- 无标题文档
查看论文信息

论文中文题名:

 立体漏风作用下工作面上隅角CO分布规律    

姓名:

 冯异    

学号:

 19220214095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 金永飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-05    

论文外文题名:

 CO Distribution Pattern in the Corner of the Working Face under the Effect of Cubic Air Leakage    

论文中文关键词:

 浅埋藏煤层 ; 综放面 ; 地表漏风 ; 数值模拟 ; 分布规律    

论文外文关键词:

 Shallow coal seam ; Fully mechanized top-coal caving face ; Surface air leakage ; Numerical simulation ; Migration law    

论文中文摘要:

       近年来,陕北矿区浅埋藏矿井煤层开采过程中,由于煤层采动影响严重,易与地表形成连通的裂隙,产生井上下之间的漏风通道,加剧采空区漏风程度,导致采空区内部氧浓度升高,使煤自燃危险性增加。本文以曹家滩矿2-2煤层的122108综放工作面为研究对象,针对其地表采动裂隙的漏风特点,利用SF6示踪气体对不同季节的采空区地表漏风进行现场观测,对比分析了井上下温差和压强变化的季节性特征,并通过理论公式计算地表漏风流速的方法,研究不同季节采空区地表漏风规律。结合理论分析和现场实测得出了不同季节各测点的漏风流速最值变化范围,比较了不同季节SF6释放点距采面不同距离的平均漏风流速分布规律以及不同季节地表裂隙工作面不同位置测点的平均漏风流速分布特点,通过理论公式计算得出了不同季节工作面不同测点位置的等效水力裂隙宽度最值变化范围,综合分析得出冬季季节时工作面不同位置之间的裂隙发育均特别严重,漏风程度可达到最大。

       根据122108综放面的现场生产特点,实践观测了上隅角CO气体的不同来源,通过预埋束管方法监测采空区浮煤氧化产生CO的过程,并分析了采空区浮煤氧化产生的CO气体对上隅角区域影响程度,综合分析得出了工作面上隅角CO的主要来源是采空区浮煤氧化产生。根据现场气体监测数据,以氧浓度法划分煤自燃“三带”范围并通过理论公式测算工作面两端的漏风强度,得出现场实际立体漏风条件下工作面水平漏风变化规律。通过CFD模拟得出单一水平漏风条件下的工作面水平漏风分布规律。通过不同变量条件的煤自燃程序升温实验,分析不同实验条件下煤氧化产生CO的特点及影响。

       针对浅埋藏煤层矿井的工作面采空区地表漏风特点及其现场测定规律,使用FLUENT软件对工作面采空区及其上隅角等处的风流速度场和气体浓度场进行了数值模拟,并根据单一水平漏风条件和立体漏风条件下两种模型的数值模拟结果,对比分析得出立体漏风作用下工作面上隅角CO分布规律。

论文外文摘要:

        In recent years, during the mining process of coal seams in shallow buried mines in northern Shaanxi province, due to the serious influence of coal seam mining, it is easy to form linked fissures with the surface, which generates wind leakage channels between upper and lower wells, intensifying the degree of wind leakage in the mining area, leading to the increase of oxygen concentration inside the mining area and increasing the risk of coal spontaneous combustion. In this paper, we take 122108 header working face of 2-2 coal seam in Caojiatan mine as the research object, and use SF6 tracer gas to observe the surface wind leakage in the mining area in different seasons, compare and analyze the seasonal characteristics of temperature difference and pressure change above and below the well, and calculate the surface wind leakage flow rate by theoretical formula to study the surface wind leakage law in the mining area in different seasons The method of calculating the surface wind leakage flow rate by theoretical formula is used to study the surface wind leakage pattern in the mining area in different seasons. Combined with theoretical analysis and field measurement, the range of variation of the maximum value of wind leakage flow velocity of each measurement point in different seasons was obtained, and the distribution rules of the average wind leakage flow velocity of SF6 release points at different distances from the mining face in different seasons and the distribution characteristics of the average wind leakage flow velocity of measurement points at different locations on the surface fissure working face in different seasons were compared, and the maximum value of the equivalent hydraulic fissure width at different measurement point locations on the working face in different seasons was calculated by theoretical formula. The range of variation is calculated by theoretical formula, and the comprehensive analysis shows that the fissure development between different locations of the working face is particularly serious in winter season, and the degree of wind leakage can reach the maximum.

         According to the production characteristics of 122108 working face, the process of CO generated from the oxidation of floating coal in the mining area was monitored by the pre-buried beam pipe method, and the degree of influence of CO gas generated from the oxidation of floating coal in the mining area on the upper corner area was analyzed, and the comprehensive analysis concluded that the main source of CO in the corner area on the working face was generated from the oxidation of floating coal in the mining area. According to the on-site gas monitoring data, the "three zones" of coal spontaneous combustion are divided by the oxygen concentration method and the air leakage intensity at both ends of the working face is measured by the theoretical formula, and the change law of horizontal air leakage at the working face under the actual three-dimensional air leakage conditions is obtained. By CFD simulation, the distribution of horizontal air leakage at the working face under single horizontal air leakage condition is obtained. The characteristics and effects of CO generation from coal oxidation under different experimental conditions are analyzed through the warming experiments of coal spontaneous combustion procedure under different variable conditions.

       For the characteristics of surface air leakage in the working face mining area of shallow buried coal seam mines and its field measurement law, numerical simulation of wind velocity field and gas concentration field in the working face mining area and its upper corner was carried out using FLUENT software, and the CO distribution law in the corner of the working face under the effect of three-dimensional air leakage was compared and analyzed according to the numerical simulation results of two models under the conditions of single horizontal air leakage and three-dimensional air leakage.

参考文献:

[1] Bernard Looney. BP statistical review of world energy 2021[M]. BP,2021:46-48.

[2] 邓奇根,张赛,刘明举.2006—2015年我国煤矿安全形势好转原因分析及建议[J].煤炭

工程,2016,(12):99-102.

[3] 梁运涛,侯贤军,罗海珠,等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术, 2016, 44(6):1-6.

[4] 张欣.综放工作面采空区遗煤自燃防控研究[J].煤炭技术,2021,40(04):104-108.

[5] Liu Lang, Zhou Fubao.A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining[J]. International Journal of Coal Geology, 2010,82(1):27-36.

[6] Colaizzi GJ. Prevention control and/or extinguishment of coal seam fires using cellular grout[J]. International Journal of Coal Geology,2004,59(1):75-81.

[7] Xia Tongqiang, Wang Xinxin, Zhou Fubao, Kang Jianhong, Liu Jishan, Gao Feng. Evolution of coal selfheating processes in longwall gob areas[J]. International Journal of Heat and Mass Transfer,2015,86:861-868.

[8] 胡社荣,蒋大成.煤层自燃灾害研究现状与防治对策[J].中国地质灾害与防治报,2000,11(4):69-71.

[9] Genc B, Cook A. Spontaneous combustion risk in South African coal fieldes[J].Journal of the Sourhern African Institute of Mining and Metallurgy,2015,115(7):563-568.

[10] Xu Jingcai, DengJun. Study on rules of spontaneous combustion in the gob of full mechanized long-wall topcoal caving face. Eighth U.S Mine Ventilation symposium 1999.

[11] Van GenderenJL, Annual Technical Progress Report for Project: environmental monitoring of spontaneous combustion in the north China coalfields. International Institute foe Aerospace Survey and Earth Science (ITC), The Netherlands, 1996.

[12] Yael Miron. Gel Sealants for the Mitigation of Spontaneous Heating in coal Mines Report of Investigations [J].1995 USBM R19585.

[13] 张敏.恒大矿复杂采区瓦斯与煤自燃影响效应及防控机制研究[D].辽宁工程技术大学,2017.

[14] 谭章禄,单斐.近十年我国煤矿安全事故时空规律研究[J].中国煤炭, 2017(9).

[15] 刘立仁.浅埋深易自燃煤层工作面低氧高一氧化碳防治技术[J].煤矿安全,2021,52(03):106-111.

[16] 翟小伟.煤氧化过程CO产生机理及安全指标研究[D].西安科技大学,2012.

[17] 李建伟,刘长友,卜庆为.浅埋厚煤层开采覆岩采动裂缝时空演化规律[J].采矿与安全工程学报,2020,37(02):238-246.

[18] 杨真,郭瑞瑞,杨永亮.浅埋深综放工作面矿压显现规律及控制研究[J].工矿自动化,2020,46(09):44-50.

[19] 高登彦,陈建化,欧阳一博.近距离复合采空区煤自燃灾害防控技术[J/OL].煤炭科学技术,2021(S2):1-9.

[20] 陈龙.斜沟矿采空区遗煤自然发火规律研究[D].中国矿业大学,2019.

[21] 张风林.大采高综放工作面漏风规律研究[J].煤炭技术,2020,39(08):148-151.

[22] 但卓.柠条塔矿浅埋煤层采空区漏风规律及其应用[D].西安科技大学,2019.

[23] 汪腾蛟.神东矿区煤层群开采自然发火规律及防控技术研究[D].辽宁工程技术大学,2020.

[24] 张海峰,张茂文.浅埋深综放工作面采空区漏风检测技术[J].煤矿安全,2013,44(06):63-65+69.

[25] 贺飞.酸刺沟矿浅埋近距离煤层群开采自燃火灾防治技术体系研究[D].辽宁工程技术大学,2017.

[26] 邢震.浅埋厚煤层地表漏风对采空区煤自燃影响数值模拟研究[J].工矿自动化,2021,47(02):80-87+103.

[27] 卓辉.浅埋藏近距离煤层群开采裂隙漏风及煤自然发火规律研究[D].中国矿业大学,2021.

[28] 高峰.浅埋煤层群上部采空区遗煤自燃危险区域分布特征研究[D].内蒙古科技大学,2021.

[29] 赵亚杰.浅埋特厚煤层综放工作面采空区遗煤自燃防治技术[D].内蒙古科技大学,2019.

[30] 郝敏.浅埋煤层群复合采空区煤自燃危险区域分布规律研究[D].中国矿业大学,2019.

[31] 徐精彩.煤自燃危险区域判定理论[M].北京:煤炭工业出版社.2002.

[32] 邓军,李贝,李珍宝,等.预报煤自燃的气体指标优选试验研究[J].煤炭科学技术,2014,42(01):55-59+79.

[33] 徐精彩,文虎,张辛亥,等.综放面采空区遗煤自燃危险区域判定方法的研究[J].中国科学技术大学学报,2002(06):39-44.

[34] 徐精彩,张辛亥,文虎,等.煤氧复合过程及放热强度测算方法[J].中国矿业大学学报,2000(03):31-35.

[35] 杨小彬,聂朝刚,张子鹏,等.浅埋综采面采空区遗煤CO产生规律实验研究[J].矿业科学学报,2021,6(01):51-59.

[36] 李宗翔,吴志君,马友发.采空区场域自燃CO向工作面涌出的数值模拟[J].燃烧科学与技术,2006(06):563-568.

[37] 陈辉.浅埋厚煤层易燃综放工作面CO主要来源判定[J].矿业安全与环保,2016,43(01):85-88.

[38] 王蓬,魏引尚,常心坦.采空区自燃“三带”的灰色关联分析与预测研究[J].煤矿安全,2008(05):8-11.

[39] 周效志,桑树勋,谷德忠,等.煤矿井下CO来源辨识与浓度超限原因研究——以内蒙古串草圪旦煤矿为例[J].煤炭科学技术,2021,49(02):138-144.

[40] 葛岭梅,薛韩玲,徐精彩,等.对煤分子中活性基团氧化机理的分析[J].煤炭转化,2001(03):23-28.

[41] 徐精彩,文虎,葛岭梅,等.松散煤体低温氧化放热强度的测定和计算[J].煤炭学报,2000(04):387-390.

[42] 王晓华,葛岭梅,周安宁,等.神府煤流化床低温氧化煤分子中活性基因的变化[J].西安科技学院学报,2001(01):40-43.

[43] 葛岭梅.煤分子中活性基团氧化与煤的自燃机制探讨[J].西安矿业学院学报,1988(01):91-96.

[44] 毛允德,高玉成.水采矿井H_2S、CO、CH_4气体异常区成因及防治技术[J].水力采煤与管道运输,2000(02):38-40.

[45] 朱红青,常明然,王浩然,等.煤层原生CO气体存在性研究[J].煤炭技术,2017,36(04):139-140.

[46] 秦汝祥,徐少伟,侯树宏,等.煤层原生CO钻孔探测试验[J].工矿自动化,2022,48(01):21-25+39.

[47] 何启林,刘长青,刘德平,等.煤巷打眼过程中CO产生原因的确定[J].煤矿安全,2006(07):44-45.

[48] 梁鹏飞.矿井煤体原生赋存一氧化碳气体来源试验研究[J].煤炭与化工,2021,44(09):115-116+119.

[49] 王海燕.煤层原生CO生成机理及吸附、放散特征研究[D].中国矿业大学(北京),2015.

[50] 冯自宇,翟小伟.采煤工作面CO气体产生机理及异常超限处理措施[J].西北煤炭,2008(02):57-59+61.

[51] Huang J J, Bruining J, Wolf KHAA. Modeling of gas flow and temperature fields in underground coal fires[J].Fire Safety Journal,2001,36(5):477-489.

[52] Boleslav Taraba. Mechanical decarbonylation of coal[J]. Fuel,1994,73(10):1679-1681.

[53] 李增学.煤地质学[M]. 北京:地质出版社,2009.

[54] 王春华.截齿截割作用下煤体变形破坏规律研究[D].阜新,辽宁工程技术大学,2005.

[55] 褚廷湘,韩学锋,余明高.承压破碎煤体低温氧化特征与宏观致因分析[J].中国安全科学学报,2019,29(09):77-83.

[56] 马砺,魏泽,邹立,等.煤层开采过程中CO气体来源实验测试与分析[J].中国矿业大学学报,2021,50(02):214-219.

[57] 位爱竹,李增华,杨永良.破碎、氧化和光照对煤中自由基的影响分析[J].湖南科技大学学报(自然科学版),2006(04):19-22.

[58] 赵晓莉,王继峰.炸药爆炸产生有毒气体的原因及其防治[J].煤矿爆破,2007(02):23-26.

[59] 李敬民.煤矿井下爆破气体的危害及其预防[J].华北科技学院学报,2005(02):34-36.

[60] Deming Wang, Guolan Dou, Xiaoxing Zhonget al. An experiment approach to selecting chemical inhibitors to retard the spontaneous combustion of coal [J].Fuel,2014,17:218-233

[61] 冯自宇,翟小伟.采煤工作面CO气体产生机理及异常超限处理措施[J].西北煤炭,2008(02):57-59+61.

[62] 宋双林,张占国,王坤.井下爆破过程CO气体生成规律研究[J].煤矿安全,2016,47(8):23-25.

[63] 孙世彪.浅析岩巷爆破装药量与CO生成量的关系[J].江西煤炭科技,2016(4):140-142.

[64] Mainiero, R.J., Harriset al. Dangers of toxic fumes from blasting[M], 2007:1-6.

[65] Susana Torno, Javier Torano, Marcos Ulecia, et al. Conventional and numerical moderls of blasting gas behaviour in auxiliary ventilation of mining headings[J]. Tunnelling and Underground Space Technology, 2013,34(34):73-81.S.

[66] 谭丕强,陆家祥,邓康跃,等.柴油机排放CO-PM预测模型[J].农业机械学报,2003(02):20-22+26.

[67] 李迎,俞小莉,陆国栋,等.柴油机工作过程计算中排放物模拟与实验研究[J].浙江大学学报(工学版),2006(10):1823-1826.

[68] 苌转,周斌,于超,等.6135Z型柴油机CO和NO排放预测[J].交通节能与环保,2008(04):23-26.

[69] C. D. Rakopoulos. Development and validation of a compressive two-zone model forcombustion and emission formation in a DI diesel engine[J]. International Journal of Energy Research,2003,27(14):1221-1249.

[70] 王新宇.易自燃煤层综采面超大采空区CO运移规律及控制技术研究[D].太原理工大学,2013.

[71] 沈静.煤矿井下多源一氧化碳运移规律及积聚判别条件研究[D].中国矿业大学(北京),2016.

[72] 阎超,于剑,徐晶磊,等.CFD模拟方法的发展成就与展望[J].力学进展,2011,41(05):562-589.

[73] 王奕博.抽采条件下采空区漏风对上隅角瓦斯积聚特性研究[D].西安科技大学,2019.

[74] 贾玉泉.综采工作面上隅角CO积聚特性分析[D].西安科技大学,2019.

[75] 程斌.枣泉煤矿2#煤层开采工作面CO来源研究[D].西安科技大学,2014.

[76] Qian-Ting H U, Liang Y P, Liu J Z. CFD simulation of goaf gas flow patterns [J]. Journal of Coal Science & Engineering,2007,32(7):719-723.

[77] 陈海燕,亓玉栋.回风隅角通风流场的数值模拟研究[J].煤矿安全,2010,41(9):8-10.

[78] 李昊.浅埋煤层群开采地表漏风规律研究[D].西安科技大学,2014.

[79] 岑旺.高瓦斯矿井综采工作面瓦斯运移规律研究[D].包头,内蒙古科技大学,2010.

[80] 夏新川,张秀才,王士涛,等.工作面上隅角瓦斯运移、积聚及处理措施[J].煤炭科学技术,2001,29(6):5-8.

[81] 徐爱英.伯努利方程的推导[J].科技信息,2012(04):157.

[82] 赵永富,田恩龙,张国栋.达西定律与渗流控制[J].黑龙江水利科技,2008(04):65.

[83] 朱红青,王斐然,张振.煤层原生CO的产生与赋存探讨[J].煤炭技术,2015,34(02):306-308.

[84] 邬剑明,郭惠宇,宋金旺,等.解吸法测定塔山矿煤层原生CO含量的试验研究[J].煤炭科学技术,2010,38(06):54-56.

中图分类号:

 TD75+2    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式