[J].采矿与安全工程学报,2006,(01):74-78.

[35] 滕永海,王金庄.综采放顶煤地表沉陷规律及机理[J].煤炭学报,2008(03):26-29.

[36] 赵星涛,胡奎,卢晓攀,等.无人机低空航摄的矿山地质灾害精细探测方法[J].测绘科学,2014,39(06): 49-52.

[37] 陈俊杰,南华,闫伟涛,等.浅埋深高强度开采地表动态移动变形特征[J].煤炭科学技术,2016,44(03):158-162.

[38] 贺卫中,向茂西,刘海南,等.榆神府矿区地面沉陷特征及环境问题[J].煤田地质与勘探,2016,44(05):131-135.

[39] 谢晓深,侯恩科,王双明,等.风沙滩地区中深埋厚煤层综采地表移动变形规律实测研究[J].煤矿安全,2021,52(12):199-206.

[40] 何柯璐,汤伏全,韦书平,等.机载激光点云构建西部矿区开采沉陷模型研究[J].测绘科学,2021,46(02):130-138.

[41] Shi GH Block System Modelling by Discontinuous Deformation Analysis[M].Southampton,UK and Boston, USA: Computational Mechanics Publications,1993.

[42] Jaeger J M, Cook NGW Fub damentals of rock mechanics[M]. London: Methuen and CO,Ltd,1969.

[43] 李作良.矿山开采沉陷非线性理论与实践导引[M].北京:煤炭工业出版社,1998:32-35.

[44] 武强,张宏.开滦东欢坨矿北二采区冒裂带高度可视化数值模拟[J].煤田地质与勘探,2002,30(05):41-44.

[45] 王来贵.采煤引起地表裂缝数值模拟研究[J].沈阳建筑大学学报(自然科学版),2010,26(06):1138-1141.

[46] 张娇,聂国华.带有全铰节点的三维杆系结构静力分析的回传波射矩阵法研究[J].力学期刊,2013,34(02):199-204.

[47] 余学义,王昭舜,杨云,等.大采深综放开采覆岩移动规律离散元数值模拟研究[J].采矿与岩层控制工程学报,2021,03(01):28-38.

[48] 戴嵩.基于格网数据的矿区变形数值模拟研究[D].兰州:兰州交通大学,2021.

[49] 刘辉,左建宇,苏丽娟,等.巨厚含水松散层下开采地表移动变形规律研究[J/OL].煤炭科学技术,2022,04(08):1-8.

[50] 郭广礼.老采空区上方建筑地基变形机理及其控制[M].徐州:中国矿业大学出版社,2001:12-13.

[51] 任伟中,白世伟,孙桂凤,等.厚覆盖岩层条件下地下采矿的地表及围岩变形破坏特性模型试验研究[J].岩石力学与工程学报, 2005, 24(21): 3935-3941.

[52] 董震雨.黄陵矿区采煤工作面地面沉陷特征及覆岩破坏规律研究[D].西安:西安科技大学,2010.

[56] 孙学阳,张齐,李成,等.陕北某矿双煤层开采对覆岩影响的模拟对比[J].煤田地质与勘探,2020,48(04):183-189.

[57] 张华兴.对“三下”采煤技术未来的思考[J].煤矿开采,2011,16(01):1-3.

[58] 崔希民,邓喀中.煤矿开采沉陷预计理论与方法研究评述[J].煤炭科学技术,2017,45(01):160-169.

[59] 胡振琪.我国土地复垦与生态修复30年回顾、反思与展望[J].煤炭科学技术,2019,47(01):25-35.

[60] 陈超.风沙区超大工作面地表及覆岩动态变形特征与自修复研究[D].北京:中国矿业大学,2018.

[61] 邹友峰.矿山开采沉陷工程[M].江苏:中国矿业大学出版社,2003:25-28.

[62] 吴侃,胡振琪,常江,等.开采引起的地表裂缝分布规律[J].中国矿业大学学报,1997,26(2):56-59.

[63] 赵兵朝,孙浩,郭亚欣,等.湿陷性黄土覆盖区煤层开采地表裂缝发育规律研究[J].矿业研究与开发,2021,41(06):105-110.

[64] 赵兵朝,同超,刘樟荣,等.西部生态脆弱区地表开采损害特征[J].中南大学学报(自然科学版),2017,48(11):2990-2997.

[65] 王景明,王江帅,刘金峰,等.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社,2000:23-26.

[66] 尹士献,何毓俊,李德海.采动影响下厚湿陷性黄土层拉伸裂缝预测研究[J].河南理工大学学报,2014,33(04):437-440.

[67] 蔡怀恩.彬长矿区地面沉陷特征及形成机理研究[D].西安:西安科技大学,2008.

[68] 郭文兵.断层影响下地表裂缝发育范围及特征分析[J].矿业安全与环保,2000(02):25-27.

[69] 姚娟,徐工.开采引起的地表裂缝规律研究[J].山东理工大学学报:自然科学版,2009(06):108-111.

[70] 刘爱军,郭俊廷,景胜强,等.地表采动裂缝发育与开采条件的关系数值模拟[J].矿业工程研究,2013,28(03):10-14.

[71] 郭俊廷,邹定辉,杨国柱,等.厚松散层条件下地表采动裂缝宽度的计算方法[J].煤矿安全,2014,45(05):170-172+176.

[72] 王鹏,余学义,刘俊.浅埋煤层大采高开采地表裂缝破坏机理研究[J].煤炭工程,2014, 46(05):84-86.

[73] 刘辉,邓喀中,雷少刚,等.采动地裂缝动态发育规律及治理标准探讨[J].采矿与安全工程学报,2017,34(05):884-890.

[74] 范立民,张晓团,向茂西,等.浅埋煤层高强度开采区地裂缝发育特征—以陕西榆神府矿区为例[J].煤炭学报,2015,40(06):1442-1447.

[75] 张启元.无人机航测技术在青藏高原地质灾害调查中的应用[J].青海大学学报,2015,(02): 67-72.

[76] 侯恩科,首召贵,徐友宁,等.无人机遥感技术在采煤地面沉陷监测中的应用[J].煤田地质与勘探,2017,45(06):102-110.

[77] 黄庆享,杜君武,侯恩科.浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J].采矿与安全工程学报,2019,36(01):7-15.

[78] 汤伏全,李林宽,李小涛,等.基于无人机影像的采动地表裂缝特征研究[J].煤炭科学技术,2020,48(10):130-136.

[79] 王双明,侯恩科,谢晓深,等.中深部煤层开采对地表生态环境的影响及修复提升途径研究[J].煤炭科学技术,2021,49(01):19-31.

[80] 胡振琪,王新静,贺安民.风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J].煤炭学报,2014,39(01):11-18.

[81] 刘辉,刘小阳,邓喀中,等.基于UDEC数值模拟的滑动型地裂缝发育规律[J].煤炭学报,2016,41(03):625-632.

[82] Dawei Z , Kan W , Zhihui B , et al. Formation and development mechanism of ground crack caused by coal mining: effects of overlying key strata [J]. Bulletin of Engineering Geology & the Environment, 2019, 78(02): 1025-1044.

[83] Xu Y , Wu K , Bai Z , et al. Theoretical analysis of the secondary development of mining-induced surface cracks in the Ordos region [J]. Environmental Earth Sciences, 2017, 76(20):703.

[84] 侯恩科,陈育,车晓阳,等.浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J/OL].煤炭科学技术,2020,06(09):1-10.

[85] 侯恩科,冯栋,谢晓深,等.浅埋煤层沟道采动裂缝发育特征及治理方法[J].煤炭学报,2021,46(04):1297-1308.

[86] 刘英锋.深埋特厚煤层综放开采覆岩破坏高度综合探查技术[J].中国煤炭地质,2013,25(07):26-30.

[87] 石磊.特厚深埋煤层覆岩裂隙动态演化特征研究[J].煤炭技术,2015,34(08):86-89.

[88] 娄芳,王震,金士魁等.深埋巨厚煤层分层开采覆岩破坏规律研究[J].煤炭技术,2017,36(07):34-37.

[89] 姚顽强,马飞,龚云.基于D-InSAR的彬长矿区沉陷变形监测[J].西安科技大学学报,2011,31(05):563-568.

[90] 汤伏全,乔德京,张健.黄土覆盖矿区黄土层湿陷性对开采沉陷的影响研究[J].煤炭工程,2015,47(06):88-90+94.

[91] 孙润,田午子,孙泽,等.马兰矿深埋中厚煤层覆岩移动变形规律相似模拟研究[J].华北科技学院学报,2019,16(06):30-35.

[92] 董灿灿,吕义清,刘志辉,等.复杂地貌下行式开采地表移动变形规律[J].煤矿安全,2020,51(11):237-242.

[93] 张玉鹏,张玉军,刘毅涛,等.蒙西深部厚煤层大采高综放面覆岩破坏高度研究[J].中国安全科学学报,2020,30(08):37-43.

[94] 王永辉,冯园,李兰兰.巨厚松散层下开采沉陷岩土体移动变形规律[J].成都理工大学学报(自然科学版),2020,47(06):733-741.

[95] 汤伏全,姚顽强,胡荣明.矿山测量[M].徐州:中国矿业大学出版社,2012:10-11.

中图分类号:

 TD325    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式