论文中文题名: |
新疆准南低阶煤中单/二元气体解吸动力学特性的实验研究
|
姓名: |
孙万杰
|
学号: |
18220089016
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
非常规天然气安全开发技术
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
林海飞
|
论文提交日期: |
2021-06-18
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Experimental study on the desorption kinetics characteristics of single/binary gas in the low-rank coal of southern Junggar
|
论文中文关键词: |
低阶煤 ; 瓦斯 ; 孔隙结构 ; 表面官能团 ; 二元气体
|
论文外文关键词: |
Low rank coal ; gas ; pore structure ; surface functional groups ; binary gas
|
论文中文摘要: |
︿
我国低阶煤瓦斯储量可观、开发前景巨大。瓦斯是一种含有CH4、CO2、N2等成分的多元气体,瓦斯抽采开发过程会引起煤体瓦斯解吸性能的改变,尤其是其动力学特性差异较大,研究低阶煤中多元气体的解吸动力学特性,对低阶煤瓦斯防治及开发利用具有重要意义。本文选取四种新疆准南矿区低阶煤样,结合低阶煤的孔隙特征和表面官能团特征,从动力学的角度分析了低阶煤中CH4、CO2、N2及二元混合气体的解吸特性。
通过压汞实验获得了四种低阶煤的孔隙参数,发现低阶煤孔隙体积、孔隙比表面积随孔径增大呈降低趋势;微孔的体积占比略大于过渡孔,其次是中孔、大孔;微孔的比表面积与占比远大于其他孔。应用分形理论对实验煤样体积分形维数进行计算,四个低阶煤样的体积分形维数为2.83~2.98,体积分形维数随镜质组反射率、平均孔径增加呈现减小趋势,随总孔比表面积、总孔体积的增加呈现增大趋势。通过傅里叶红外光谱仪实验,结合高斯分峰理论,对低阶煤中的官能团种类及含量进行了分析,得出低阶煤中的官能团以羟基和其他含氧官能团为主,脂肪烃、芳香烃峰面积仅为羟基的1/12~1/10。计算了实验煤样的表面官能团结构参数,四种低阶煤的芳香度随镜质组反射率升高而增大,脂肪链长程度随镜质组反射率升高而减小。
使用全自动高压吸附解吸实验装置、气相色谱仪,进行了低阶煤中CH4、CO2、N2及CH4/N2、N2/CO2、CH4/CO2气体的解吸动力学实验。得到了六种气体最大解吸量与解吸速率的关系,在镜质组反射率0.47~0.66范围内,低阶煤对六种气体的最大解吸量随煤变质程度增加而减小;得到了三种二元气体解吸过程中的浓度变化规律。对比了四种解吸动力学模型对气体解吸动力学过程的拟合效果,其中动态扩散模型最好,并分析了不同气体准一级速率常数、准二级速常数、初始有效扩散系数、衰减系数等解吸动力学参数的关系。
结合压汞实验和傅里叶红外光谱仪实验,研究了低阶煤中孔隙特征与官能团特征对不同气体解吸动力学特性的影响。得出随着微孔体积与比表面积的增加,低阶煤中气体解吸量呈增长趋势,初始扩散系数与衰减系数均呈增加趋势;低阶煤中气体解吸量、初始有效扩散系数及衰减系数随含氧官能团总量的增加呈降低趋势;随着分形维数的增加,煤样的气体解吸量呈增长趋势,初始扩散系数与衰减系数均呈降低趋势;气体解吸量与芳香度呈负相关关系,脂肪链长与气体解吸量呈正线性相关关系。初始有效扩散系数、衰减系数与芳香度呈负线性相关关系,与脂肪链长呈正线性相关关系。
研究低阶煤中气体解吸动力学规律,可为完善低阶煤瓦斯吸附解吸基础理论体系、提高瓦斯灾害防治与瓦斯资源开发水平提供一定的理论依据。
﹀
|
论文外文摘要: |
︿
Chinese low-rank coal gas reserves are considerable and the development prospects are huge. Gas is a multi-element gas containing CH4, CO2, N2 and other components. The process of gas drainage and development will cause changes in coal gas desorption performance, especially its dynamic characteristics are quite different, and the desorption of multi-element gas in low-rank coal. The study of dynamic characteristics is of great significance to the prevention and development of low-rank coal gas. In this paper, four low-rank coal samples from the southern Junggar mining area in Xinjiang are selected, combined with the pore characteristics and surface functional group characteristics of the low-rank coal, and the desorption characteristics of CH4, CO2, N2 and binary mixtures in the low-rank coal are analyzed from the perspective of kinetics.
The pore parameters of four low-rank coals were obtained through mercury intrusion experiments, and it was found that the pore volume and pore specific surface area of low-rank coals decreased with the increase of pore diameter; the volume of micropores was slightly larger than that of transition pores, followed by mesopores and large pores. Pores: The specific surface area and proportion of micropores are much larger than other pores. Fractal theory is used to calculate the volume fractal dimension of the experimental coal samples. The volume fractal dimension of the four low-rank coal samples varies from 2.83 to 2.98, and the volume fractal dimension decreases with the degree of metamorphism. Through Fourier infrared spectrometer experiment, combined with Gaussian peak separation theory, the types and content of functional groups in low-rank coals are analyzed, and it is concluded that the functional groups in low-rank coals are mainly hydroxyl and other oxygen-containing functional groups, and the peak area is only 1/12~1/10 of the hydroxyl group. The surface functional group structure parameters of the experimental coal samples were calculated. The aromaticity of the four low-rank coals increased with the increase of vitrinite reflectivity, and the degree of fatty chain length decreased with the increase of vitrinite reflectivity.
Using automatic high-pressure adsorption and desorption experimental device and gas chromatograph, the desorption kinetics experiment of CH4, CO2, N2 and CH4/ N2, N2/ CO2, CH4/ CO2 gas in low-rank coal was carried out. The relationship between the maximum desorption capacity of the six gases and the desorption rate is compared. In the vitrinite reflectance range of 0.47~0.66, the maximum desorption capacity of the six gases by low-rank coal decreases with the increase of coal metamorphism; three types are obtained. The law of concentration change during the desorption of binary gas. The fitting effects of four desorption kinetic models on the gas desorption kinetics process are compared, among which the dynamic diffusion model is the best, and the quasi-first-order rate constants, quasi-second-order rate constants, initial effective diffusion coefficients, and attenuation coefficients of different gases are analyzed. The relationship between other desorption kinetic parameters.
Combining mercury intrusion experiments and Fourier infrared spectrometer experiments, the effects of pore characteristics and functional group characteristics in low-rank coal on the desorption kinetics of different gases were studied. It is concluded that with the increase of micropore volume and specific surface area, the amount of gas desorption in low-rank coals is increasing, and the initial diffusion coefficient and attenuation coefficient are both increasing; with the increase of fractal dimension, the amount of gas desorption of coal samples is increasing. Increasing trend, the initial diffusion coefficient and attenuation coefficient both show a decreasing trend; the amount of gas desorption in low-rank coal decreases with the increase of the total amount of oxygen-containing functional groups.
Studying the kinetics of gas desorption in low-rank coal can provide a theoretical basis for improving the basic theoretical system of gas adsorption and desorption for low-rank coal, and improving the prevention and control of gas disasters and the development of gas resources.
﹀
|
参考文献: |
︿
[1] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1):1-6. [2] 何满潮. 深部的概念体系及工程评价指标[J]. 岩石力学与工程学报, 2005, 24(16):2854-2858. [3] 谢和平, 周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(8):1391-1397. [4] 叶兰. 我国瓦斯事故规律及预防措施研究[J]. 中国煤层气, 2020, 17(4):44-47. [5] 袁建梅, 杨德敏. 煤层气开发利用环境影响及对策建议[J]. 环境影响评价, 2019, 41(4):32-35+58. [6] 庚勐, 陈浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6):64-68. [7] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1):84-92. [8] 周叡, 鲁秀芹, 张俊杰, 等. 沁水盆地樊庄区块煤层气开发生产规律分析[J]. 煤炭科学技术, 2018, 46(6):69-73+148. [9] 康永尚, 邓泽, 皇甫玉慧, 等. 中煤阶煤层气高饱和-超饱和带的成藏模式和勘探方向[J]. 石油学报, 2020, 41(12):1555-1566. [10] 伊伟. 鄂尔多斯盆地韩城矿区中煤阶煤层气成藏模式[J]. 新疆石油地质, 2017, 38(2):165-170. [11] 秦玉金, 陈煜朋, 姜文忠, 等. 深部煤层瓦斯赋存机制研究现状及展望[J]. 煤矿安全, 2020, 51(5):10-15. [12] 侯海海, 邵龙义, 唐跃, 等. 我国低煤阶煤层气成因类型及成藏模式研究[J]. 中国矿业, 2014, 23(7):66-69+95. [13] 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24+38. [14] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019,44(S1):142-156. [15] Clarkson C R, Bustin R M. Variation in micropore capacity and size distribution withcomposition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential[J]. Fuel. 1996, 75(13): 1483-1498. [16] 刘高峰. 高温高压三相介质煤吸附瓦斯机理与吸附模型[D]. 河南理工大学, 2011. [17] Prinz D, Pyckhout-Hintzen W, Littke R. Development of the meso- and microporous structure of coals with rank as analysed with small angle neutron scattering andadsorption experiments[J]. Fuel. 2004, 83(4): 547-556. [18] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报. 2001, 26(1): 40-44. [19] B . B .霍多特著, 宋士钊, 王佑安. 煤与瓦斯突出[M]. 中国工业出版社, 1966. [20] Bering B P, Dubinin M M, Serpinsky V V. Theory of volume filling for vapor adsorption[J]. Journal of Colloid and Interface Science, 1966, 21(4):378-393. [21] Walker P L, Verma S K, Rivera-Utrilla J, et al. Densities, porosities and surface areas of coal macerals as measured by their interaction with gases, vapours and liquids[J]. Fuel, 1988, 67(12):1615-1623. [22] Gan H, Nandi S P, Jr P. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4):272-277. [23] 杨思敬, 杨福蓉, 高照祥. 煤的孔隙系统和突出煤的孔隙系统. 第二届中国国际采矿科学技术会论文集[M]. 徐州: 中国矿业大学出版社, 1991. [24] 吴俊, 金奎励, 童有德, 等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报, 1991, 16(3):86~95. [25] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州: 中国矿业大学出版社, 1994. [26] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79(2):269~285. [27] Okolo G, Everson R, Neomagus H, et al. Comparing the porosity andsurface areas of coal as measured by gas adsorption, mercury intrusion and SAXStechniques[J]. Fuel. 2015, 141:293-304. [28] Yu S, Bo J, Pei S, et al. Matrix compression and multifractal characterization fortectonically deformed coals by Hg porosimetry[J]. Fuel. 2018, 211:661-675. [29] 闫爱珍. 用X-射线衍射法研究煤岩显微组分的结构[J]. 河北化工, 2010, 33(2):22-23. [30] Zhou S, Liu D, Cai Y, et al. Fractal characterization of pore-fracture in low-rank coalsusing a low-field NMR relaxation method[J]. Fuel. 2016, 181:218-226. [31] Zhao Y, Sun Y, Liu S, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel. 2017, 190:359-369. [32] Kutchko B, Goodman A, Rosenbaum E, et al. Characterization of coal before andafter supercritical CO2 exposure via feature relocation using field-emission scanningelectron microscopy[J]. Fuel. 2013, 107:777-786. [33] Wang H, Fu X, Jian K, et al. Changes in coal pore structure and permeability during N2 injection[J]. Journal of Natural Gas Science and Engineering. 2015, 27:1234-1241. [34] Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals usinggas adsorption and scanning electron microscopy[J]. Fuel. 2015, 158:908-917. [35] Lee G, Pyun S, Rhee C. Characterisation of geometric and structural properties of pore surfaces of reactivated microporous carbons based upon image analysis and gasadsorption[J]. Microporous & Mesoporous Materials. 2006, 93(1):217-225. [36] 乔军伟. 低阶煤孔隙特征与解吸规律研究[D]. 西安科技大学, 2009. [37] 刘建华, 王生维, 粟冬梅. 二连盆地群低煤阶煤储层孔隙发育特征研究[J]. 煤矿安全, 2021, 52(2):7-12. [38] 杨明, 柳磊, 张学博, 等. 不同阶煤孔隙结构与流体特性的核磁共振试验研究[J]. 中国安全科学学报, 2021, 31(1):81-88. [39] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity andflow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel. 2013, 103:258-268. [40] 林海飞, 卜婧婷, 严敏, 等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报, 2019, 39(1):1-8. [41] 刘金森, 陈健, 马俊强. 不同煤阶煤孔隙特征及其吸附能力响应[J]. 能源与环保, 2020, 42(6):58-62. [42] 郭广山, 邢力仁, 李昊. 基于NMR和X-CT的不同煤阶煤储层物性定量表征[J]. 中国地质调查, 2020, 7(6):103-108. [43] Mandelbrot B. Stochastic Models for the Earth's Relief, the Shape and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands[J]. Proceedings ofthe National Academy of Sciences of the United States of America. 1975, 72(10):3825-3828. [44] Langmuir I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids[J]. Journal of the American Chemical Society, 1916, 38(11):21-95. [45] 姜文, 唐书恒, 张静平, 等. 基于压汞分形的高变质石煤孔渗特征分析[J]. 煤田地质与勘探, 2013, 41(4):9-13. [46] Mahnke M, Mogel H. Fractal analysis of physical adsorption on material surfaces[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2003, 216(1-3):215-228. [47] 武静, 赵立鹏. 基于高压压汞实验研究六盘水龙潭组煤储层孔隙分形特征[J]. 四川化工, 2017, 20(1):28-30. [48] 王小垚, 曾联波, 周三栋, 等. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018,29(2): 277-288. [49] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2013, 103:258-268. [50] 傅雪海, 秦勇, 薛秀谦, 等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报, 2001(3):11-4. [51] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报, 2005(S1):51-5. [52] 肖鹏, 杜媛媛. 构造煤微观结构对其吸附特性的影响实验[J]. 西安科技大学学报, 2021, 41(2):237-245. [53] 卜婧婷. 新疆矿区中低阶煤全孔径孔隙结构特征的实验研究[D]. 西安科技大学, 2019. [54] 王镜惠, 梅明华, 刘娟, 等. 基于分形理论的高煤阶煤岩渗透率计算方法研究与应用[J]. 当代化工, 2020, 49(7):1356-1359+1364. [55] 冯玉龙, 司青, 王浩, 等. 氧化剂处理前后煤孔隙分形特征研究[J]. 煤矿安全, 2021, 52(2):18-22. [56] 徐吉钊, 翟成, 桑树勋, 等. 基于低场核磁共振技术的液态CO2循环致裂煤体孔隙特征演化规律[J/OL]. 煤炭学报: 1-12[2021-04-13]. [57] 耿建纯. 低阶煤中含氧官能团对可浮性的影响规律研究[D]. 中国矿业大学(北京), 2017. [58] 朱学栋, 朱子彬. 煤中含氧官能团的红外光谱定量分析[J]. 燃料化学学报, 1999(4):335-339. [59] 段旭琴, 王祖讷. 煤显微组分表面含氧官能团的XPS分析[J]. 辽宁工程技术大学学报, 2010, 29(3):498-501. [60] 王永刚, 周剑林, 陈艳巨, 等. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报, 2013, 41(12):1422-1426. [61] Brooks J D, Maher T P. Acidic oxygen-containing groups in coal[J]. Fuel, 1957, 36(1):51-62. [62] Schafer H N S. Carboxyl groups and ion exchange in low-rank coals[J]. Fuel, 1970, 49(2):197-213. [63] Aida T. Verification of the Aida's chemical determination method for oxygen-functionality in coal and coal product[J]. Fuel & Energy Abstracts, 2002,43(1):9. [64] 梁昌鸿, 梁伟强, 李伍. 基于傅里叶红外光谱不同煤阶煤的官能团研究[J]. 煤炭科学技术, 2020, 48(S1):182-186. [65] Ibarra J V, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6-7):725-735. [66] Ulyanova E V, Molchanov A N, Prokhorov I Y, et al. Fine structure of Raman spectra in coals of different rank[J]. International Journal of Coal Geology, 2014, 121:37-43. [67] 郭轩辰, 何亚群, 王婕, 等. 蒙东后侏罗纪褐煤煤岩组分表面特征及官能团分析[J]. 中国矿业, 2020, 29(12):202-209. [68] 郭德勇, 叶建伟, 王启宝, 等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究[J]. 煤炭学报, 2016, 41(12):3040-3046. [69] 柳先锋, 宋大钊, 何学秋, 等. 微结构对软硬煤瓦斯吸附特性的影响[J]. 中国矿业大学学报, 2018, 47(1):155-161. [70] Geng W, Nakajima T, Takanashi H, et al. Analysis of carboxyl group in coal and coal aromaticity by fourier transform infrared(FTIR) spectrometry[J]. Fuel, 2009, 88(1):139-144. [71] Chen Y, Mastalerz M, Schimmelmann A. Characterization ofchemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J].International Journal of Coal Geology, 2012, 104: 22-33. [72] 刘慧芳, 宋大钊, 何学秋, 等. 煤化作用对煤微表面结构特性影响研究[J]. 中国安全科学学报, 2020, 30(1):121-127. [73] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12):4074-4086. [74] 孙维丽, 师吉林, 张海洋, 等. 低变质煤种煤自燃过程中生成CO的氧化中间官能团分析[J]. 煤矿安全, 2021,52(3):217-221. [75] Dang Y, Zhao L, Lu X, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017, 423(nov.30):33-42. [76] 李晓文, 马旭, 朱鹏飞, 等. 煤体理化结构特征及其对瓦斯吸附热力学的影响[J]. 煤矿安全, 2021, 52(3):1-8. [77] Zhao J, Xu H, Tang D, et al. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes[J]. Fuel, 2016, 183(11):420-431. [78] Pini R, Ottiger S, Storti G, et al. Pure and competitive adsorption of CO2, CH4 and N2 on coal for ECBM[J]. Energy Procedia, 2009(1):1705-1710. [79] 郭怀广. 软硬煤二元气体竞争吸附差异性研究[J]. 煤矿安全, 2019,50(7):37-41. [80] Liu X, He X, Qiu N, et al. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Applied Surface Science, 2016, 389(dec.15):894-905. [81] 王瑞雪. 不同变质程度煤对CH4和CO2吸附特征差异的实验研究[D]. 中国矿业大学, 2020. [82] Dang Y, Zhao L, Lu X, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017,423(nov.30):33-42. [83] 常明, 董宪姝, 李宏亮, 等. 煤表面含氧官能团对矿井气体吸附特性的模拟研究[J]. 煤矿安全, 2020, 51(1):176-180+186. [84] 周银波, 王思琪, 毛淑星, 等. 热效应对焦煤甲烷解吸迟滞特征的影响研究[J]. 中国安全生产科学技术, 2020, 16(11):123-127. [85] 林海飞, 刘静波, 严敏, 等. CO2/CH4在煤储层中扩散规律的分子动力学模拟[J]. 中国安全生产科学技术, 2017, 13(1):84-89. [86] Greaves K H, Owen L B, McLennan J D. Multi-component Gas Adsorption-Desorption Behavior of Coal[C]. Proceedings of 1993 International Coalbed Methane Symposium, Tuscaloosa, Alabama, 1993,197-205. [87] 唐书恒, 汤达祯, 杨起. 二元气体等温吸附-解吸中气分的变化规律[J]. 中国矿业大学学报,2004,33(4):86-90. [88] 唐书恒, 韩德馨. 煤对多元气体的吸附与解吸[J]. 煤炭科学技术, 2002, 30(1):58-60. [89] 周军平, 鲜学福, 姜永东, 等. 不可采煤层CO2封存的数值模拟[J]. 重庆大学学报, 2011, 34(7):83-90. [90] 邢万丽. 煤中CO2、CH4、N2及多元气体吸附/解吸、扩散特性研究[D]. 大连理工大学, 2016. [91] 严敏, 龙航, 白杨, 等. 温度效应对煤层瓦斯吸附解吸特性影响的实验研究[J]. 矿业安全与环保, 2019, 46(3):6-10. [92] 聂百胜, 杨涛, 李祥春, 等. 煤粒瓦斯解吸扩散规律实验[J]. 中国矿业大学学报, 2013, 42(6):975-981. [93] 秦跃平, 王健, 郑赟, 等. 煤粒瓦斯变压吸附数学模型及数值解算[J]. 煤炭学报, 2017, 42(04):923-928. [94] 杨鑫, 张俊英, 王公达, 等. 瓦斯压力对瓦斯在煤中扩散影响的实验研究[J]. 中国矿业大学学报, 2019, 48(03):503-510+519. [95] 陈振宏, 王一兵, 宋岩, 等. 不同煤阶煤层气吸附、解吸特征差异对比[J]. 天然气工业, 2008(03):30-32+136. [96] 王镜惠, 梅明华, 刘娟, 等. 不同煤阶煤岩样品甲烷解吸曲线数学模型及解吸参数地质意义[J/OL]. 中国地质:1-14[2020-12-14]. [97] 刘震, 李增华, 杨永良, 等. 水分对煤体瓦斯吸附及径向渗流影响试验研究[J]. 岩石力学与工程学报, 2014, 33(3):586-593. [98] 田伟兵, 李爱芬, 韩文成. 水分对煤层气吸附解吸的影响[J]. 煤炭学报, 2017, 42(12):3196-3202. [99] 高正, 马东民, 陈跃, 等. 含水率对不同宏观煤岩类型甲烷吸附/解吸特征的影响[J]. 煤炭科学技术, 2020, 48(8):97-105. [100] 姜永东, 熊令, 阳兴洋, 等. 声场促进煤中甲烷解吸的机理研究[J]. 煤炭学报, 2010, 35(10):1649-1653. [101] 姜永东, 宋晓, 崔悦震, 等. 声场作用下煤中甲烷解吸扩散的特性[J]. 煤炭学报, 2015, 40(3):623-628. [102] 胡国忠, 朱怡然, 许家林, 等. 可控源微波场强化煤体瓦斯解吸扩散的机理研究[J]. 我国矿业大学学报, 2017, 46(3):1-6. [103] 胡国忠, 朱怡然, 李志强. 可控源微波场促进煤体中甲烷解吸的试验研究[J]. 岩石力学与工程学报, 2016, 45(3):1-7. [104] 王志军, 李先铭, 马小童, 等. 微波间断加载对柱状煤瓦斯解吸特性的影响[J]. 微波学报, 2019, 35(1):91-96. [105] 杨涛, 顾勇攀, 戴林超, 等. 铁磁流体对煤粒瓦斯解吸性能影响实验研究[J]. 中国安全生产科学技术, 2020, 16(11):117-122. [106] Kuuskraa V A, Brandenburg C F. Coalbed Methane Sparks a New Energy Industry[J]. Oil & Gas Journal, 1989, 9(41):3-8. [107] Lamberson M N, Bustin R M. Coalbed Methane Characteristics of Gates Formation Coals, Northeastern British Columbia: Effect of Maceral Composition[J]. Bulletin, 1993, 77(12):2062-2076. [108] 李明, 姜波, 兰凤娟, 等. 黔西—滇东地区不同变形程度煤的孔隙结构及其构造控制效应[J]. 高校地质学报, 2012, 18(3):533-538. [109] 刘长江, 桑树勋, 张琨, 等. 压汞法研究煤孔隙的适用性与局限性探讨[J]. 实验室研究与探索, 2019, 38(3):11-15. [110] 陈振标, 张超谟, 张占松. 利用NMR T2谱分布研究储层岩石孔隙分形结构性[J]. 岩性油气藏, 2008(1):105-100. [111] 孙旭光, 陈建平, 王延斌. 吐哈盆地侏罗纪煤中主要组分结构特征与生烃性分析[J]. 沉积学报, 2002(4):721-726. [112] 李希建. 贵州突出煤理化特性及其对甲烷吸附的分子模拟研究[D]. 中国矿业大学, 2013. [113] 张登峰, 崔永君, 李松庚, 等. 甲烷及二氧化碳在不同煤阶煤内部的吸附扩散行为[J]. 煤炭学报, 2011, 36(10):1693-1698. [114] 李志强, 王登科, 宋党育. 新扩散模型下温度对煤粒瓦斯动态扩散系数的影响[J]. 煤炭学报, 2015, 40(5):1055-1064. [115] 叶振华. 化工吸附分离过程[M]. 北京: 中国石化出版社, 1992. [116] Orregoruiz J, Cabanzo R, Mejíaospino E. Study of Colombian coals using photoacoustic Fourier transform infrared spectroscopy[J]. International Journal of Coal Geology, 2011, 85(3): 307-310. [117] 李子文. 低阶煤的微观结构特征及其对瓦斯吸附解吸的控制机理研究[D]. 中国矿业大学, 2015. [118] 孙文晶. 煤岩体非均质结构对瓦斯气体吸附、解吸及煤层气强化抽采过程的影响[D]. 成都, 四川大学, 2013.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2023-06-23
|