论文中文题名: | 基于电阻层析成像的结构钢电阻率检测研究 |
姓名: | |
学号: | 20205224114 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085201 |
学科名称: | 工学 - 工程 - 机械工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机械工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-01 |
论文外文题名: | Research on Structural Steel Resistivity Detection Based on Electrical Resistance Tomography |
论文中文关键词: | |
论文外文关键词: | Structural steel ; Low resistance ; High conductivity ; Electrical resistance tomography ; Structural steel resistivity distribution ; Image reconstruction |
论文中文摘要: |
结构钢是一种重要的建筑材料,因其具有良好的机械、化学性能和使用特性被广泛应用于桥梁、机械、船舶等领域。然而,结构钢在生产或使用过程中可能发生组织结构变化,导致强度、韧性等性能下降,甚至引发断裂、腐蚀等事故。为了保证结构钢的安全性和可靠性,及时检测结构钢的组织结构变化是必要的。本研究旨在实现对结构钢表面和内部的电阻率分布检测,以反映其组织结构变化。本研究首次将电阻层析成像方法应用于低电阻金属材料领域,探索该方法在此领域的应用潜力。为实现这一目标,本研究以结构钢的电阻率检测为对象,构建基于电阻层析成像的结构钢电阻率检测方法,通过构建硬件系统和研究二维/三维图像重建算法,为金属材料的无损检测技术提供一种新思路。本文的主要工作内容如下: 基于电阻层析成像的结构钢电阻率分布检测方法构建。通过研究金属材料的无损检测技术发展现状,分析电阻成像成像技术原理,确定结构钢电阻率分布检测的基本思路,构建基于电阻层析成像的结构钢电阻率检测方法。 建立了结构钢的敏感场数学模型。并基于有限元法求解了正问题,得到了不同电极配置下的电压数据。为了提高正问题求解的准确性和效率,对结构钢有限元模型进行网格划分、电极材料与形状的确定以及测量策略的选取,为后面的反问题奠定了基础。最后通过仿真研究分析使用电阻层析成像技术检测结构钢电阻率分布的有效性。 建立了结构钢的反演模型。并采用了不同的重建算法进行了二维和三维图像重建。为了评估重建结果与实际结构钢电阻率分布的接近程度,引入了多个评价指标对重建结果进行了对比分析。通过二维研究,选择了适用于结构钢电阻率分布检测的重建算法。通过三维研究,使用GREIT法进行了三维重建,并验证了该方法能够提供结构钢电阻率分布检测的客观依据。 完成了结构钢电阻率分布成像实验,并验证了使用电阻层析成像技术检测结构钢电阻率分布的有效性。设计并搭建了结构钢电阻率分布检测实验平台,并对其进行了性能评价,确保采集数据的适用性;使用小波分析处理实验数据,实现对数据降噪目的,提高采集数据的精确性;使用GREIT算法对结构钢电阻率进行图像重建,重建结构钢异常体的位置与轮廓,验证了该方法能够检测出结构钢异常体的位置和轮廓,表明设计的结构钢电阻率检测实验平台具备对结构钢电阻率分布检测的能力。 |
论文外文摘要: |
Steel structures are an important building material widely used in fields such as bridges, machinery, and ships due to their excellent mechanical, chemical properties, and usage characteristics. However, changes in the structure of steel during production or use may lead to a decrease in performance such as strength and toughness, and even cause accidents such as fracture and corrosion. To ensure the safety and reliability of steel structures, timely detection of changes in their structure is necessary. This study aims to achieve detection of the distribution of electrical resistivity on the surface and inside of steel, to reflect changes in its structure. This study is the first to apply electrical resistivity tomography to the field of low-resistance metallic materials, exploring its potential for application in this field. To achieve this goal, this study focuses on detecting the electrical resistivity of steel, and constructs a detection method based on electrical resistivity tomography for steel by building a hardware system and researching two-dimensional/three-dimensional image reconstruction algorithms, providing a new approach to non-destructive testing technology for metallic materials. The main contents of this paper are as follows: Construction of a detection method for the distribution of electrical resistivity in steel based on electrical resistivity tomography. By studying the development status of non-destructive testing technology for metallic materials and analyzing the principles of electrical resistivity imaging technology, the basic idea for detecting the distribution of electrical resistivity in steel is determined, and a detection method based on electrical resistivity tomography for steel is constructed. A mathematical model of the sensitive field for steel structures was established. The forward problem was solved using the finite element method to obtain voltage data under different electrode configurations. In order to improve the accuracy and efficiency of solving the forward problem, the finite element model of steel was meshed, the electrode material and shape were determined, and the measurement strategy was selected, laying the foundation for the subsequent inverse problem. Finally, the effectiveness of using electrical resistivity tomography for detecting the distribution of electrical resistivity in steel was analyzed through simulation studies. A inversion model for steel structures was established, and different reconstruction algorithms were used for two-dimensional and three-dimensional image reconstruction. To evaluate the degree of similarity between the reconstruction results and the actual distribution of electrical resistivity in steel, multiple evaluation criteria were introduced for comparative analysis of the reconstruction results. Through two-dimensional studies, a reconstruction algorithm suitable for detecting the distribution of electrical resistivity in steel was selected. Through three-dimensional studies, the GREIT method was used for three-dimensional reconstruction, and it was verified that this method can provide an objective basis for detecting the distribution of electrical resistivity in steel. Structural Steel electrical resistivity imaging experiments were completed, and the effectiveness of using electrical resistivity tomography for detecting the distribution of electrical resistivity in steel was verified. A detection experiment platform for the distribution of electrical resistivity in steel was designed and built, and its performance was evaluated to ensure the applicability of the collected data. Wavelet analysis was used to process experimental data to achieve the purpose of data denoising and improve the accuracy of data collection. The GREIT algorithm was used to reconstruct images of the electrical resistivity of steel, and the position and contour of the abnormal body in the steel were reconstructed. This verifies that the method can detect the position and contour of the abnormal body in the steel, indicating that the designed detection experiment platform for the distribution of electrical resistivity in steel has the ability to detect the distribution of electrical resistivity in steel. |
参考文献: |
[1]周宪佟.基于激光超声的金属材料表面缺陷检测研究[D].陕西:西安石油大学,2021. [2]刘佳琪.基于激光热成像的金属表面缺陷检测研究[D].山西:中北大学,2021. [6]邓祎昕.激光超声阵列源激发特性及其在金属内部缺陷检测的研究[D].山西:中北大学,2022. [7]董宁琛,张志杰,尹武良,等.基于脉冲激光点光源热成像方法检测钢材表面裂[J].激光与红外,2019,49(10):1195-1200. [8]吴玉箫.基于电阻层析成像的CFRP缺陷检测研究[D].四川:中国民用航空飞行学院,2022. [10]邹璐.电阻层析成像系统仿真建模研究[D].北京:清华大学,2002. [15]吴瑞芬.电阻层析成像系统敏感场特性分析与仿真研究[D].黑龙江:哈尔滨理工大学,2007. [16]甘庆玉.电容电阻复合成像系统敏感场特性分析及重建研究[D].广西:广西大学,2005. [17]李英.电阻层析成像技术软场特性及图像重建算法研究[D].浙江:浙江大学,2003. [18]赵武玲.ERT图像重建算法及三维图像显示研究[D].天津:天津大学,2006. [19]丁永维.ERT图像重建算法研究及应用软件系统设计[D].天津:天津大学,2007. [20]何泳成.电学层析成像图像重建算法研究及软件系统设计[D].天津:天津大学,2010. [21]赵丰.电容电阻复合成像系统硬件研究[D].广西:广西大学,2005. [22]胡松钰.电阻层析成像系统设计[D].浙江:浙江大学,2008. [23]杨富广.电阻层析测量系统数据采集装置的设计[D].山东:中国石油大学,2010. [24]肖理庆.一种改进牛顿-拉夫逊ERT绝对图像重建算法[J].天津大学学报(自然科学与工程技术版),2015,48(08):734-741. [25]肖理庆,王化祥,徐晓菊.改进牛顿–拉夫逊电阻层析成像图像重建算法[J].中国电机工程学报,2012,32(08):91-97. [26]肖理庆,王化祥,厉丹.改进Landweber预迭代ERT图像重建算法[J].中国电机工程学报,2013,33(23):118-125. [27]肖理庆,王化祥,徐晓菊.改进Landweber电阻层析成像图像重建算法[J].计算机应用研究,2012,29(08):3157-3159. [28]陈宇,陈德运.基于改进Runge-Kutta型landweber的电容层析成像图像重建算法[J].电机与控制学报,2014,18(07):107-112. [29]董路,叶腾飞,能昌信,等.ERT技术在无机酸污染场地调查中的应用[J].环境科学研究,2008(06):67-71. [30]孙世栋,秦磊,任宏伟,等.基于电阻层析成像的混凝土钢筋锈蚀无损检测[J].无损检测,2020,42(01):37-40. [32]栗学愿.煤矿井下超前探测系统中阵列式接收结构的设计与应用研究[D].太原:太原理工大学,2017. [37]马艺馨,徐苓安,姜常珍,等.电阻层析成像技术的研究[J].仪器仪表学报,2001,22(2):195-198,213. [38]何永勃.电阻抗(ECT/ERT)双模态层析成像技术研究[D].天津:天津大学,2006. [39]肖理庆.电阻层析成像有限元模型优化与图像重建算法研究[D].天津:天津大学,2014. [40]程吉宽,孙进平,杜岩,等.电阻抗成像技术的原理及其发展[J].北京航空航天大学学报,1998,(02):17-20. [41]郭忠海.生物医学工程中两种电磁诊断方法的数值分析[D].四川:四川大学,2002. [44]汪婧.ECT/ERT双模态阵列电极优化设计及其正问题研究[D].天津:天津大学,2008. [45]肖理庆,邵晓根,王琳琳,等.电阻层析成像有限元仿真模型分析与设计[J].仪器仪表学报,2008,(02):354-360. [47]吴梦秋,程正兴.反投影重建算法的改进算法[J].西安工业学院学报,2004,(01):76-81. [48]董峰,许燕斌.电阻层析成像技术在两相流测量中的应用[J].工程热物理学报,2006,(05):791-794. [49]王聪,刘锐岗,李烨,等.一种用于磁感应断层成像的图像重建算法[J].仪器仪表学报,2008,(10):2052-2057. [50]董向元,陈琪,李惊涛,等.基于快速投影LANDWEBER法的电容层析成像图像重建算法研究[J].中国电机工程学报,2005,(14):89-92. [51]杨钢,王玉涛,邵富群,等.用于ECT图像重建的预处理Landweber迭代算法[J].东北大学学报,2006,(09):953-956. [52]赵钱.电磁层析成像技术中共轭梯度算法的研究[D].辽宁:沈阳师范大学,2022. [54]吴小平,汪彤彤.利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报,2003,(03):428-432. [55]王化祥,朱学明,张立峰.用于电容层析成像技术的共轭梯度算法[J].天津大学学报,2005,(01):1-4. [56]王化祥.电学层析成像技术[J].自动化仪表,2017,38(5):1-6. [57]唐磊.电阻抗断层成像算法研究及系统软件设计[D].天津:天津大学,2006. [58]王湃.电阻层析成像(ERT)技术及其在两相流检测中的应用[D].陕西:西安电子科技大学,2013. [59]朱学明.电容层析成像技术的图像重建算法研究[D].天津:天津大学,2004. [62]程大元.基于LabVIEW的微电阻抗成像系统的研究与设计[D].江苏:南京邮电大学,2020. [63]安博.多小波去噪方法研究[D].湖南:中南大学,2011. [64]王丹,金光灿,邱志,等.基于小波去噪和倒频谱分析的滚动轴承内圈微弱故障诊断[J].煤矿机械,2020,41(12):160-163. |
中图分类号: | TG115.28 |
开放日期: | 2023-06-19 |