论文中文题名: |
基于三维激光扫描的黄丘区坡沟系统土壤侵蚀试验研究
|
姓名: |
曹凯
|
学号: |
21210061035
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
081602
|
学科名称: |
工学 - 测绘科学与技术 - 摄影测量与遥感
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘科学与技术
|
研究方向: |
地貌遥感
|
第一导师姓名: |
李朋飞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-17
|
论文答辩日期: |
2024-06-03
|
论文外文题名: |
An experimental study on the erosion processes of the slope-gully system in the hilly and gully Loess Plateau based on 3D laser scanning
|
论文中文关键词: |
坡沟系统 ; 三维激光扫描 ; 土壤侵蚀 ; 过程与机理 ; 黄土丘陵沟壑区
|
论文外文关键词: |
Slope-gully system ; Terrestrial Laser Scanning ; Soil erosion ; Processes and mechanisms ; Hilly and gully Loess Plateau
|
论文中文摘要: |
︿
坡沟系统是黄土丘陵沟壑区基本地貌单元,也是产沙的主要源地,深入理解其侵蚀产沙过程和机理对区域土壤侵蚀防治和模型构建具有重要意义。已有坡沟系统研究多以室内模拟试验和回填土为主,而基于野外原位坡面试验的坡沟系统侵蚀产沙精细研究缺乏。因此,本文以黄土丘陵沟壑区辛店沟流域坡沟系统侵蚀过程为研究对象,构建植被和裸露两种类型的6个径流小区,开展3种雨强梯度(1.5 mm·min-1、2.0 mm·min-1、2.5 mm·min-1)模拟降雨试验,基于地基三维激光扫描仪(Terrestrial Laser Scanning,TLS),探究坡沟系统侵蚀过程与机理。首先,利用TLS进行径流小区地形数据采集并计算产沙量,以实测产沙量为基准,验证坡沟系统连续侵蚀过程中TLS技术的监测精度。其次,研究了裸露小区的梁峁坡(自上而下每间隔1m,划分为A、B、C、D、E五个坡段)侵蚀沉积时空分布和水动力学参数变化特征,分析侵蚀产沙与水动力学参数之间的关系。最后,研究了梁峁坡植被恢复下沟谷坡的侵蚀产沙过程、水动力学参数和地形变化特征,分析了沟谷坡侵蚀沉积时空分布、侵蚀产沙与地形变化和水动力力学参数之间的关系,为后续坡沟系统侵蚀产沙机理研究提供参考。主要研究结果如下:
基于多尺度模型点云比对(Multiscale Model to Model Cloud Comparison,M3C2)算法计算的地形变化点云转为栅格进行产沙量计算时,考虑植被和裸坡径流小区分辨率一致性,分辨率为10 mm时,植被和裸坡径流小区累计产沙量的相对误差、绝对误差和均方根误差优于其他分辨率(5 mm、20 mm、50 mm)的结果。因而选用10 mm分辨率栅格开展侵蚀产沙计算。在此分辨率下,基于TLS计算自然坡沟系统的累积产沙量精度高于单场次产沙量,适用于监测自然坡沟系统连续侵蚀且地形变化较大的过程。
(2)裸露小区梁峁坡侵蚀过程机理研究显示,不同雨强下,梁峁坡侵蚀主要集中在A、B、C和D坡段,沉积主要集中在E坡段。随着雨强的增大,坡面以侵蚀为主,其中D、E坡段侵蚀加重,沉积减小且分散。随着场次增加,1.5和2.5 mm·min-1雨强下,B坡段侵蚀面积最大,C坡段次之,D坡段最小;2.0 mm·min-1雨强下,B坡段最大,D坡段次之,C坡段最小。不同雨强下,B、C和D坡段的雷诺数、Darcy-weisbach阻力系数、Manning糙率系数、径流剪切力、径流功率和过水断面单位能量总体上呈先增长至最高值后缓慢下降最终趋于稳定的趋势,平均流速、弗劳德数和单位径流功率均呈先下降至最低值后缓慢上升最终趋于稳定的趋势。同一雨强下,距离梁峁坡坡顶距离长度与平均流速、雷诺数、弗劳德数、单位径流功率成正比,与径流剪切力、Darcy-Weisbach阻力系数、Manning糙率系数成反比。相关性分析表明,平均流速可以作为产沙速率的表征参数(R2=0.75,p<0.01),径流功率可以作为侵蚀速率的表征参数(R2=0.67,p<0.01),两者皆为线性关系。
(3)梁峁坡植被恢复对沟谷坡侵蚀产沙的影响研究表明,梁峁坡有植被时,沟谷坡侵蚀主要集中于沟谷坡下半部且侵蚀深度较小,无沉积发生;地表粗糙度变化小且与侵蚀量之间相关性较弱(R2介于0与0.12之间,p<0.001);侵蚀速率与径流剪切力的相关性最强(R2=0.57, p<0.05),说明沟谷坡径流剪切力能够描述径流剥离泥沙的能力。梁峁坡无植被时,沉积集中在沟谷坡坡底区域,侵蚀区域主要集中于沟谷坡中上部分的内凹洞区域;随试验进行,2.0和2.5 mm·min-1雨强下,由重力引发沟缘线处发生崩塌,崩塌体在内凹洞内部形成沉积,改变沟道形态,内凹洞的最大高度逐渐减小;地表粗糙度变化随雨强增大而增大,且与侵蚀量之间总体上相关性较强(R2介于0.47与0.89之间,p<0.001);侵蚀速率与水动力学参数之间相关性较差(R2介于0至0.32之间,p在0.09—0.93之间)。以上结果表明,梁峁坡无植被时,径流冲刷和重力影响导致地形变化,地形变化会反作用加剧其影响,进一步造成沟谷坡侵蚀持续加重。梁峁坡植被恢复对沟谷坡侵蚀产沙具有很好的抑制作用。
﹀
|
论文外文摘要: |
︿
The slope-gully system was a fundamental geomorphic unit in the hilly and gully loess plateau and the primary sediment source, understanding its erosion-sedimentation processes and mechanisms was of significant importance for regional soil erosion control and process model construction. Existing researches on slope-gully systems have mainly focused on indoor simulation experiments and backfilling soil, lacking detailed investigations based on field in-situ slope surface experiments. Therefore, this study, taking gully-slope systems on natural slopes in the Xindiangou catchment of the hilly and gully Loess Plateau as the study area, constructed six vegetated / bare runoff plots to undertake simulated rainfall experiments with three rainfall intensity gradients (1.5 mm·min-1, 2.0 mm·min-1, 2.5 mm·min-1). Based on Terrestrial Laser Scanning (TLS), the erosion process and mechanism of the natural gully system were explored. Firstly, TLS was used to collect topographic data of runoff plots and calculated sediment yield. The sediment yield measured at the outlet of the plots was taken as the true value to verify the monitoring accuracy of TLS technology during the continuous erosion process of the natural gully system. Secondly, the spatial-temporal distribution and changes in hydraulic parameters of erosion and deposition on the hillslope (the slope was divided into five slope sections with a 1 m interval: A, B, C, D, and E) in the bare runoff plots were studied, while the relationship between erosion / deposition and hydraulic parameters was examined. Lastly, the erosion / deposition process, hydraulic parameters, and terrain changes of the gully slope under vegetation restoration on the hillslope were investigated, and the relationship between the spatial-temporal distribution of erosion / deposition on gully slopes, terrain changes, and hydraulic parameters was analyzed. Main findings are as follows:
When the terrain change point clouds derived based on the Multiscale Model to Model Cloud Comparison (M3C2) algorithm were converted into raster grids for the calculation of sediment yield, Considering the consistency of grids in both vegetated and bare slope runoff plots, the relative error, absolute error, and root mean square error of cumulative sediment yield corresponding to a 10 mm grids in both vegetated and bare slope runoff plots were better than the results of other resolution (5 mm, 20 mm and 50 mm). Therefore, the 10 mm resolution was selected for sediment yield calculation. Based on the chosen resolution, the accuracy of TLS for deriving the cumulative sediment yield of slope-gully systems was higher than that for individual experiments. This demonstrated that the TLS was suitable for monitoring continuous erosion and significant terrain changes of the slope-gully systems.
The processes and mechanisms study for the bare hillslopes showed that under different rainfall intensities, erosion on the hillslope was mainly concentrated in segments A, B, C, and D, while deposition mainly occurred in segment E. With the increase of rainfall intensity, the slope surface was predominantly eroded, with intensified erosion in segments D and E, and reduced and dispersed deposition. As the experiments progressed, the erosion area enlarged, and the segment B had the largest erosion area under rainfall intensities of 1.5 mm·min-1and 2.5 mm·min-1, followed by segment C. The segment D characterized the smallest erosion area.Under a rainfall intensity of 2.0 mm·min-1, segment B had the largest erosion area, followed by segment D. The segment C had the smallest erosion area. Under different rainfall intensities, the Reynolds number, Darcy-Weisbach friction coefficient, Manning roughness coefficient, shear stress, runoff power, and cross-sectional unit energy of segments B, C, and D generally exhibited an increasing trend reaching a peak before slowly decreasing and a eventually stabilizing state. The average flow velocity, Froude number, and unit runoff power generally decreased to a minimum before slowly increasing and a eventually stabilizing state. Under the same rainfall intensity, the distance from the top of the hillslope was proportional to the average flow velocity, Reynolds number, Froude number, and unit runoff power, and inversely proportional to the shear stress, Darcy-Weisbach friction coefficient, and Manning roughness coefficient. Correlation analysis indicated that the average flow velocity could served as a representative parameter of sediment yield rate (R2=0.75, p<0.01), and the runoff power could served as a representative parameter of erosion rate (R2=0.67, p<0.01), both showing linear relationships.
The investigations into the impact of hillslope vegetation restoration on the erosion and sediment yield of gully slopes demonstrated that when vegetation was located on the hillslope, erosion on the gully slope was primarily concentrated on the lower half with shallow erosion depth and no sediment deposition occuring. Surface roughness variation was minimal, and its correlation with erosion quantity was weaker (R2 ranged between 0 and 0.12, p < 0.001). The erosion rate showed the strongest correlation with shear stress (R2 = 0.57, p < 0.05), indicating that shear stress on the gully slope cloud described its ability to detach sediment from the flow. Without vegetation on the hillslope, sediment accumulated in the bottom area of the gully slope, and erosion mainly occurred in the concave hollow area of the upper-middle part of the gully slope. As the experiment progresses, collapses occurred at the gully edge line due to gravity, forming deposits inside the concave hollows under rainfall intensities of 2.0 mm·min-1and 2.5 mm·min-1, altering the channel morphology, and gradually reducing the maximum height of the concave hollows. Surface roughness variation increased with rainfall intensity and generally had a strong correlation with erosion quantity (R2 ranged between 0.47 and 0.89, p < 0.001). The correlation between erosion rate and hydraulic parameters was weaker (R2 ranged between 0 and 0.32, p between 0.09 and 0.93). These results indicated that when the hillslope was bare, the combined effects of runoff scouring and gravity-induced changes in terrain exacerbated each other, leading to continuous exacerbation of gully slope erosion. Vegetation restoration on the hillslope exerted a significant inhibitory effect on erosion processes of gully slopes.
﹀
|
参考文献: |
︿
[1] Haregeweyn N, Tsunekawa A, Nyssen J, et al. Soil erosion and conservation in Ethiopia: a review[J]. Progress in Physical Geography, 2015, 39(6): 750-774. [2] 尚敏. 土壤侵蚀与水土保持研究进展[J]. 中国农业信息, 2015, 8(1): 93. [3] 康宏亮. 黄土塬区草地沟头溯源侵蚀过程及形态演化机制模拟研究[D]. 杨凌: 西北农林科技大学, 2022. [4] 丁贵惠, 任忠政, 胡伟, 等. 侵蚀性降雨对黑土坡耕地土壤侵蚀特征的影响[J]. 水土保持学报, 2024, 38(2), 1-10. [5] Pimentel D. Soil erosion: a food and environmental threat[J]. Environment, development and sustainability, 2006, 8(4): 119-137. [6] Li P, Mu X, Holden J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau[J]. Earth-Science Reviews, 2017, 170(4): 17-30. [7] 丁贵惠, 任忠政, 胡伟, 等. 侵蚀性降雨对黑土坡耕地土壤侵蚀特征的影响[J]. 水土保持学报, 2024, 38(2): 1-10. [8] 李永红, 高照良. 黄土高原地区水土流失的特点、危害及治理[J]. 生态经济, 2011, 31(8): 148-53. [9] 金钊. 走进新时代的黄土高原生态恢复与生态治理[J]. 地球环境学报, 2019, 10(3): 316-322. [10] 杨艳芬, 王兵, 王国梁, 等. 黄土高原生态分区及概况[J]. 生态学报, 2019, 39(20): 7389-7397. [11] 李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状、问题及对策[J]. 生态学报, 2019, 39(20): 7398-7409. [12] Zhao G, Mu X, Wen Z, et al. Soil erosion, conservation, and eco‐environment changes in the Loess Plateau of China[J]. Land Degradation and Development, 2013, 24(5): 499-510. [13] Zhao G, Gao P, Tian P, et al. Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China[J]. Catena, 2020, 185: 104284. [14] 赵阳, 张永娥, 王昭艳, 等. 水土保持生态建设下的黄土高原典型流域水沙响应[J]. 中国水土保持科学(中英文), 2024, 22(1): 21-26. [15] 高云飞, 张栋, 赵帮元, 等. 1990—2019年黄河流域水土流失动态变化分析[J]. 中国水土保持, 2020, (10): 64-67. [16] 杨波, 焦菊英, 马晓武, 等. 2022年黄土高原典型暴雨侵蚀及洪水灾害调查分析[J]. 水土保持通报, 2022, 42(6): 1-13. [17] 刘晓燕, 李晓宇, 高云飞, 等. 黄土丘陵沟壑区典型流域产沙的降雨阈值变化[J]. 水利学报, 2019, 50(10): 1177-1188. [18] 刘思君, 刘立峰, 刘姗姗, 等. 黄土丘陵沟壑区桥沟小流域水沙变化特征及成因分析[J]. 中国水土保持, 2022, 18(10): 9-15. [19] 刘晓燕, 党素珍, 高云飞, 等. 黄土丘陵沟壑区林草变化对流域产沙影响的规律及阈值[J]. 水利学报, 2020, 51(5): 505-518. [20] 王光谦, 李铁键, 薛海, 等. 流域泥沙过程机理分析[J]. 应用基础与工程科学学报, 2006, (4): 455-462. [21] 孙从建, 王佳瑞, 郑振婧, 等. 黄土高原塬面保护区降雨侵蚀力时空分布特征及其影响因素研究[J]. 干旱区地理, 2020, 43(3): 568-576. [22] 焦菊英, 王志杰, 魏艳红, 等. 延河流域极端暴雨下侵蚀产沙特征野外观测分析[J]. 农业工程学报, 2017, 33(13): 159-167. [23] 王小军, 蔡焕杰, 张鑫, 等. 皇甫川流域水沙变化特点及其趋势分析[J]. 水土保持研究, 2009, 16(1): 222-226. [24] 魏霞, 李占斌, 李勋贵. 黄土高原坡沟系统土壤侵蚀研究进展[J]. 中国水土保持科学, 2012, 10(1): 108-113. [25] 严增, 焦菊英, 唐柄哲, 等. 黄土丘陵沟壑区坡沟系统产流产沙对源-汇-路径格局的响应[J]. 农业工程学报, 2024, 40(5): 118-127. [26] 朱谧远, 武小飞, 李晨辉, 等. 黄土高原陡坡地不同植被类型及恢复过程对径流泥沙的影响[J]. 水土保持研究, 2023, 30(6): 57-66. [27] 王婧, 李龙, 张鹏, 等. 植被格局对砒砂岩坡地降雨侵蚀的影响[J]. 生态学报, 2024, (9): 1-14. [28] Evans M, Lindsay J. High resolution quantification of gully erosion in upland peatlands at the landscape scale[J]. Earth Surface Processes and Landforms, 2010, 35(8): 876-886. [29] 张姣, 郑粉莉, 温磊磊, 等. 利用三维激光扫描技术动态监测沟蚀发育过程的方法研究[J]. 水土保持通报, 2011, 31(6): 89-94. [30] 杨春霞, 李莉, 王佳欣, 等. 坡沟系统侵蚀时空分布特征试验研究[J]. 人民黄河, 2017, 39(1): 95-97. [31] 李朋飞, 张晓晨, 党旭, 等. 基于三维激光扫描的坡沟系统侵蚀产沙过程研究[J]. 水土保持研究, 2023, 30(2): 13-21. [32] Nicótina L, Alessi Celegon E, Rinaldo A, et al. On the impact of rainfall patterns on the hydrologic response[J]. Water Resources Research, 2008, 44(12), 1-14. [33] 秦越, 程金花, 张洪江, 等. 雨滴对击溅侵蚀的影响研究[J]. 水土保持学报, 2014, 28(2): 74-78. [34] 袁和第, 信忠保, 蒋秋玲, 等. 连续降雨作用下褐土坡面侵蚀及其水动力学特征[J]. 水土保持学报, 2020, 34(4): 14-20. [35] 田培, 仇浩然, 冯宇, 等.雨强和坡度对红壤坡面产流产沙及侵蚀动力过程影响[J]. 水土保持研究, 2020, 27(6): 1-8. [36] Luo J, Zheng Z, Li T, et al. Characterization of runoff and sediment associated with rill erosion in sloping farmland during the maize-growing season based on rescaled range and wavelet analyses[J]. Soil and Tillage Research, 2019, 195: 104359. [37] 宇涛, 张霞, 李占斌, 等. 不同草带覆盖位置条件下坡沟系统侵蚀产沙差异性[J]. 水土保持学报, 2018, 32(6): 22-27. [38] 董敬兵. 间歇性降雨下植被和梯田对坡沟系统细沟侵蚀过程的调控作用[D]. 西安: 西安理工大学, 2023. [39] 陈炳伊. 不同植被格局下坡沟系统的侵蚀动力过程研究[D]. 西安: 长安大学, 2023. [40] Wang J, Zhang K, Yang M, et al. Influence of rainfall and roughness on hydrodynamic characteristics of overland flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 147-154. [41] 丁文峰, 张平仓, 王爱娟, 等. 几种坡面土壤侵蚀测量方法的比较研究[J]. 长江科学院院报, 2015, 32(11): 14-18. [42] 刘婧春, 岳大鹏, 郭坤杰, 等. 20世纪60年代以来黄土高原小流域泥沙来源的方法与历史侵蚀过程研究进展[J]. 江西农业学报, 2016, 28(4): 77-82. [43] 翟娟, 熊东红, 卢晓宁, 等. 冲沟侵蚀监测方法研究进展[J].世界科技研究与发展, 2011, 33(4): 524-526. [44] 张晨阳, 杨伟, 汪零, 等. 基于REE示踪对红壤细沟间侵蚀团聚体周转和泥沙迁移特征的研究[J]. 土壤学报, 2024, 38(2): 1-15. [45] 王一峰, 牛俊, 张长伟. 基于三维激光扫描仪技术的坡面径流小区土壤侵蚀运用研究[J]. 中国农业信息, 2013, 4(23): 151-152. [46] 张加琼, 尚月婷, 白茹茹, 等. 稀土元素示踪法在土壤侵蚀与泥沙来源研究中的应用[J]. 水土保持研究, 2023, 30(3): 55-61. [47] 董元杰, 史衍玺, 孔凡美, 等. 基于磁测的坡面土壤侵蚀空间分布特征研究[J]. 土壤学报, 2009, 46(1): 144-148. [48] 丁晋利, 郑粉莉, 张信宝, 等. 利用~7Be研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征[J]. 水土保持通报, 2005, 43(2): 16-19. [49] 王全辉, 胡国庆, 董元杰, 等. 磁性示踪条件下坡面土壤侵蚀产流、产沙及侵蚀空间分异特征[J]. 水土保持学报, 2012, 26(2): 21-23. [50] Gaspar L, Navas A, Machín J, et al. Using 210Pbex measurements to quantify soil redistribution along two complex toposequences in Mediterranean agroecosystems, northern Spain[J]. Soil and Tillage Research, 2013, 130(6): 81-90. [51] 明旭辉, 王瑄, 盛思远, 等. 基于近景摄影测量的径流冲刷条件下冻融坡面侵蚀产沙过程[J]. 水土保持学报, 2019, 33(2): 39-42. [52] Conesa-García C, Puig-Mengual C, Riquelme A, et al. Combining SfM photogrammetry and terrestrial laser scanning to assess event-scale sediment budgets along a gravel-bed ephemeral stream[J]. Remote Sensing, 2020, 12(21): 3624. [53] Jugie M, Gob F, Virmoux C, et al. Characterizing and quantifying the discontinuous bank erosion of a small low energy river using Structure-from-Motion Photogrammetry and erosion pins[J]. Journal of hydrology, 2018, 56(3): 418-434. [54] 罗斌, 张勇, 张志伟, 等. 激光扫描和摄影测量在坡面侵蚀演变过程的适用性[J].农业工程学报, 2022, 38(17): 101-109. [55] Andrew O, Azmy S N, Majid Z. Evaluating Terrestrial Laser Scanning (tls) for Hard and Soft Landscape Mapping[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 48(8): 439-444. [56] Li L, Nearing M A, Nichols M H, et al. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall[J]. Earth Surface Processes and Landforms, 2020, 45(2): 484-495. [57] 马力, 卜兆宏, 梁文广, 等. 基于USLE原理和3S技术的水土流失定量监测方法及其应用研究[J]. 土壤学报, 2019, 56(3): 602-614. [58] 张鹏, 郑粉莉, 王彬, 等. 高精度GPS,三维激光扫描和测针板三种测量技术监测沟蚀过程的对比研究[J]. 水土保持通报, 2008, 14(5): 11-15. [59] 郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展[J]. 农业机械学报, 2016, 47(8): 48-59. [60] Eltner A, Baumgart P. Accuracy constraints of terrestrial Lidar data for soil erosion measurement: Application to a Mediterranean field plot[J]. Geomorphology, 2015, 24(5): 243-254. [61] Chico G, Clutterbuck B, Midgley N G, et al. Application of terrestrial laser scanning to quantify surface changes in restored and degraded blanket bogs[J]. Mires and Peat, 2019, 24(14): 1-24. [62] 唐强, 鲍玉海, 贺秀斌, 等. 土壤侵蚀监测新方法和新技术[J]. 中国水土保持科学, 2011, 9(2): 11-18. [63] Yermolaev O P, Gafurov A M, Usmanov B M. Evaluation of erosion intensity and dynamics using terrestrial laser scanning[J]. Eurasian soil science, 2018, 51(6): 814-826. [64] Li Y, McNelis J J, Washington-Allen R A. Quantifying short-term erosion and deposition in an active gully using terrestrial laser scanning: A case study from West Tennessee, USA[J]. Frontiers in Earth Science, 2020, 8: 587999. [65] Vinci A, Brigante R, Todisco F, et al. Measuring rill erosion by laser scanning[J]. Catena, 2015, 12(4): 97-108. [66] 黎武. 基于三维激光扫描的坡面细沟形态演化研究[D]. 南充: 西华师范大学, 2018. [67] 徐锡蒙, 郑粉莉, 覃超, 等. 黄土丘陵沟壑区浅沟发育动态监测与形态定量研究[J]. 农业机械学报, 2019, 50(4): 274-282. [68] 吴红艳, 郑粉莉, 徐锡蒙, 等. 不同分辨率DEM提取切沟形态特征参数的转化研究[J]. 水土保持学报, 2016, 30(6): 147-152. [69] Li S, Li Q, Chen J, et al. Application of 3D laser image scanning technology and cellular automata model in the prediction of the dynamic process of rill erosion[J]. Remote Sensing, 2021, 13(13): 2586. [70] Barnhart T B, Crosby B T. Comparing two methods of surface change detection on an evolving thermokarst using high-temporal-frequency terrestrial laser scanning, Selawik River, Alaska[J]. Remote Sensing, 2013, 5(6): 2813-2837. [71] Lague D, Brodu N, Leroux J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ)[J]. ISPRS journal of photogrammetry and remote sensing, 2013, 8 (2): 10-26. [72] Dąbek P, Żmuda R, Ćmielewski B, et al. Analysis of water erosion processes using terrestrial laser scanning[J]. Acta Geodynamica et Geomaterialia, 2014, 11(1): 173-187. [73] 徐加盼, 王秋霞, 邓羽松, 等. 基于三维激光扫描技术的花岗岩风化土体侵蚀表面特征研究[J]. 水土保持学报, 2016, 30(2): 14-19. [74] 冯凯月, 马利霞, 于东升, 等. 基于地基激光雷达监测不同地表覆盖条件的土壤侵蚀试验研究[J]. 土壤, 2022, 54(4): 856-864. [75] Gao C, Li P, Hu J, et al. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning[J]. Remote Sensing of Environment, 2021, 265: 112683. [76] 冯凯月, 马利霞, 陈洋, 等. 利用地基激光雷达估算不同地表条件下土方量[J]. 农业工程学报, 2021, 37(23): 90-99. [77] 郑粉莉, 王占礼, 杨勤科. 我国土壤侵蚀科学研究回顾和展望[J]. 自然杂志, 2008, (1): 12-16. [78] 姚文艺, 肖培青. 黄土高原土壤侵蚀规律研究方向与途径[J]. 水利水电科技进展, 2012, 32(2): 73-78. [79] 雷阿林, 唐克丽. 坡沟系统土壤侵蚀研究回顾与展望[J]. 水土保持通报, 1997, 24(3): 40-46. [80] 喻权刚, 王富贵. 黄河水土保持监测站点标准化建设研究——以黄委天水、西峰、绥德监测站点建设为例[J]. 水土保持通报, 2009, 29(3): 220-224. [81] 丁文峰, 李勉, 张平仓, 等. 坡沟系统侵蚀产沙特征模拟试验研究[J]. 农业工程学报, 2006, 17(3): 10-14. [82] 蒋德麒, 赵诚信, 陈章霖. 黄河中游小流域径流泥沙来源初步分析[J]. 地理学报, 1966, 12(1): 20-36. [83] 龚时旸, 蒋德麒. 黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理[J]. 中国科学, 1978, 17(6): 671-678. [84] 刘元保, 朱显谟, 周佩华, 等. 黄土高原土壤侵蚀垂直分带性研究[J]. 中国科学院西北水土保持研究所集刊, 1988,21 (1): 5-8. [85] 曾伯庆. 晋西黄土丘陵沟壑区水土流失规律及治理效益[J]. 山西水土保持科技, 1979, 11(2): 30-39. [86] 焦菊英, 刘元保, 唐克丽. 小流域沟间与沟谷地径流泥沙来量的探讨[J]. 水土保持学报, 1992, 13(2): 24-28. [87] 邹兵华, 袁洁, 李占斌, 等. 淤地坝控制黄土高原坡沟系统重力侵蚀的空间特征[J]. 水土保持通报, 2013, 33(5): 55-59. [88] 陈浩, 王开章. 黄河中游小流域坡沟侵蚀关系研究[J]. 地理研究, 1999, 12(4): 363-372. [89] 赵之旭, 聂福彪, 张万福. 黄土塬区沟道流域泥流的形成因素与防治对策[J]. 防护林科技, 2005, 12(4): 33-35. [90] 刘和平, 符素华, 王秀颖, 等. 坡度对降雨溅蚀影响的研究[J]. 土壤学报, 2011, 48(3): 479-486. [91] 肖海, 刘刚, 赵金凡, 等. 雨滴机械打击和消散作用对土壤团聚体的破坏特征[J]. 土壤学报, 2017, 54(04): 827-835. [92] 张逸飞, 汪零, 徐玲, 等. 降雨驱动下红壤团聚体的溅蚀特征及周转过程[J]. 水土保持研究, 2023, 30(4): 27-33. [93] 张兴义, 乔宝玲, 李健宇, 等. 降雨强度和坡度对东北黑土区顺坡垄体溅蚀特征的影响[J]. 农业工程学报, 2020, 36(16): 110-117. [94] Angulo-Martínez M, Beguería S, Navas A, et al. Splash erosion under natural rainfall on three soil types in NE Spain[J]. Geomorphology, 2012, 17(5): 38-44. [95] 刘志, 江忠善. 降雨因素和坡度对片蚀影响的研究[J]. 水土保持通报, 1994, 15(6): 19-22. [96] 李芦頔, 吴冰, 李鑫璐, 等. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726. [97] Wen L, Zheng F, Shen H, et al. Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China[J]. Natural hazards, 2015, 7(9): 381-395. [98] Guo Z, Ma M, Cai C, et al. Combined effects of simulated rainfall and overland flow on sediment and solute transport in hillslope erosion[J]. Journal of soils and sediments, 2018, 18(12): 1120-1132. [99] 刘俊娥, 王占礼, 高素娟. 黄土坡面片蚀过程试验研究[J]. 水土保持学报, 2011, 25(3): 35-39. [100] Oakes E G M, Hughes J C, Jewitt G P W, et al. Controls on a scale explicit analysis of sheet erosion[J]. Earth Surface Processes and Landforms, 2012, 37(8): 847-854. [101] 王龙生, 蔡强国, 蔡崇法, 等. 黄土坡面细沟形态变化及其与流速之间的关系[J]. 农业工程学报, 2014, 30(11): 110-117. [102] 和继军, 宫辉力, 李小娟, 等. 细沟形成对坡面产流产沙过程的影响[J]. 水科学进展, 2014, 25(1): 90-97. [103] 郑粉莉. 黄土高原坡耕地的细沟侵蚀及其防治途径[J]. 中国科学院西北水土保持研究所集刊, 1988, 8(1): 19-25. [104] Kimaro D N, Poesen J, Msanya B M, et al. Magnitude of soil erosion on the northern slope of the Uluguru Mountains, Tanzania: Interrill and rill erosion[J]. Catena, 2008, 75(1): 38-44. [105] 朱显谟. 黄土高原水蚀的主要类型及其有关因素[J]. 水土保持通报, 1982, 9(1): 25-30. [106] 赵龙山, 侯瑞, 吴发启. 黄土坡面细沟侵蚀研究进展与展望[J]. 中国水土保持, 2017, 10(9): 47-51. [107] 郑粉莉, 唐克丽, 周佩华. 坡耕地细沟侵蚀的发生、发展和防治途径的探讨[J]. 水土保持学报, 1987,18 (1): 36-48. [108] 张攀, 姚文艺, 唐洪武, 等. 黄土坡面细沟形态变化及对侵蚀产沙过程的影响[J]. 农业工程学报, 2018, 34(5): 114-119. [109] 张永东, 吴淑芳, 冯浩, 等. 黄土陡坡细沟侵蚀动态发育过程及其发生临界动力条件试验研究[J]. 泥沙研究, 2013,23 (2): 25-32. [110] 郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展[J]. 农业机械学报, 2016, 47(8): 48-59. [111] 许建民. 黄土高原浅沟发育主要影响因素及其防治措施研究[J]. 水土保持学报, 2008, (4): 39-41. [112] 张科利. 浅沟发育对土壤侵蚀作用的研究[J]. 中国水土保持, 1991, 12(4): 19-21. [113] 张科利, 唐克丽, 王斌科. 黄土高原坡面浅沟侵蚀特征值的研究[J]. 水土保持学报, 1991,31 (2): 8-13. [114] 车小力, 王文龙, 郭军权, 等. 上方来水来沙对浅沟侵蚀产沙及水动力参数的影响[J]. 中国水土保持科学, 2011, 9(3): 26-31. [115] 李斌兵, 郑粉莉, 张鹏. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J]. 水土保持通报, 2008, 26(5): 16-20. [116] 胡刚, 伍永秋, 刘宝元, 等. 东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨[J]. 地理科学, 2006,13 (4): 4449-4454. [117] 刘元保, 朱显谟, 周佩华, 等. 黄土高原坡面沟蚀的类型及其发生发展规律[J]. 中国科学院西北水土保持研究所集刊, 1988, 12(1): 9-18. [118] 杨维鸽, 郑粉莉, 王占礼, 等. 地形对黑土区典型坡面侵蚀—沉积空间分布特征的影响[J]. 土壤学报, 2016, 53(3): 572-581. [119] 王文龙, 雷阿林, 李占斌, 等. 黄土区坡面侵蚀时空分布与上坡来水作用的实验研究[J].水利学报, 2004, (5): 25-30. [120] 李勉, 姚文艺, 陈江南, 等. 坡面草被覆盖对坡沟侵蚀产沙过程的影响[J]. 地理学报, 2005, 16(5): 725-732. [121] Horton R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology[J]. Geological society of America bulletin, 1945, 56(3): 275-370. [122] Horton R E, Leach H R, Van Vliet R. Laminar sheet‐flow[J]. Eos, Transactions American Geophysical Union, 1934, 15(2): 393-404. [123] 吴普特, 周佩华. 坡面薄层水流流动型态与侵蚀搬运方式的研究[J]. 水土保持学报, 1992, 41(1): 19-24. [124] Emmett W W. The hydraulics of overland flow on hillslopes: Dynamic and descriptive studies of hillslopes[M]. US: US Government Printing Office, 1970:662. [125] Foster G R, Huggins L F, Meyer L D. A laboratory study of rill hydraulics: II. Shear stress relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-0804. [126] Sadeghian M R, Mitchell J K. Hydraulics of micro-braided channels: resistance to flow on tilled soils[J]. Transactions of the ASAE, 1990, 33(2): 458-0468. [127] 姚文艺. 坡面流阻力规律试验研究[J]. 泥沙研究, 1996, 15(1): 74-82. [128] 张光辉, 卫海燕, 刘宝元. 坡面流水动力学特性研究[J]. 水土保持学报, 2001, 13(1): 58-61. [129] 李占斌, 鲁克新, 丁文峰. 黄土坡面土壤侵蚀动力过程试验研究[J]. 水土保持学报, 2002, 36(2):5-7. [130] Moore I D, Burch G J. Sediment transport capacity of sheet and rill flow: application of unit stream power theory[J]. Water resources research, 1986, 22(8): 1350-1360. [131] 肖培青, 郑粉莉. 上方来水来沙对细沟水流水力学参数的影响[J]. 泥沙研究, 2002, 35(4): 69-74. [132] 王文龙, 王兆印, 雷阿林, 等. 黄土丘陵区坡沟系统不同侵蚀方式的水力特性初步研究[J]. 中国水土保持科学, 2007, 41(2): 11-17. [133] 吴淑芳, 吴普特, 宋维秀, 等. 黄土坡面径流剥离土壤的水动力过程研究[J]. 土壤学报, 2010, 47(2): 223-228. [134] Wu B, Li L, Xu L, et al. Modelling sheet erosion on steep slopes of clay loess soil using a rainfall simulator[J]. Biosystems Engineering, 2022, 21(6): 1-12. [135] Tian P, Gong Y, Hao F, et al. Comparing erosion and rill development processes by simulated upslope inflow in two red soils from subtropical China[J]. Catena, 2022, 213: 106139. [136] Hao H, Guo Z, Wang X, et al. Rill erosion process on red soil slope under interaction of rainfall and scouring flow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(8): 134-140. [137] 刘俊娥, 王占礼, 高素娟, 等. 黄土坡面片蚀过程动力学机理试验研究[J]. 农业工程学报, 2012, 28(7): 144-149. [138] 张锐波, 张丽萍, 付兴涛. 坡面侵蚀产沙与水力学特征参数关系模拟[J]. 水土保持学报, 2017, 31(5): 81-86. [139] 和继军, 王硕, 蔡强国, 等. 黄土缓坡片蚀过程及其水力参数适宜性试验研究[J].水科学进展, 2021, 32(1): 97-108. [140] 李魁, 王文龙, 李建明. 工程堆积体流速及产沙特征对坡长及砾石作用响应[J]. 水土保持学报, 2023, 37(5): 48-56. [141] Liu Y, Wang X, Zhou L, et al. Relationship analysis between soil detachment rate and erosion factors on freeze-thaw slope[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 136-141. [142] 杨春霞, 姚文艺, 肖培青, 等. 坡面径流剪切力分布及其与土壤剥蚀率关系的试验研究[J]. 中国水土保持科学, 2010, 8(6): 53-57. [143] 周涛, 苏正安, 刘刚才, 等. 工程堆积体典型生态修复措施对土壤侵蚀水动力过程的影响[J]. 农业工程学报, 2022, 38(9): 91-100. [144] 潘成忠, 上官周平. 牧草对坡面侵蚀动力参数的影响[J]. 水利学报, 2005, 32(3): 371-377. [145] 李勉, 姚文艺, 陈江南, 等. 草被覆盖下坡面—沟坡系统坡面流阻力变化特征试验研究[J]. 水利学报, 2007, 21(1): 112-119. [146] 肖培青, 郑粉莉, 姚文艺. 坡沟系统侵蚀产沙及其耦合关系研究[J]. 泥沙研究, 2007, 29(2): 30-35. [147] 张宽地, 王光谦, 孙晓敏, 等. 坡面薄层水流水动力学特性试验[J]. 农业工程学报, 2014, 30(15): 182-189. [148] Xu X, Zheng F, Wu H, et al. Impacts of cornstalk mulching buffer strip on rill erosion and its hydrodynamic character[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(24): 111-119. [149] 郑良勇, 李占斌, 李鹏. 黄土区陡坡径流水动力学特性试验研究[J]. 水利学报, 2004, 14(5): 46-51. [150] 覃超, 吴红艳, 郑粉莉, 等. 黄土坡面细沟侵蚀及水动力学参数的时空变化特征[J]. 农业机械学报, 2016, 47(8): 146-154. [151] 孙佳乾. 黄土坡耕地地表粗糙度与作物根茎对坡面流侵蚀影响的水动力学研究[D]. 杨凌: 西北农林科技大学, 2020. [152] 朱秀迪. 地表粗糙度对坡面侵蚀过程及泥沙分选搬运过程的影响[D]. 武汉: 长江科学院, 2017. [153] Cogo N P, Moldenhauer W C, Foster G R. Soil loss reductions from conservation tillage practices[J]. Soil Science Society of America Journal, 1984, 48(2): 368-373. [154] 王林华, 汪亚峰, 王健, 等. 地表粗糙度对黄土坡面产流机制的影响[J]. 农业工程学报, 2018, 34(5): 120-128. [155] Li T, Zhao L, Duan H, et al. Exploring the interaction of surface roughness and slope gradient in controlling rates of soil loss from sloping farmland on the Loess Plateau of China[J]. Hydrological Processes, 2020, 34(2): 339-354. [156] 梁心蓝, 赵龙山, 吴佳, 等. 地表糙度与径流水力学参数响应规律模拟[J]. 农业工程学报, 2014, 30(19): 123-131. [157] 施明新, 李陶陶, 吴秉校, 等. 地表粗糙度对坡面流水动力学参数的影响[J]. 泥沙研究, 2015, (4): 59-65. [158] 钱秋颖, 秦富仓, 李龙, 等. 自然降雨条件下坡面侵蚀地表粗糙度的空间异质性[J]. 水土保持学报, 2021, 35(3): 46-52. [159] 董晓宇, 秦富仓, 李龙, 等. 裸露砒砂岩区坡面侵蚀过程中地表粗糙度与水力侵蚀特征参数的关系[J]. 水土保持学报, 2022, 36(2): 33-41. [160] 高健健, 艾琦森, 韩立钦, 等. 2017–2018年黄土丘陵沟壑区第一副区辛店沟流域重力侵蚀观测数据集[J]. 中国科学数据(中英文网络版), 2021, 6(3): 113-120. [161] 徐小玲, 延军平, 梁煦枫. 无定河流域典型淤地坝水资源效应比较研究——以辛店沟、韭园沟和裴家峁为例[J]. 干旱区资源与环境, 2008, 22(12): 77-83. [162] 杨帆, 潘成忠. 黄土丘陵沟壑区多年生草地的保水固土效益[J]. 水土保持通报, 2016, 36(2): 300-306. [163] 党维勤, 崔乐乐, 郝鲁东, 等. 黄土高原辛店沟水保示范园探索[J]. 中国水利, 2021, 42(16): 40-42. [164] 高健健, 刘立峰, 高璐媛, 等. 新时期水土保持科技示范园建设的实践和思考——以辛店沟水土保持示范园为例[J]. 中国水土保持, 2022, 37(10): 15-17. [165] 党维勤. 辛店沟试验场[J]. 中国水土保持, 2016,29 (9): 95. [166] 高健健, 艾绍周, 党维勤, 等. 辛店沟水土保持示范园建设成效[J]. 中国水土保持, 2022, 18(2): 30-33. [167] 党维勤, 党恬敏. 辛店沟水土保持科技示范园景观资源及其美学意境分析[C]. 2015海峡两岸水土保持学术研讨会论文集(上). 太原: 中国水土保持学会, 2015: 213-219. [168] 郝明揆. 基于三维地形扫描的黄丘区坡沟系统侵蚀产沙过程与机理研究[D]. 西安:西安科技大学, 2022. [169] 王万忠, 焦菊英. 黄土高原降雨侵蚀产沙与水土保持减沙[M]. 北京: 科学出版社, 2018: 98. [170] 周佩华, 王占礼. 黄土高原土壤侵蚀暴雨的研究[J]. 水土保持学报, 1992, 6(3): 5. [171] 许阳光, 郭文召, 王文龙, 等. 极端降雨下黄土高原草被沟坡浅层滑坡特征及其对产流产沙的影响[J]. 生态学报, 2022, 42(19) : 7898-7909. [172] Li G, Abrahams A D, Atkinson J F. Correction factors in the determination of mean velocity of overland flow[J]. Earth surface Processes and landforms, 1996, 21(6): 509-515. [173] Balaguer-Puig M, Marqués-Mateu Á, Lerma J L, et al. Estimation of small-scale soil erosion in laboratory experiments with Structure from Motion photogrammetry[J]. Geomorphology, 2017, 29(5): 285-296. [174] Huff T P, Feagin R A, Delgado Jr A. Understanding lateral marsh edge erosion with terrestrial laser scanning (TLS)[J]. Remote Sensing, 2019, 11(19): 2208. [175] Peng W, Zhang Z, Zhang K. Hydrodynamic characteristics of rill flow on steep slopes[J]. Hydrological Processes, 2015, 29(17): 3677-3686. [176] 肖丛宇, 程金花, 姜群鸥, 等. 台田措施下坡面流土壤侵蚀水动力学特征[J]. 水土保持学报, 2019, 33(4): 10-15. [177] 张宽地, 王光谦, 吕宏兴, 等. 坡面浅层明流流态界定方法之商榷[J]. 实验流体力学, 2011, 25(4): 67-73. [178] 覃超, 吴红艳, 郑粉莉, 等. 黄土坡面细沟侵蚀及水动力学参数的时空变化特征[J]. 农业机械学报, 2016, 47(8): 146-154. [179] Tarolli P, Cavalli M, Masin R. High-resolution morphologic characterization of conservation agriculture[J]. Catena, 2019, 17(2): 846-856. [180] Zhang Q, Wang J, Zhao L, et al. Spatial heterogeneity of surface roughness during different erosive stages of tilled loess slopes under a rainfall intensity of 1.5 mm min− 1[J]. Soil and Tillage Research, 2015, 15(3): 95-103. [181] Winiwarter L, Anders K, Höfle B. M3C2-EP: Pushing the limits of 3D topographic point cloud change detection by error propagation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 17(8): 240-258. [182] Li L, Nearing M A, Nichols M H, et al. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall[J]. Earth Surface Processes and Landforms, 2020, 45(2): 484-495. [183] 丁鸽, 倪海滨, 黄雪亭, 等. 地面三维激光扫描精度的影响因素研究[J]. 北京测绘, 2022, 36(9): 1193-1197. [184] 徐辛超, 徐爱功, 于丹. 地面三维激光扫描点云拼接影响因素分析[J]. 测绘通报, 2017, 45(2): 14-18. [185] 郭军权, 王文龙. 坡度对浅沟侵蚀产沙的野外放水冲刷试验影响[J]. 水土保持学报, 2019, 33(4): 87-92. [186] 张光辉. 退耕驱动的近地表特性变化对土壤侵蚀的潜在影响[J]. 中国水土保持科学, 2017, 15(4): 143-154. [187] Zhang G, Tang M, Zhang X C. Temporal variation in soil detachment under different land uses in the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 2009, 34(9): 1302-1309. [188] 郭慧莉, 孙立全, 吴淑芳, 等. 黄土高原地区鱼鳞坑坡面侵蚀演化过程及水力学特征[J]. 土壤学报, 2017, 54(5): 1125-1135. [189] 吴秋菊, 吴发启, 王林华. 土壤结皮坡面流水动力学特征[J]. 农业工程学报, 2014, 30(1): 73-80. [190] 詹松, 王文龙, 黄鹏飞, 等. 非硬化路面与原生地面侵蚀水动力参数对比研究[J]. 水土保持通报, 2014, 34(2): 1-6. [191] 张华栋, 李金峰, 付兴涛. 晋西黄土坡面薄层流水动力学特征模拟试验研究[J]. 太原理工大学学报, 2020, 51(1): 118-124. [192] 赵小娥, 魏琳, 曹叔尤, 等. 强降雨条件下坡面流的水动力学特性研究[J]. 水土保持学报, 2009, 23(6): 45-47. [193] 张锐波, 张丽萍, 付兴涛. 坡面侵蚀产沙与水力学特征参数关系模拟[J]. 水土保持学报, 2017, 31(5): 81-86. [194] 吕春娟, 张徐, 毕如田, 等. 间歇降雨对铁尾砂重构坡面侵蚀水动力学特性的影响[J]. 农业工程学报, 2020, 36(11): 74-85. [195] 肖培青, 郑粉莉, 姚文艺. 坡沟系统坡面径流流态及水力学参数特征研究[J]. 水科学进展, 2009, 20(2): 236-240. [196] 李燕刚, 胡桂清, 张文太, 等. 伊犁河谷不同雨型下自然与人工植被的水土流失特征[J]. 西南农业学报, 2024, 20(3): 24-35. [197] 康宏亮. 黄土塬区草地沟头溯源侵蚀过程及形态演化机制模拟研究[D]. 杨凌: 西北农林科技大学, 2022. [198] 汪晓勇, 郑粉莉, 张新和. 上方汇流对黄土坡面侵蚀—搬运过程的影响[J]. 中国水土保持科学, 2009, 7(2): 7-11. [199] 史倩华, 王文龙, 郭明明, 等. 董志塬沟头溯源侵蚀过程及崩塌中孔隙水压力变化[J]. 农业工程学报, 2019, 35(18): 110-117. [200] 娄义宝. 黄土塬区典型草被对沟头溯源侵蚀过程影响机制试验研究[D]. 杨凌: 西北农林科技大学, 2023. [201] 王睿. 坡面溯源侵蚀发育过程及其与侵蚀产沙响应关系试验研究[D]. 西安: 西安理工大学, 2022. [202] 李兆松, 王兵, 汪建芳, 等. 铁杆蒿与白羊草枯落物覆盖量对黄土坡面流水动力特性的影响[J]. 农业工程学报, 2018, 34(17): 151-157. [203] Tian P, Pan C, Xu X, et al. A field investigation on rill development and flow hydrodynamics under different upslope inflow and slope gradient conditions[J]. Hydrology Research, 2020, 51(5): 1201-1220.
﹀
|
中图分类号: |
P237
|
开放日期: |
2025-06-17
|