论文中文题名: | 特征信息融合视域下矿工疲劳状态识别方法研究 |
姓名: | |
学号: | 18710929805 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 安全应急管理与安全人因工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-01-05 |
论文答辩日期: | 2022-12-08 |
论文外文题名: | Study on recognition method for fatigue state of coal miners in feature information fusion |
论文中文关键词: | |
论文外文关键词: | Coal miners ; Information fusion ; Fatigue state ; Physiological signal ; Fatigue index ; Recognition method |
论文中文摘要: |
在煤矿井下长时间作业的矿工易处于疲劳状态,进而可能引发安全事故。研判矿工疲劳状态、掌握矿工不利于安全生产的疲劳动态,进而预防煤矿安全生产事故发生,是亟待解决的问题。本研究旨在采集、优选和融合矿工主、客观疲劳状态特征指标,提出特征信息融合视域下矿工疲劳状态识别方法,用于识别矿工疲劳状态等级。以期为矿工疲劳检测、识别和管控提供新方法,助力主动煤矿事故预防,助力提升煤矿等高危领域高可靠性安全保障。 (1)提出了矿工疲劳状态等级阈。通过矿工作业实地调研,界定了矿工疲劳状态,包括矿工疲劳状态的定义、致因和度量方法;通过疲劳等级量表修正和专家评价方法,将矿工疲劳状态划分为非疲劳状态(0级)、轻度疲劳状态(1级)、中度疲劳状态(2级)和重度疲劳状态(3级)4个等级;运用相似性融合计算方法,确定了矿工疲劳状态等级阈,分别是0级[0,0.39)、1级[0.39,0.63)、2级[0.63,0.83)和3级[0.83,1];基于模糊综合评价法,提出了矿工疲劳状态等级识别标准,实现了对矿工疲劳状态等级的量化界定。 (2)开展了矿工疲劳状态识别试验,分析了矿工疲劳状态特征指标,优选了矿工主、客观疲劳状态特征指标。采用Biopac MP160多导生理信号采集仪,进行了封闭环境的矿工手工搬运油桶作业试验,获取了作业过程中矿工主、客观疲劳指标;基于时间量化规律分析,运用Friedman检验和预测模型分析方法,分析了矿工疲劳状态特征指标;基于灰色关联分析,优选了MEAN、Min HR、……和TINN共28项矿工主、客观疲劳状态特征指标。研究发现:引入矿工瞬时心率和体重指标,构建的矿工最大耐受时间(TME)修正模型,能准确预测矿工TME。 (3)提出了特征信息融合视域下矿工疲劳状态识别方法。以优选后的矿工主、客观疲劳状态特征指标为基础,运用主成分分析法,提取了RMS、MF、……和E2共22项矿工深度融合疲劳特征指标,并将其作为基于海洋捕食者算法最小二乘支持向量机(MPA-LSSVM)的输入参数,研究矿工多特征信息融合指标和等级阈值间的映射结果与矿工疲劳状态间的量化关系。融合矿工主、客观深度疲劳特征信息,提出了特征信息融合视域下矿工疲劳状态识别方法。研究发现:运用MPA算法优化LSSVM分类模型,建立了基于MPA-LSSVM的矿工疲劳状态识别模型,实现了矿工疲劳状态等级的快速识别。 (4)应用MPA-LSSVM算例,验证了特征信息融合视域下矿工疲劳状态识别方法的有效性。将矿工深度融合疲劳特征指标进行归一化处理后,以此作为LSSVM模型和MPA-LSSVM模型的输入参数,运行Matlab程序,得到矿工疲劳状态等级识别结果;通过平均绝对误差、均方根误差、精确率、召回率和F1-Score评价指标验证该识别方法的有效性;基于矿工疲劳状态致因和识别,提出矿工疲劳状态管控对策。研究分析发现:与基于单一生理信号、肌肉或主观疲劳特征指标的疲劳状态识别方法相比,特征信息融合视域下矿工疲劳状态识别方法可准确识别矿工疲劳状态等级;相比基于粒子群优化算法(POS)和基于灰狼优化算法(GWO)的LSSVM分类模型,本研究构建的基于MPA-LSSVM的矿工疲劳状态识别模型,具有较高的识别准确率、回归精度和敏感度。 开展矿工疲劳状态识别方法研究,减少或杜绝矿工疲劳作业,助力主动事故预防机制建设。本研究可为煤矿安全管理提供新视野、新方法,亦可为其他相关研究提供借鉴。 |
论文外文摘要: |
Safety accidents could be caused by fatigue of underground miners after long time working. It is an urgent task that “study and judge the fatigue state of miners and mastering the fatigue dynamics of miners, to prevent the occurrence of coal mine safety production accidents”. This paper aims to collect, optimize and integrate the subjective and objective physiological fatigue characteristic indexes of miners, construct a feature information fusion recognition method for the fatigue state of miners, identify the level of the fatigue state of miners. In order to provide a new method for miner fatigue detection, identification and control, and assist in proactive coal mine accident prevention and help to improve high-reliability safety guarantees in high-risk areas such as coal mines. (1) An level threshold of miners' fatigue state was proposed. Through on-the-spot investigation of mining operations, the fatigue state of miners was defined, including the definition, causes and measurement methods of miners' fatigue state; Based on the revision of the fatigue rating scale and the expert evaluation method, the fatigue status of miners was divided into 4 levels, namely the non-fatigue state (level 0), the mild fatigue state (level 1), the moderate fatigue state (level 2) and the severe fatigue state (level 3). Through similarity fusion calculation, the level thresholds of miners' fatigue state are determined, which are level 0 [0, 0.39), level 1 [0.39, 0.63), level 2 [0.63, 0.83) and level 3 [0.83, 1]; Based on the fuzzy comprehensive evaluation method, the identification standard of the degree of fatigue state of miners was proposed, which realized the quantitative de2finition of the level of miners' fatigue state. (2) A series of fatigue state identification tests were implemented, the change of miners' fatigue state characteristic index was analyzed, and the main and objective fatigue state characteristic indexes of miners were optimized. Biopac MP160 multi-channel physiological signal acquisition instrument was been used, the operation test of the miners' manual handling of oil drums in a closed environmental space was carried out, and the subjective and objective fatigue indicators of the miners during the operation were obtained; Based on time quantitative law analysis, Friedman test and prediction model analysis methods were used to analyze the change rule of miners' fatigue state characteristic index. The grey relational analysis was used to optimize the miners' subjective and objective fatigue state characteristic indicators, and 28 subjective and objective fatigue state characteristic indicators of miners, such as MEAN, Min HR, and TINN, et al, were selected.The study found that based on the miner's instantaneous heart rate and body weight, a miner's TME correction model was constructed, which could accurately predict the miner's TME. (3) An identification method for the fatigue state of miners based on feature information fusion was proposed. Based on the optimized subjective and objective fatigue characteristics of miners, the principal component analysis method is used to extract 22 miners' deep fusion fatigue characteristic indicators such as RMS, MF, ……, E2. Deep fusion fatigue characteristic index, the quantitative relationship between the mapping results of multi-source fatigue fusion characteristic index and grade threshold and the physiological fatigue state of miners is studied. Miners' subjective and objective deep fatigue characteristic information was fused and the identification method of physiological fatigue state of miners with effectively recognition of multi-source information fusion was proposed. The study found that the MPA algorithm was used to optimize the LSSVM classification model, and the MPA-LSSVM-based miner fatigue state recognition model was established to realize the rapid recognition of miner fatigue state levels. (4)The MPA-LSSVM example was used to verify the effectiveness of the recognition method for fatigue state of coal miners in feature information fusion. After normalizing the miner's deep fusion fatigue characteristic index, which was used as the input variable of the LSSVM calculation example and the MPA-LSSVM calculation example, and the Matlab program was run to obtain the identification result of the degree of the miner's fatigue state; The effective feature of the recognition method was verified by evaluation indicators such as mean absolute error, root mean square error, precision rate, recall rate and F1-Score; Based on the causes of miners' fatigue state, the management and control countermeasures of miners' fatigue state were proposed and identified. The analysis shows that compareding with fatigue state identification methods based on single physiological signal, muscle or subjective fatigue characteristic index, the identification method of miners' fatigue state in feature information fusion has the advantage of accurately identifying the level of miners' fatigue state; Compared with the LSSVM classification model of particle swarm optimization (POS)and gray wolf optimization(GWO), the classification model based on MPA-LSSVM proposed in the paper had high recognition accuracy, regression accuracy and sensitivity. Carrying out the identification of the physiological fatigue state of the miners; reducing or eliminating the fatigue of the miners, and assisting the active pre-control accident prevention mechanism. This study can provide new horizonsand methods for coal mine safety management, and also provide reference for other related researches. |
参考文献: |
[2]马晓凡.新疆煤矿工人职业卫生现况的流行病学调查[D].新疆:新疆医科大学,2020. [4]蒋星星,李春香.2013-2017年全国煤矿事故统计分析及对策[J].煤炭工程, 2019, 5(1): 111-115. [10]田水承,孙璐瑶,唐艺璇,等.矿工不安全状态评价指标体系的构建与分析[J].西安科技大学学报, 2021, 41(03): 402-409. [11]宋守信,陈明利,翟怀远.反脆弱机制在安全风险管控中的策略研究[J].中国安全科学学报, 2020, 30(12): 8-15. [12]樊运晓,傅贵,朱亚威.安全管理体系产生与发展综述[J].中国安全科学学报, 2015, 25(08): 3-9. [13]冯长根,李杰,陈伟炯.2008-2017年国际安全科学研究产出分析[J].安全与环境学报, 2018, 18(4): 1629-1633. [14]李乃文,张文文,牛莉霞.矿工心智游移影响因素的结构方程模型分析[J].安全与环境学报, 2021, 21(3): 1218-1225. [15]https://baike.baidu.com/item/2•23内蒙古矿业公司安全事故 [16]田水承,周可柔,杨雪健,等.险兆事件视域下个体和组织事故3道“防火墙”[J].中国安全科学学报, 2018, 28(05): 62-67. [18]田水承,陈盈,邹元.手工搬运作业下矿工腰部肌肉疲劳分析[J].矿业安全与环保, 2021, 48(05): 122-126. [20]朱祖祥,葛列众,张智军.工程心理学[M].北京:人民教育出版社, 2000: 290-302. [21]方金铭.人工清扫街道的环卫工人作业疲劳研究[D].北京:首都经济贸易大学, 2011. [22]吕叔湘,丁声树,等.《现代汉语词典》第七版[M].北京:商务印书馆, 2013. [23]王保国,王新泉等.安全人机工程学[M].北京:机械工业出版社, 2009. [24]杨萍.劳动强度与疲劳测定实验的心理参数分析[J].实验科学与技术, 2009, 7(06): 32-35. [25]郭晓波,郭海林.影响作业疲劳的因素及对策研究[J].中国安全生产科学技术, 2009, 5(06): 189-192. [26]李建中,曾维鑫,李建华.人机工程学[M].江苏:中国矿业大学出版社, 2009. [30]伏开放.员工作业疲劳影响因素与测量研究综述[J].中小企业管理与科技, 2019, 572 (04): 7-8. [33]张宏,路伟,田方圆,等.矿工疲劳的ERP特征[J].西安科技大学学报, 2021, 41(05): 787-792. [34]Knauth P. Extended Work Periods [J]. Industrial Health, 2007, 45(1): 125-136. [35]郭晓波,郭海林.影响作业疲劳的因素及对策研究[J].中国安全生产科学技术, 2009, 5(06): 189-192. [39]田水承,乌力吉,寇猛,等.基于生理实验的矿工不安全行为与疲劳关系研究[J].西安科技大学学报, 2016, 36(3): 324-330. [41]王焕新,王新建.基于文献综述的船员疲劳研究[J].世界海运, 2017, 40(11): 13-19. [42]郭伏,王天博,宁作江,等.单调作业中单调感对职业疲劳的影响研究[J].工业工程与管理, 2017, 22(01): 134-140. [43]伏开放.员工作业疲劳影响因素与测量研究综述[J].中小企业管理与科技, 2019, 572(4): 7-8. [44]任大伟,徐小华,梁亚敏,等.煤矿井下作业疲劳影响因素及对策研究[J].煤矿安全, 2019, 50(03): 231-234. [52]邢娟娟,刘卫东,王秀兰.煤矿井下工人体力劳动负荷及疲劳调查研究[J].劳动保护科学技术, 1998, (04): 55-58. [53]倪蓉.煤矿职工疲劳度相关因素分析与控制研究[J].煤矿安全, 2013, 44(10): 230-233. [54]董建梁,李鹏,马晨光.基于脑电检测的煤矿矿工井下疲劳作业监测研究[J].中国科技信息, 2014, (16): 82-83. [55]李红霞,薛建文,杨妍.疲劳对矿工不安全行为影响的ERP实验研究[J].西安科技大学学报, 2015, 35(03): 376-380. [56]张巨峰,杨峰峰,郑超,等.不同轮班制度对煤矿井下一线矿工疲劳的影响[J].煤矿安全, 2017, 48(01): 235-237 [57]沈剑,李红霞.矿工作业疲劳对煤矿险兆事件的影响机理——基于情感耗竭中介变量的分析[J].安全与环境学报, 2019, 19(2): 527-534. [58]任大伟,徐小华,梁亚敏,等.煤矿井下作业疲劳影响因素及对策研究[J].煤矿安全, 2019, 50(3): 231-234. [59]田一丹,张同全,胡琬雪.煤矿一线员工过度劳动评价与影响因素——基于4个省份十二个煤矿调查数据的分析[J].中国劳动关系学院学报, 2019, 33(05): 104-115. [60]王新平,畅涛涛,孙林辉.体脑疲劳交互影响下煤矿工人作业改善研究[J].工业工程, 2020, 23(04): 148-153+182. [64]付梦龙.基于表面肌电信号的实时在线肌肉疲劳估计方法研究[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院),2020. [68]傅佳伟,石立臣,吕宝粮.基于EEG的警觉度分析与估计研究综述[J].中国生物医学工程学报, 2009, 28(4): 1072-1075. [73]王越.基于表面肌电的矿工上肢肌肉疲劳与事故预防研究[D].燕郊:华北科技学院, 2019. [74]刘彬.心电信号特征识别及其在心血管疾病诊断中的应用[D].长春:吉林大学, 2014. [75]霍铖宇.基于庞加莱散点图和递归图的心率变异性研究[D].南京:南京大学, 2014. [76]Boucsein W. Electrodermal activity [M]. New York:Springer, 2012. [77]杜娟.生理信号变异性分析及其在高血压发展中的应用研究[D].杭州:浙江大学, 2006. [78]毛喆.基于驾驶员生理特征分析的驾驶疲劳状态识别方法研究[D].武汉:武汉理工大学, 2006. [79]姚泰.人体生理学(下册.第3版)[M].北京:人民卫生出版社, 2001. [80]张列亮,朱娟,徐磊.光电容积脉搏波临床应用研究进展[J].临床麻醉学杂志, 2013, 29(11): 1132-1134. [81]刘明,崔泽实.脉搏血氧饱和度监测仪及其在临床监测中的意义[J].医疗装备, 1997(8): 1. [83]杨华.基于心电脉搏信号的VDT精神疲劳识别方法研究[D].兰州:兰州理工大学, 2011. [84]张祖怀.基于人体生理信号的驾驶疲劳研究方法及其应用[D].哈尔滨:哈尔滨工业大学, 2006. [85]董占勋,孙守迁,吴群,等.心率变异性与驾驶疲劳相关性研究[J].浙江大学学报:工学版, 2010, (1): 46-50. [86]莫秋云,李荣敬,李军,等.基于ECG指标的山区公路线形对驾驶员特性的影响研究[J].中国安全 [87]曾超,王文军,李燕,等.考虑性别因素的驾驶人疲劳状态HRV非线性特征[J].东南大学学报:自然科学版, 2019, 49(3): 8. [91]陈晓静,戚春华,朱守林,等.基于表面肌电的草原公路驾驶员局部肌肉疲劳试验研究[J].科学技术与工程, 2015, 15(4): 278-282. [92]包萨日娜,朱守林,戚春华,等.驾驶员颈部肌肉疲劳试验研究[J].中国安全科学学报, 2014 24(5): 68-72. [93]张非若,陶鑫,王波,等.驾驶人背部肌肉负荷定量研究[J].中国生物医学工程学报, 2013, 32(6): 685-691. [96]Edwards R H. Human muscle function and fatigue [J]. Ciba Foundation symposium, 1981, 82: 1-18. [99]Chaffin D B, Andersson G, Martin B J. Occupational Biomechanics, 4th Edition [J]. 2006. [101]张蕴棍.运动性中枢疲劳的影响因素及其机制研究进展[J].体育科研, 2013, 34(3): 33-40. [102]黄耐寒.基于表面肌电的肌疲劳分析与肌力预测研究及实现[D].中国科学技术大学, 2014. [103]李亮亮,陈香.基于运动学和肌电特征的脑瘫爬行运动功能异常分析与评估[J].北京生物医学工程, 2018, 37(6): 566-574. [111]Borg G. The Borg CR10 Scale [J]. Borgs Perceived Exertion & Pain Scales, 1998. [112]黄河,耿东.日本《自觉症状调查表》(2002版)在中国制造业工人的应用性研究[J].人类工效学, 2009, 15(3): 26-28. [118]王琳.虹,李世武,高振海,等.基于粒子群优化与支持向量机的驾驶员疲劳等级判别[J].哈尔滨工业大学学报, 2014, 46(12): 102-107. [119]许士丽.基于生理信号的驾驶疲劳判别方法研究[D].北京:北京工业大学, 2012. [122]刘佳兴.基于多参数融合的疲劳驾驶监测及预警系统[D].兰州:兰州大学, 2013. [126]付川云.疲劳状态下驾驶人生理及眼动特征研究[D].哈尔滨:哈尔滨工业大学, 2011. [127]张驰.基于脑/肌/眼电疲劳驾驶检测技术的研究[D].沈阳:东北大学, 2012. [128]付荣荣,王宏,王琳,等.基于无线域网中多生理信号驾驶疲劳检测[J].东北大学学报(自然科学版), 2014, 35(6): 850-853. [129]张祖怀.基于人体生理信号的驾驶疲劳研究方法及其应用[D].哈尔滨:哈尔滨工业大学, 2006. [130]杨程程.驾驶疲劳检测研究[D].聊城:辽宁师范大学, 2014. [131]毛喆.基于驾驶员生理特征分析的驾驶疲劳状态识别方法研究[D].武汉:武汉理工大学, 2006. [133]Eskandarian A, Sayed R, Delaigue P, et al. Advanced Driver Fatigue Research [J]. Fatigue, 2007. [137]牛清宁.基于信息融合的疲劳驾驶检测方法研究[D].长春:吉林大学, 2014. [138]成波,冯睿嘉,张伟,等.基于多源信息融合的驾驶人疲劳状态监测及预警方法研究[C].国际节能与新能源汽车创新发展论坛, 2009: 13-18. [140]张伟,黄炜,罗大庸.基于多特征量贝叶斯融合的驾驶疲劳识别[J].计算机工程与应用, 2012, 48(33): 244-248. [141]祝荣欣.基于生理信号的联合收获机驾驶疲劳检测与评价[D].哈尔滨:东北农业大学, 2016. [142]赵磊.基于深度学习和面部多源动态行为融合的驾驶员疲劳检测方法研究[D].山东大学, 2018. [143]于旭蕾,李相泽.基于便携式脑电数据的实时疲劳驾驶检测系统[J].现代信息科技. 2018, 2(4): 37-39. [144]糜超,陈阳,邹凌.基于表面肌电的肌肉疲劳检测系统研究[J].现代电子技术, 2018, 41(20): 78-82. [145]李敏,李江天,宋战兵.基于支持向量机的驾驶疲劳检测研究[J].数字制造科学,2019,17(2): 131-135. [146]栗振.基于sEMG的腿部疲劳状态智能识别系统的设计[D].南京:南京邮电大学, 2019. [152]袁乐平.空中交通管制员疲劳及工作负荷与失误的关系[J].中国民航大学学报, 2018(6): 31-33 [153]林崇德,杨治良,黄希庭.心理学大辞典(上)[M].上海:上海教育出版社, 2003. [154]张雨.基于视觉信息融合的驾驶员疲劳检测技术研究[D].上海:上海师范大学, 2014. [155]杨奎.铁路列车调度员疲劳机理与发展规律研究[D].成都:西南交通大学, 2017. [156]冯圣洪,蔡永乐,周心权.安全状态评价模型构模原理及其状态程度与状态存在程度的表达方法研究[J].中国安全科学学报, 1998(1): 3-5. [157]张崇,郑崇勋,于晓琳,等.基于脑电近似熵的脑机能疲劳状态分析[J].航天医学与医学工程, 2006(6): 459-461. [160]张文影.基于面部和心率特征融合的驾驶员疲劳状态识别方法研究[D].广州市:华南理工大学, 2020. [161]于梦浩.基于多生理参数的人体疲劳动态检测研究[D].镇江:江苏大学, 2017. [162]欧阳萍.运动性疲劳发生机制及其防治对策[J].沈阳体育学院学报, 2004, 23(3): 324-326. [165]孙瑞山,张雨婷,柳震,等.民航机务人员工作负荷评估仿真研究[J].中国安全科学学报, 2019, 29(12): 7-12. [166]吕庆文,樊树海,徐文浩,等.基于DORATASK法的标准作业负荷评估模型[J].中国安全科学学报, 2020, 30(8): 183-188. [167]张唯真.生物医学电子学[M]:清华大学出版社, 1990 [168]张开滋.临床心电信息学[M]:湖南科学技术出版社, 2002. [169]庹焱.心率变异性研究进展[J].临床与病理杂志, 2001, 21(4): 305-308. [170]陆葆仁,杨剑雄.心率变异性测定的临床意义[J].心脏杂志, 1995, (2): 102-104. [171]王步青,王卫东.心率变异性分析方法的研究进展[J].北京生物医学工程, 2007, 26(5): 551-554. [182]李金铭.基于表面肌电信号的下肢康复机器人控制方法研究[D].哈尔滨:哈尔滨工业大学, 2013. [200]Kumar S. Theories of musculoskeletal injury causation [J]. Ergonomics, 2001, 44(1): 17-47. [201]Helander M G, Director H. Handbook of Human Factors and Ergonomics [M]. Third Edition, 2006. [216]Deng J. Introduction to grey theory system [M]. Sci-Tech Information Services, 1989. [219]杨春娣.多传感器信息融合及其运用[J].科技风, 2019(8): 86. [220]王洪波.多源信息特征提取与融合及其在信息管理中的应用[D].合肥:合肥工业大学, 2015. [221]Cortes C. Support-Vector Networks [J]. Machine Learning, 1995, 20(3): 273-297. [222]时静洁,陈利平,石宁,等.基于遗传算法的支持向量机预测有机物自燃点的研究[J].中国安全科学学报, 2011, 21(7): 125-129. |
中图分类号: | TD79 |
开放日期: | 2025-01-05 |