- 无标题文档
查看论文信息

论文中文题名:

 新型能源体系建设的影响因素与对策研究    

姓名:

 樊景璐    

学号:

 13803852001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 1256    

学科名称:

 管理学 - 工程管理    

学生类型:

 硕士    

学位级别:

 工程管理硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工业工程与管理    

研究方向:

 现代工业工程理论与应用    

第一导师姓名:

 孙林辉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-16    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Influencing Factors and Strategies for New Energy System Construction    

论文中文关键词:

 新型能源体系 ; 能源转型 ; PLS-SEM ; 机器学习    

论文外文关键词:

 New Energy System ; Energy Transition ; PLS-SEM ; Machine Learning    

论文中文摘要:

新型能源体系是以清洁能源为主,以清洁高效利用传统化石能源为辅,保障我国能源安全、助力气候变化全球治理、有效兼顾各方利益的新一代能源体系。然而新型能源体系是二十大报告提出的新概念,目前受到学术界关注,战略层面关注多,对于具体影响因素与机理的关注较少。因此,本研究对新型能源体系建设的影响因素进行深入识别并探究其作用机理。

首先对新型能源体系的相关研究进行梳理,通过BERTopic模型从1410篇相关文献中提取出了12个主题,并对这些主题的核心关键词进行系统分析,得到了能源安全、能源观念、能源基础设施、新能源产业竞争力、产业合作与协同、创新战略、传统能源产业竞争力、能源消费行为、创新政策、创新投入、政策法规、创新网络这12个影响因素并根据多层次分析视角将主题划分为能源技术创新、社会技术体制和宏观层三个层级。其次,根据相关研究基础提出12条假设,并发放问卷并获取有效数据454份,运用PLS-SEM方法,对12条假设进行了检验,剔除4条不显著的假设,最终剩下8个关键影响因素,分别为能源安全、能源基础设施、新能源产业竞争力、产业合作与协同、创新战略、传统能源产业竞争力、创新投入和政策法规。此外,基于实证研究得到的影响因素,构建AISM模型进而得出多层次递阶结构模型,该模型反映了影响因素间的的交互关系,通过该模型将8个关键影响因素划分为表层直接因素、中间层动力因素和深层导向因素三个层级。最后根据AISM得出的多层次递阶结构模型,从表层直接因素、中间层动力因素和深层导向因素三个层级分别对能源相关企业、行业以及政府提出对策与建议。

本研究为我国新型能源体系建设的相关主体提供了理论和实践依据,对政府、市场和金融机构等主体提出了有针对性的建议和策,为促进新型能源体系建设和可持续发展贡献了智慧和力量。

论文外文摘要:

The new energy system is a new generation of energy system that focuses on clean energy and is complemented by the clean and efficient use of traditional fossil energy, which guarantees energy security of China, contributes to the global governance of climate change, and effectively takes into account the interests of all parties. However, the new energy system is a new concept put forward in the report of the Twentieth National Congress, and is currently receiving attention from academics, with much attention paid to the strategic level and less attention paid to the specific influencing factors and mechanisms. Therefore, this study identifies the influencing factors of the new energy system and explores their mechanisms.

Firstly, we sort out the related research on new energy system, extract 12 themes from 1410 related literatures through BERTopic model, and systematically analyze the core keywords of these themes to obtain Energy Security, Energy Concept, Energy Infrastructure, New Energy Industry Competitiveness, Industry Cooperation and Collaboration, Innovation Strategy, Traditional Energy Industry Competitiveness, Energy Consumption Behavior, Innovation Policy, Innovation Input, Policies and Regulations, and Innovation Network, and the 12 influencing factors and according to the multilevel analysis perspective, the theme is divided into energy technology innovation, socio-technical system and landscape level. Secondly, 12 hypotheses were proposed based on relevant research foundations, and 454 questionnaires were distributed to obtain valid data. Using PLS-SEM method, the 12 hypotheses were tested, and 4 non-significant hypotheses were eliminated, leaving 8 key influencing factors, which are energy security, energy infrastructure, new energy industry competitiveness, industrial cooperation and synergy, innovation strategy, traditional energy industry competitiveness, innovation input, and policies and regulations. , innovation investment and policies and regulations. In addition, based on the influencing factors obtained from the empirical study, the AISM model is constructed to derive a multilevel hierarchical model, which reflects the interaction between the influencing factors, and through which the eight key influencing factors are categorized into three levels: surface direct factors, intermediate motivating factors, and deep oriented factors. Finally, based on the multilevel hierarchical structure model derived from the AISM, countermeasures and suggestions are proposed for energy-related enterprises, industries and the government at the three levels of superficial direct factors, intermediate motivational factors and deep oriented factors, respectively.

This study provides theoretical and practical bases for the subjects related to the construction of a new energy system in China, puts forward targeted suggestions and countermeasures for the government, market and financial institutions, and contributes wisdom and strength to the promotion of the construction and sustainable development of a new energy system.

参考文献:

[1] 侯梅芳, 梁英波, 徐鹏. 中国式现代化目标下构建新型能源体系之路径思考[J]. 天然气工业, 2024, 44(01): 177-185.

[2] 林水静. 加快建设新型能源体系[N]. 2023-12-18.

[3] 吴磊. 全球能源供应链重构与中国因应[J]. 当代世界, 2023(12): 30-35.

[4] 朱清, 牛茂林, 朱海碧. 俄乌冲突与国际矿业市场演化[J]. 太平洋学报, 2023, 31(10): 20-31.

[5] 章建华. 全面构建现代能源体系推动新时代能源高质量发展[J]. 企业观察家, 2022(08): 76-81.

[6] 舟丹. 我国新型能源体系相关要素的演变[J]. 中外能源, 2023, 28(12): 37.

[7] 林伯强. 欧洲能源危机的可能影响及启示[J]. 人民论坛, 2022(23): 106-110.

[8] 李晓华, 刘吉臻, 魏琪峰. “双碳”目标下中国建设现代能源体系的思考与建议[J]. 石油科技论坛, 2022, 41(01): 50-56.

[9] 王震, 李博抒, 梁栋. 基于中国式现代化视角的新型能源体系建设研究[J]. 油气储运, 2023, 42(09): 961-967.

[10] 葛世荣, 王兵, 冯豪豪, et al. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 2023, 25(05): 122-135.

[11] 杜祥琬. 对我国实现碳达峰碳中和战略及路径的思考[J]. 中国环保产业, 2023(06): 25-26.

[12] DALE M, KRUMDIECK S, BODGER P. Global energy modelling—A biophysical approach (GEMBA) part 1: An overview of biophysical economics[J]. Ecological economics, 2012, 73: 152-157.

[13] 吴玉萍, 张云. 中国能源供给侧改革的路径选择与政策设计[J]. 资源开发与市场, 2017, 33(08): 969-973.

[14] 薛钦源, 聂新伟, 巩凯. 中国一次能源结构演变、问题及对策研究——基于供给多样性视角[J]. 资源开发与市场, 2021, 37(05): 525-531.

[15] 南美玉. 中科院科学家建议转变本土为重以煤为主的传统能源结构尽快建立我国石油战略储备体系[J]. 科学新闻, 2001(11): 14.

[16] 胡健, 张文彬, 李帆. “双循环”新发展格局背景下的中国能源革命理论基础与战略路径[J]. 西安财经大学学报, 2023, 36(01): 85-97.

[17] 詹成付. 深刻认识党的二十大的重大意义[J]. 红旗文稿, 2022(20): 4-8.

[18] 朱晔, 徐石明, 丁孝华, et al. 新型能源体系建设的背景形势、策略建议和未来展望[J]. 中国科学院院刊, 2023, 38(08): 1187-1196.

[19] 朱兴珊, 白桦, 樊慧, et al. 天然气在中国构建新型能源体系中的作用及保障供应安全的建议[J]. 煤炭经济研究, 2022, 42(09): 12-18.

[20] 张宏. 以煤炭行业高质量发展筑牢能源压舱石[J]. 煤炭经济研究, 2023, 43(01): 1.

[21] 周宏春. 以新质生产力推动我国能源转型和高质量发展[J]. 能源研究与管理, 2024, 16(04): 1-10.

[22] 周宏春, 管永林. 新型能源体系建设的内在逻辑、基本内涵与支撑体系[J]. 能源研究与管理, 2023, 15(01): 1-11+25.

[23] 李维安, 秦岚. 迈向“零碳”的日本氢能源社会发展研究[J]. 现代日本经济, 2021(02): 65-79.

[24] 朴英爱, 胡曦月. 碳中和视角下日本能源转型动因及实施路径[J]. 现代日本经济, 2023, 42(04): 14-27.

[25] SUGIMOTO J. Severe Accident Research in Japan After the Fukushima Daiichi Nuclear Power Station Accident[J]. Nuclear Technology, 2016, 196(2): 149-160.

[26] JEWELL J. Renewables targeted before Fukushima[J]. Nature, 2016, 533(7601): 2.

[27] KUCHARSKI J B, UNESAKI H. An institutional analysis of the Japanese energy transition[J]. Environmental Innovation and Societal Transitions, 2018, 29: 126-143.

[28] CHAPMAN A, OKUSHIMA S. Engendering an inclusive low-carbon energy transition in Japan: Considering the perspectives and awareness of the energy poor[J]. Energy Policy, 2019, 135: 111017.

[29] CHAPMAN A J, ITAOKA K. Energy transition to a future low-carbon energy society in Japan's liberalizing electricity market: Precedents, policies and factors of successful transition[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2019-2027.

[30] HOSSAIN M R, SINGH S, SHARMA G D, et al. Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA[J]. Energy Policy, 2023, 174: 113469.

[31] GULIYEV F. Trump’s “America first” energy policy, contingency and the reconfiguration of the global energy order[J]. Energy Policy, 2020, 140: 111435.

[32] MANCINI L, SALA S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks[J]. Resources Policy, 2018, 57: 98-111.

[33] ARRANZ A M. Lessons from the past for sustainability transitions? A meta-analysis of socio-technical studies[J]. Global Environmental Change, 2017, 44: 125-143.

[34] XIE J J, MARTIN M, ROGELJ J, et al. Distributional labour challenges and opportunities for decarbonizing the US power system[J]. Nature Climate Change, 2023, 13(11): 1203-1212.

[35] CLABOUGH A. A transatlantic energy security strategy must also be a sustainable one[J]. Nature Energy, 2023, 8(10): 1048-1048.

[36] PATA U K, YILANCI V, ZHANG Q, et al. Does financial development promote renewable energy consumption in the USA? Evidence from the Fourier-wavelet quantile causality test[J]. Renewable Energy, 2022, 196: 432-443.

[37] WOLFRAM P, WIEDMANN T. Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity[J]. Applied Energy, 2017, 206: 531-540.

[38] SOVACOOL B K, GEELS F W. Further reflections on the temporality of energy transitions: A response to critics[J]. Energy Research & Social Science, 2016, 22: 232-237.

[39] OSUNMUYIWA O, KALFAGIANNI A. The Oil Climax: Can Nigeria’s fuel subsidy reforms propel energy transitions?[J]. Energy Research & Social Science, 2017, 27: 96-105.

[40] NORBERTO C, GONZALEZ-BRAMBILA C N, MATSUMOTO Y. Systematic analysis of factors affecting solar PV deployment[J]. Journal of Energy Storage, 2016, 6: 163-172.

[41] HELMKE-LONG L, CARLEY S, KONISKY D M. Municipal government adaptive capacity programs for vulnerable populations during the US energy transition[J]. Energy Policy, 2022, 167: 113058.

[42] MEHEDINTU A, STERPU M, SOAVA G. Estimation and forecasts for the share of renewable energy consumption in final energy consumption by 2020 in the European Union[J]. Sustainability, 2018, 10(5): 1515.

[43] LOWITZSCH J, HOICKA C E, VAN TULDER F J. Renewable energy communities under the 2019 European Clean Energy Package–Governance model for the energy clusters of the future?[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109489.

[44] COSTA-CAMPI M T, TRUJILLO-BAUTE E. Retail price effects of feed-in tariff regulation[J]. Energy Economics, 2015, 51: 157-165.

[45] OPREA S-V, BâRA A. Analyses of wind and photovoltaic energy integration from the promoting scheme point of view: Study case of Romania[J]. Energies, 2017, 10(12): 2101.

[46] FüRSCH M, HAGSPIEL S, JäGEMANN C, et al. The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050[J]. Applied Energy, 2013, 104: 642-652.

[47] CHALAL M L, BENACHIR M, WHITE M, et al. The impact of the UK household life-cycle transitions on the electricity and gas usage patterns[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 505-518.

[48] BOFFARDI R, IOPPOLO G, ARBOLINO R. A two-step approach to evaluate drivers and barriers to clean energy policies: Italian regional evidence[J]. Environmental Science & Policy, 2021, 120: 173-186.

[49] FREEMAN R, PYE S. Socio-technical modelling of UK energy transition under three global SSPs, with implications for IAM scenarios[J]. Environmental Research Letters, 2022, 17(12): 124022.

[50] BARNS D G, TAYLOR P G, BALE C S, et al. Important social and technical factors shaping the prospects for thermal energy storage[J]. Journal of Energy Storage, 2021, 41: 102877.

[51] SOVACOOL B K, DWORKIN M H. Energy justice: Conceptual insights and practical applications[J]. Applied Energy, 2015, 142: 435-444.

[52] KAPPNER K, LETMATHE P, WEIDINGER P. Causes and effects of the German energy transition in the context of environmental, societal, political, technological, and economic developments[J]. Energy, Sustainability and Society, 2023, 13(1): 28.

[53] FANG G, WANG L, GAO Z, et al. How to advance China’s carbon emission peak?—A comparative analysis of energy transition in China and the USA[J]. Environmental Science and Pollution Research, 2022, 29(47): 71487-71501.

[54] XIE W, SHENG P, GUO X. Coal, oil, or clean energy: Which contributes most to the low energy efficiency in China?[J]. Utilities Policy, 2015, 35: 67-71.

[55] QI T, WENG Y, ZHANG X, et al. An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013[J]. Energy Economics, 2016, 60: 15-22.

[56] YU Z, GUO X. Influencing factors of green energy transition: The role of economic policy uncertainty, technology innovation, and ecological governance in China[J]. Frontiers in Environmental Science, 2023, 10: 1058967.

[57] LIU T, ZHOU N, WU Q, et al. Toward a sustainable energy system in China: Status and influencing factors[J]. Energy Exploration & Exploitation, 2022, 40(2): 580-598.

[58] GUO P, KONG J, GUO Y, et al. Identifying the influencing factors of the sustainable energy transitions in China[J]. Journal of Cleaner Production, 2019, 215: 757-766.

[59] 陆超, 何正友. 能源互联促进新型能源体系建设[J]. 全球能源互联网, 2023, 6(06): 565-566.

[60] GEELS F W. Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study[J]. Research policy, 2002, 31(8-9): 1257-1274.

[61] FORD R, WALTON S, STEPHENSON J, et al. Emerging energy transitions: PV uptake beyond subsidies[J]. Technological Forecasting and Social Change, 2017, 117: 138-150.

[62] HERMWILLE L. The role of narratives in socio-technical transitions—Fukushima and the energy regimes of Japan, Germany, and the United Kingdom[J]. Energy Research & Social Science, 2016, 11: 237-246.

[63] MCGLADE C, EKINS P. The geographical distribution of fossil fuels unused when limiting global warming to 2 C[J]. Nature, 2015, 517(7533): 187-190.

[64] MUELLER M G, DE HAAN P. How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars—Part I: Model structure, simulation of bounded rationality, and model validation[J]. Energy Policy, 2009, 37(3): 1072-1082.

[65] GERST M D, WANG P, ROVENTINI A, et al. Agent-based modeling of climate policy: An introduction to the ENGAGE multi-level model framework[J]. Environmental modelling & software, 2013, 44: 62-75.

[66] KöHLER J, WHITMARSH L, NYKVIST B, et al. A transitions model for sustainable mobility[J]. Ecological economics, 2009, 68(12): 2985-2995.

[67] GIRAUDET L-G, GUIVARCH C, QUIRION P. Exploring the potential for energy conservation in French households through hybrid modeling[J]. Energy Economics, 2012, 34(2): 426-445.

[68] OKUSHIMA S. Measuring energy poverty in Japan, 2004–2013[J]. Energy Policy, 2016, 98: 557-564.

[69] SAUNDRY P D. Review of the United States energy system in transition[J]. Energy, Sustainability and Society, 2019, 9(1): 4.

[70] BUCUR C, TUDORICĂ B G, OPREA S-V, et al. Insights into energy indicators analytics towards European green energy transition using statistics and self-organizing maps[J]. IEEE Access, 2021, 9: 64427-64444.

[71] GAMBHIR A. Planning a low-carbon energy transition: what can and can’t the models tell us?[J]. Joule, 2019, 3(8): 1795-1798.

[72] OWJIMEHR S, SAMADI A H. Energy transition determinants in the European Union: threshold effects[J]. Environmental Science and Pollution Research, 2023, 30(9): 22159-22175.

[73] 张宁, 薛美美, 吴潇雨, et al. 国内外能源转型比较与启示[J]. 中国电力, 2021, 54(02): 113-119+155.

[74] 李岚春, 岳芳, 陈伟. 国家安全视域下新型能源体系的内涵特征与构建路径[J]. 智库理论与实践, 2023, 8(03): 180-191.

[75] 安洪光. 加快规划建设新型能源体系统筹推进碳达峰碳中和[J]. 中国电力企业管理, 2022(34): 12-16.

[76] 范英, 衣博文. 能源转型的规律、驱动机制与中国路径[J]. 管理世界, 2021, 37(08): 95-105.

[77] 陈伟, 郭楷模, 岳芳. 国际能源科技发展动态研判与战略启示[J]. 中国科学院院刊, 2019, 34(04): 497-507.

[78] 吕建中. 以立为先的能源安全转型发展逻辑[J]. 世界石油工业, 2022, 29(03): 1-6.

[79] 高媛, 宁佳钧. 建设新型能源体系的思考建议[J]. 中国国情国力, 2023(01): 4-8.

[80] 付兆辉, 苗苑, 李敏. 新型能源体系建设背景下能源安全保障与转型发展研究[J]. 煤炭经济研究, 2025, 45(02): 116-121.

[81] 何建坤. 能源革命是我国生态文明建设和能源转型的必然选择[J]. 经济研究参考, 2014(43): 71-73.

[82] 杜祥琬. 杜祥琬:推动能源转型,需在六大观念上创新[J]. 能源, 2020(05): 27-30.

[83] 段宏波, 汪寿阳. 中国的挑战:全球温控目标从2℃到1.5℃的战略调整[J]. 管理世界, 2019, 35(10): 50-63.

[84] SKEA J, NISHIOKA S. Policies and practices for a low-carbon society[M]. Modelling long-term scenarios for low carbon societies. Routledge. 2015: 5-16.

[85] FOXON T J, HAMMOND G P, PEARSON P J. Developing transition pathways for a low carbon electricity system in the UK[J]. Technological Forecasting and Social Change, 2010, 77(8): 1203-1213.

[86] KAVALOV B, PETEVES S D. The future of coal[J]. DG JRC Institute for Energy, European Commission, Petten, 2007

[87] 邹才能, 赵群, 张国生, et al. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36(01): 1-10.

[88] MONIZ E J, JACOBY H D, MEGGS A J, et al. The future of natural gas[J]. Cambridge, MA: Massachusetts Institute of Technology, 2011

[89] BIOENERGY I. Potential contribution of bioenergy to the world's future energy demand[M]. IEA Bioenergy Secretariat, 2007.

[90] DEUTCH J, MONIZ E, ANSOLABEHERE S, et al. The future of nuclear power[J]. an MIT Interdisciplinary Study, http://web mit edu/nuclearpower, 2003

[91] BODANSKY D. Nuclear energy: principles, practices, and prospects[M]. Springer Science & Business Media, 2007.

[92] 舒印彪, 张智刚, 郭剑波, et al. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37(01): 1-9.

[93] 刘振亚. 全球能源互联网跨国跨洲互联研究及展望[J]. 中国电机工程学报, 2016, 36(19): 5103-5110+5391.

[94] WINTER C-J. Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change[J]. International journal of hydrogen energy, 2009, 34(14): S1-S52.

[95] STRATEGY F. The Dual-Fuel Strategy: An Energy Transition Plan[J].

[96] 舒印彪, 薛禹胜, 蔡斌, et al. 关于能源转型分析的评述(一)转型要素及研究范式[J]. 电力系统自动化, 2018, 42(09): 1-15.

[97] MORRIS C, PEHNT M, LANDGREBE D, et al. Energy Transition. The German Energiewende[J]. 2012

[98] SCHNEIDER M, FROGGATT A, HAZEMANN J, et al. The world nuclear industry[J]. Status Report, 2016

[99] 曹慧. 特朗普时期美欧能源和气候政策比较[J]. 国外理论动态, 2019(07): 117-127.

[100] 周伏秋, 蒋焱, 邓良辰, et al. 能源变革新时代综合能源服务市场机遇[J]. 电力需求侧管理, 2019, 21(04): 3-6.

[101] 蔡建林, 周梅华, 张红红. 低碳创新产品消费者采用意愿影响因素实证研究——以新能源汽车为例[J]. 消费经济, 2012, 28(03): 23-26.

[102] GEELS F. Co-evolution of technology and society: The transition in water supply and personal hygiene in the Netherlands (1850–1930)—a case study in multi-level perspective[J]. Technology in Society, 2005, 27(3): 363-397.

[103] SCHOT J. The usefulness of evolutionary models for explaining innovation. The case of the Netherlands in the nineteenth century[J]. History and Technology, an International Journal, 1998, 14(3): 173-200.

[104] SCHOT J, HOOGMA R, ELZEN B. Strategies for shifting technological systems: the case of the automobile system[J]. Futures, 1994, 26(10): 1060-1076.

[105] KEMP R, SCHOT J, HOOGMA R. Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management[J]. Technology analysis & strategic management, 1998, 10(2): 175-198.

[106] HOOGMA R, KEMP R, SCHOT J, et al. Experimenting for sustainable transport[M]. Taylor & Francis, 2002.

[107] NELSON R R. An evolutionary theory of economic change[M]. harvard university press, 1985.

[108] BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003, 3(Jan): 993-1022.

[109] FéVOTTE C, IDIER J. Algorithms for nonnegative matrix factorization with the β-divergence[J]. Neural computation, 2011, 23(9): 2421-2456.

[110] DEVLIN J. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:181004805, 2018

[111] LEE J, YOON W, KIM S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.

[112] SIA S, DALMIA A, MIELKE S J. Tired of topic models? clusters of pretrained word embeddings make for fast and good topics too![J]. arXiv preprint arXiv:200414914, 2020

[113] ANGELOV D. Top2vec: Distributed representations of topics[J]. arXiv preprint arXiv:200809470, 2020

[114] MCINNES L, HEALY J, ASTELS S. hdbscan: Hierarchical density based clustering[J]. J Open Source Softw, 2017, 2(11): 205.

[115] MCINNES L, HEALY J, MELVILLE J. Umap: Uniform manifold approximation and projection for dimension reduction[J]. arXiv preprint arXiv:180203426, 2018

[116] 李豪, 张柏苑, 邵蝶语, et al. 融合BERTopic和Prompt的学者研究兴趣生成模型——以计算机科学领域为例[J]. 情报科学: 1-21.

[117] LI L, LEI Y, WU S, et al. The health economic loss of fine particulate matter (PM2.5) in Beijing[J]. Journal of Cleaner Production, 2017, 161: 1153-1161.

[118] 王浩东, 张少华. 可持续发展理念下企业减污降碳新路径探析[J]. 皮革制作与环保科技, 2024, 5(07): 158-160.

[119] 田利军, 黎杰. 基于技术进步方向模型的市场型碳减排政策效应与机理研究[J]. 资源开发与市场: 1-12.

[120] 尹剑, 丁乙, 姜洪涛, et al. 碳排放治理机制系统博弈仿真研究[J]. 科技与经济, 2024(05): 11-15.

[121] 谷丰, 高畅, 柳思佳, et al. “双碳”目标下我国绿色低碳技术体系构建及创新策略研究[J]. 商业经济, 2024(09): 167-170+174.

[122] 张来斌, 王建良, 武颂凯, et al. 中国式现代化背景下能源转型风险识别与应对[J]. 中国工程科学, 2024, 26(04): 16-27.

[123] SAGAR A. Technology innovation and energy[J]. 2004

[124] CARMONA-LAVADO A, CUEVAS-RODRíGUEZ G, CABELLO-MEDINA C. Service innovativeness and innovation success in technology-based knowledge-intensive business services: an intellectual capital approach[J]. Industry and Innovation, 2013, 20(2): 133-156.

[125] POPP D C. The effect of new technology on energy consumption[J]. Resource and Energy Economics, 2001, 23(3): 215-239.

[126] SAGAR A D, VAN DER ZWAAN B. Technological innovation in the energy sector: R&D, deployment, and learning-by-doing[J]. Energy Policy, 2006, 34(17): 2601-2608.

[127] TIDD J, BROCKLEHURST M. Routes to technological learning and development: An assessment of Malaysia's innovation policy and performance[J]. Technological Forecasting and Social Change, 1999, 62(3): 239-257.

[128] NARAYANAMURTI V, ANADON L D, SAGAR A D. Transforming energy innovation[J]. Issues in science and technology, 2009, 26(1): 57-64.

[129] ANDREWS-SPEED P. Applying institutional theory to the low-carbon energy transition[J]. Energy Research & Social Science, 2016, 13: 216-225.

[130] GEELS F W, BERKHOUT F, VAN VUUREN D P. Bridging analytical approaches for low-carbon transitions[J]. Nature Climate Change, 2016, 6(6): 576-583.

[131] 刘原奇. 2023-2024年全球煤炭市场研究与趋势分析[J]. 中国煤炭, 2024, 50(07): 164-169.

[132] 丁鹏琴, 王印凯. 煤炭经济的节能技术与碳中和转型研究[J]. 现代工业经济和信息化, 2024, 14(07): 147-149.

[133] GUO P, WANG T, LI D, et al. How energy technology innovation affects transition of coal resource-based economy in China[J]. Energy Policy, 2016, 92: 1-6.

[134] 吴建强. 四川省加快建设新型能源体系路径研究[J]. 商业经济, 2024(10): 131-134.

[135] 池立勋, 郝迎鹏, 苏亮, et al. 中国区域级新型能源体系建设思考——以某沿海城市为例[J]. 油气与新能源: 1-9.

[136] NORBERG-BOHM V. The role of government in energy technology innovation: Insights for government policy in the energy sector[J]. Energy Technology Innovation Project, Belfer Center for Science and International Affairs, John F Kennedy School of Government, Harvard University, Working Paper, 2002, 14

[137] EDQUIST C, JOHNSON B. Institutions and organizations in systems of innovation[M]. Univ., 1996.

[138] VARADARAJAN R. Innovation, innovation strategy, and strategic innovation[M]. Innovation and strategy. Emerald Publishing Limited. 2018: 143-166.

[139] FRENKEN K. Technological innovation and complexity theory[J]. Economics of Innovation and New Technology, 2006, 15(2): 137-155.

[140] TABASSUM S, PEREIRA F S, FERNANDES S, et al. Social network analysis: An overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(5): e1256.

[141] YU L, LI Y, FAN F. Employees’ appraisals and trust of artificial intelligences’ transparency and opacity[J]. Behavioral Sciences, 2023, 13(4): 344.

[142] HAIR J F, RINGLE C M, SARSTEDT M. PLS-SEM: Indeed a Silver Bullet[J]. Journal of Marketing Theory and Practice, 2011, 19(2): 139-152.

[143] CHIN W W. How to Write Up and Report PLS Analyses[M]//ESPOSITO VINZI V, CHIN W W, HENSELER J, et al. Handbook of Partial Least Squares: Concepts, Methods and Applications. Berlin, Heidelberg; Springer Berlin Heidelberg. 2010: 655-690.

[144] HENSELER J, RINGLE C M, SARSTEDT M. A new criterion for assessing discriminant validity in variance-based structural equation modeling[J]. Journal of the Academy of Marketing Science, 2015, 43(1): 115-135.

中图分类号:

 f426    

开放日期:

 2025-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式