- 无标题文档
查看论文信息

题名:

 基于“分层-分区”特征的胶结充填体各向异性与尺寸效应研究    

作者:

 屈慧升    

学号:

 20103077009    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 功能性充填    

导师姓名:

 刘浪    

导师单位:

 西安科技大学    

第二导师姓名:

 索永录    

提交日期:

 2024-01-12    

答辩日期:

 2024-12-16    

外文题名:

 Study on anisotropy and size effect of cemented backfill based on "stratification and zoning" characteristics    

关键词:

 分层胶结充填体 ; 横观各向同性 ; 多尺度 ; 尺寸效应 ; REV值    

外文关键词:

 stratified filling body ; transverse isotropy ; multi-scale ; size effect ; REV value    

摘要:

传统充填开采工艺设计中将胶结充填体视为均质、各向同性的整体,基于实验室标准小尺寸试件力学参数,作为理论计算和数值模拟的基础数据,忽略由分层充填以及物料流动沉降形成的胶结充填体结构各向异性,随着固废充填开采快速发展,这些问题日益突出。从物料流动沉降角度出发揭示充填体“分层-分区”规律,以宏-细-微观手段多尺度阐述分层充填体各向异性特征及分层面强度弱化机理,通过数字图像(Digital Image Correlation,DIC)和声发射(Acoustic Emission,AE)揭示尺寸对分层充填体强度、变形及破裂机制的影响规律,并得到考虑尺寸效应的分层胶结充填体等效力学参数,最后结合充填体沉降坡面构建几何模型,通过FLAC3D二次开发横观各向同性弹塑性本构模型来表征其各向异性,建立了充填体力学参数从实验室研究到工程应用的桥梁,对于煤矿精准确定材料配比及接顶方法具有指导作用。论文采用理论分析、实验室试验、相似模拟实验、数值模拟与工程实践等方法,进行了分层充填体各向异性影响下的尺寸效应及其应用研究,主要开展了以下工作:

通过自制分层可拆卸法兰模具进行煤矸石充填料浆的非均质特性试验研究,得到不同料浆浓度和充填高度影响下的物料加权平均粒径、胶凝材料含量定量分布规律,找到影响料浆沉降程度的“浓度拐点”,建立充填高度与粒径的正态分布函数。进一步利用相似模拟试验,获取不同充填次数下料浆的流动沉降坡面布函数,以及麻黄梁煤矿的分层坡度预测。

针对含煤矸石粗骨料充填料浆存在的流动沉积现象,在考虑煤矸石不规则形状的前提下,基于响应面试验获取影响煤矸石安息角因素的显著性排序,基于CFD-EDM耦合平台得到浆体在相似采场内,粗细骨料沿水平、垂直方向的分布规律和运动轨迹,揭示了粗颗粒在采场内的流动机理,以及充填速度对颗粒时空分布状态、料浆流动沉降坡面形态的影响规律。

构建分层胶结充填体的横观各向同性力学模型,并分析其在单轴受压状态下的破坏机制。建立分层面角度与P波波速满足椭圆方程,研究基于强度和P波波速的各性异性系数与分层面的关系,以及利用波速预测胶结充填体强度的方法。分析弹性能占比在起裂强度、峰值强度处随分层面参数的变化规律,通过能量耗散系数、储能极限、声发射特征参数揭示分层面弱化效应变化规律。

利用PFC2D对标准尺寸的分层胶结充填体试件受载破裂过程进行模拟,定量分析试件受载过程中的脆性指数、剪切与拉伸裂纹发育规律,组构各向异性与分层面参数的关系,通过点位移变化规律分析其破坏机理,并结合扫描电子显微镜(Scanning Electron Microscope,SEM)微观测试结果,从“宏-细-微观”多尺度揭示分层胶结充填体的各向异性特征。

制作不同分层面参数组合的5种尺寸充填体,构建分层面参数、尺寸与强度的多元线性关系式,分析尺寸效应度与破坏模式的变化规律。通过DIC、AE参数分析了尺寸对分层胶结充填体变形及破坏机制的影响规律。并通过室内试验和PFC2D数值模拟得到分层胶结充填体的REV尺度和等效力学参数。

将分层胶结充填体“分层-分区”力学结构特点用横观各向同性弹塑性本构模型表征,并通过二次开发嵌入FLAC3D数值模拟软件。此外,考虑流动沉降形成的分层充填坡面,按照分层面角度,划分麻黄梁煤矿充填条带为3个区域,分别赋予分层等效力学参数,基于 “压力拱” 理论分析了连采连充过程中的载荷传递过程。最后,通过对比前人研究成果与现场实测,验证了该方法的准确性。

论文以煤矸石充填料浆的流动沉降为切入点,以胶结充填体“分层-分区”的结构特点为出发点,以获取分层胶结充填体流动沉降坡面和等效力学参数为关键点,以得到胶结充填体的基础力学参数为目标,对分层胶结充填体各向异性影响下的尺寸效应及应用进行了研究,研究成果丰富了以煤矸石为骨料的充填开采强度设计体系,对于含粗骨料充填开采矿井的安全、高效生产具有重要的指导意义。

外文摘要:

In the design of traditional backfill mining process, the cemented backfill is regarded as a homogeneous and isotropic whole. Based on the mechanical parameters of laboratory standard small-sized specimens, as the basic data for theoretical calculation and numerical simulation, the structural anisotropy of the cemented backfill formed by stratified backfill and material flow and settlement is ignored. With the rapid development of solid waste backfill mining, these problems become increasingly prominent. From the perspective of material flow settlement, the trends in stratification and zoning of backfill were revealed, and the anisotropic characteristics of backfill and the strength-reducing mechanism of stratification were expounded across multiple scales by means of macro-fine-micro means. Digital image correlation (DIC) and acoustic emission (AE) techniques were used to estimate the size effect on the strength, deformation and fracture mechanism of the stratified backfill, and the equivalent mechanical parameters of the stratified cemented backfill considering the size effect were obtained. Finally, a geometric model was constructed based on the settlement slope of the backfill body, and a transversally isotropic elastoplastic constitutive model was developed in FLAC3D software to characterize its anisotropy. A connection linking backfill physical parameters from laboratory research to engineering application was established, which plays a guiding role for the accurate determination of material ratio and roof joint methods in coal mines. Theoretical analysis, laboratory tests, similar simulation experiments, numerical simulation, and engineering practice were used to study the size effect and its application under the influence of the anisotropy of the backfill. The present work comprises the following: in the design of traditional backfill mining process, the cemented backfill is regarded as a homogeneous and isotropic whole. Based on the mechanical parameters of laboratory standard small-sized specimens, as the basic data for theoretical calculation and numerical simulation, the structural anisotropy of the cemented backfill formed by stratified backfill as well as material flow and settlement is neglected. With the rapid development of solid waste backfill mining, these problems become increasingly notable. From the perspective of material flow settlement, trends in the stratification and zoning of the backfill were revealed, and the anisotropic characteristics of the backfill and the strength-reducing mechanism of stratification were elucidated across multiple scales by macro-fine-micro means. DIC and AE were used to investigate the size effect on the strength, deformation and fracture mechanism of the stratified backfill, and the equivalent mechanical parameters of the stratified cemented backfill considering the size effect were determined. Finally, a geometric model was constructed based on the settlement slope of the backfill body, and a transversally sotropic elastoplastic constitutive model was developed in Flac3D to characterize its anisotropy. A link connecting the backfill physical parameters from laboratory research to engineering application was established, which plays a guiding role for the accurate determination of material ratio and roof joint methods in coal mines. Theoretical analysis, laboratory tests, similar simulation experiments, numerical simulation, and engineering practice were used to study the size effect and its application under the influence of the anisotropy of the backfill. The work proceedes as follows:

(1) A self-made flange mold was used to conduct an experimental study on the heterogeneous characteristics of the coal gangue filling slurry. The weighted average particle size of the material and the quantitative distribution of the cementing material content under the influences of different slurry concentrations and filling heights were obtained. The “concentration inflection point” affecting the degree of sedimentation of the slurry was determined, and the normal distribution function of filling height and particle size was established. The slope distribution function of slurry flow settlement and stratified slope prediction of Mahuangliang coal mine were achieved by similar simulation tests;

(2) In view of the flow deposition phenomenon of coarse aggregate filling slurry containing coal gangue, the significance sequence of factors affecting the angle of repose of coal gangue was obtained based on response-surface tests, and the horizontal and vertical distribution and movement trajectory of coarse and fine aggregates in similar stopes were attained based on the  computational fluid dynamics-discrete element method  (CFD-EDM) coupling platform. The flow mechanisms of coarse particles in stope and the influence of the filling speed on the spatial and temporal distribution of particles and the slope morphology of slurry flow settlement were revealed;

(3) A transversally isotropic mechanical model of the backfill was established and the failure mechanism under uniaxial compression was analyzed. The results found that the angle of stratification and P-wave velocity satisfy an elliptic equation. The relationship between the anisotropy coefficient and stratified surface based on intensity and P-wave velocity was studied to predict the strength of backfill by using wave velocity. The variation of the elastic energy ratio with sub-layer parameters at the initiation strength and peak strength was evaluated, and the variation of the sub-layer weakening effect was revealed by the energy dissipation coefficient, energy storage limit and AE characteristic parameters;

(4) PFC2D was used to simulate the load rupture process of standard-sized stratified backfill specimens, quantifying the brittleness index, and the trends in the development of shear and tensile cracking. In addition, the relationship between fabric anisotropy and stratified parameters of specimens during the load process was also evaluated, and the failure mechanism was expounded through changes in point displacement. Combined with the results of scanning electron microscopy (SEM), the anisotropic characteristics of the stratified backfill was revealed from macro-fine-micro perspectives;

(5) Backfill bodies of five different sizes with different combinations of sub-layer parameters were formed and multivariate linear relationships were established between sub-layer parameters, size and strength. On this basis, the variations of size and failure modes were analyzed. DIC and AE parameters were used to assess the influence of size on the deformation and failure mechanism of the backfill. The REV scale and equivalent mechanical parameters of the backfill were obtained by laboratory tests and PFC2D numerical simulation;

(6) The stratified and zonal mechanical structures of the backfill were characterized by the transversally isotropic elastoplastic constitutive model, and FLAC3D numerical simulation software was embedded through secondary development. In addition, the filling strip of Mahuangliang Coal mine can be divided into three regions according to the stratification angle, and the equivalent mechanical parameters were assigned respectively. Based on the theory of the “pressure arch”, the load transfer process during continuous mining and charging was analyzed. Finally, the accuracy of the method was verified by comparing the previous research results with the field measurement.

With the flow settlement of coal gangue filling slurry as the entry point, and taking the stratified and zonal structural characteristics of cemented backfill as the starting point, the size effect and application of the stratified cemented backfill under the influence of anisotropy were studied by taking the flow settlement slope and equivalent mechanical parameters of the cemented backfill as the key points, and the acquisition of basic mechanical parameters of the cemented backfill as the goal. The research results inform the design of backfill mining using coal gangue as aggregate, and provide guiding significance for the safe and efficient production of backfill mining with coarse aggregate.

参考文献:

[1] 刘浪,王双明,朱梦博,等.基于功能性充填的CO2储库构筑与封存方法探索[J].煤炭学报,2022,47(03).

[2] 刘浪,方治余,张波,等.矿山充填技术的演进历程与基本类别[J].金属矿山,2021,(03).

[3] 张吉雄,张强,周楠等.煤基固废充填开采技术研究进展与展望[J].煤炭学报,2022,47(12):4167-4181.

[4] 唐亚男,付建新,宋卫东,等.分层胶结胶结充填体力学特性及裂纹演化规律[J].工程科学学报,2020,42(10):1286~1298.

[5] 卢宏建,梁鹏,甘德清,等.充填料浆流动沉降规律与胶结充填体力学特性研究[J].岩土力学,2017,38(S1):263~270.

[6] 蔡嗣经. 矿山充填力学基础[M]. 冶金工业出版社,1994.

[7] 刘浪,阮仕山,方治余等.镁渣的改性及其在矿山充填领域的应用探索[J].煤炭学报,2021,46(12):3833-3845.

[8] 吴疆宇,靖洪文,浦 海,等. 分形矸石胶结胶结充填体的宏细观力学特性[J]. 岩石力学与工程学报,2021,40(10):2 083–2 100.

[9] S.K. Behera,D.P. Mishra,Prashant Singh,et al. Utilization of mill tailings,fly ash and slag as mine paste backfill material: Review and future perspective,Construction and Building Materials,2021,309:125120.

[10] Zhang B,Xin J,Liu L,et al. An Experimental Study on the Microstructures of Cemented Paste Backfill during Its Developing Process [J]. Advances in Civil Engineering,2018,2018(PT.9):1–10.

[11] 贾世旭,赵婷婷,吴佩,等.混凝土界面过渡区对裂纹扩展过程的影响[J].高压物理学报,2023,37(04):166-177.

[12] 赵俊翔. 不同水灰比下混凝土界面过渡区细微观试验研究[D].西安建筑科技大学,2022.

[13] 李超,陈登红,曹天伟,等.高掺量气化渣膏体充填材料强度性能研究[J].煤炭工程,2023,55(08):124-129.

[14] Deng H ,Tian W ,Ke Y ,et al. Study on the Optimization of Proportion of Fly Ash-Based Solid Waste Filling Material with Low Cost and High Reliability[J]. Sustainability,2022,14(14).

[15] 刘浪,谢磊,朱梦博等.超高流动性改性镁渣基充填材料的性能[J].工程科学学报,2023,45(08):1324-1334.

[16] 王富林,袁正平,陈国梁,等.膏体—地聚物协同效应的铀尾矿井下充填处置体系构建[J].金属矿山,2020(05):144-150.

[17] 陈顺满,王伟,吴爱祥等.养护压力对膏体充填体强度影响规律及机理分析[J].中国有色金属学报,2021,31(12):3740-3749.

[18] Zhu M B,Xie G,Liu L,et al. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material. Process Safety and Environmental Protection,2023,174,722-733.

[19] Yang P,Liu L,Suo Y L,et al . Investigating the synergistic effects of magnesia-coal slag based solid waste cementitious materials and its basic characteristics as a backfill material. Science of The Total Environment,2023:ang 880,163209.

[20] 王勇,李健,王珍岐,等.金属矿充填固化过程监测研究现状及展望[J].金属矿山,2023(05):31-44.

[21] Wang Y,Wu Z Q,Wu A X,et al. Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives[J]. International Journal of Minerals,Metallurgy and Materials,2022,30(2).

[22] Shu B,Zhu R,Elsworth D ,et al.Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite[J].Applied Energy,2020,272:115290.

[23] 马立强,翟江涛,NGO Ichhuy.CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J].煤炭学报,2022,47(12):4228~4236.

[24] 曹帅. 胶结充填体结构与动力学特性研究及应用[D].北京科技大学,2017.

[25] Faeze Sadat Khandani,Hadi Atapour,Mostafa Yousefi Rad,Behzad Khosh,An experimental study on the mechanical properties of underground mining backfill materials obtained from recycling of construction and demolition waste,Case Studies in Construction Materials,2023,18.

[26] 黄煜镔. 混凝土脆性与力学参数的尺寸效应及其相互关系的研究[D].重庆大学,2002.

[27] Wu J Y,Feng M M,Mao X B,et al. Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill:Experiments and modeling[J]. Construction and Building Materials,2018,193(12):295–311.

[28] 何建元,尹升华,陈卓等.矿用新型充填胶凝材料配比实验及其水化机理研究[J].金属矿山,2021(08):18-23.

[29] 杨潘. 改性煤气化渣充填材料的制备及其水化与微观结构演变研究[D].西安科技大学,2022.

[30] 孙伟吉,刘浪,徐龙华等.改性镁渣基矿用复合胶凝材料的水化性能[J].中南大学学报(自然科学版),2022,53(10):4057-4070.

[31] 周鹏. 改性镁渣基充填材料的制备及微结构特性研究[D].西安科技大学,2022.

[32] 董越,杨志强,高谦.钢渣对矿渣基高水充填材料性能的影响及强度预测[J].硅酸盐通报,2017,36(11):3841-3847.

[33] 于跃. 煤矿新型胶结充填材料研发及其性能研究[D].中国矿业大学(北京),2018.

[34] 程康力. 改性镁渣基充填材料力学性能及本构模型研究[D].西安科技大学,2022.

[35] 穆光慈,邓飞,赖祖豪.胶结充填体强度与超声波波速关系研究[J].化工矿物与加工,2020,49(10):1-3+53.

[36] 白锦文,杨欣宇,史旭东等.FRP包裹对煤充结构体劈裂破坏特征的影响[J].岩石力学与工程学报,2023,42(S1):3541-3557.

[37] Wang H C,Feng G R ,Qi T Y ,et al. Influence of the use of corn straw fibers to connect the interfacial transition zone with the mechanical properties of cemented coal gangue backfill[J]. Construction and Building Materials,2023,367.

[38] 槐衍森.矿山充填胶凝材料发展现状与方向[J].煤炭与化工,2016,39(02):88-90.

[39] 刘业繁. 磷尾矿胶结充填可行性和环境影响研究[D].中南大学,2022.

[40] 王有团. 金川低成本充填胶凝材料及高浓度料浆管输特性研究[D].北京科技大学,2016.

[41] 胡亚飞,李克庆,韩斌等.基于响应面法-满意度准则的混合骨料充填体强度发展与优化分析[J].中南大学学报(自然科学版),2022,53(02):620-630.

[42] 冯国瑞,贾学强,郭育霞等.矸石-废弃混凝土胶结充填材料配比的试验研究[J].采矿与安全工程学报,2016,33(06):1072-1079.

[43] 安虎. 矿渣胶凝材料及外加剂在煤矿膏体充填中的应用[D].中国矿业大学,2022.

[44] He W ,Liu L ,Fang Z Y ,et al. Effect of polypropylene fiber on properties of modified magnesium-coal-based solid waste backfill materials[J]. Construction and Building Materials,2023,362.

[45] Wang H C,Feng G R,Qi T Y,et al.Influence of the use of corn straw fibers to connect the interfacial transition zone with the mechanical properties of cemented coal gangue backfill,Construction and Building Materials,Volume 2023:367,130334.

[46] 温震江,高谦,王永定,等.基于熵权多属性决策的充填胶凝材料开发及料浆配比优化[J].湖南大学学报(自然科学版),2021,48(06):8-16.

[47] 赵风文,胡建华,曾平平,等.基于正交试验的碱基-磷石膏胶结充填体配比优化[J].中国有色金属学报,2021,31(04):1096-1105.

[48] 董越,杨志强,高谦.钢渣对矿渣基高水充填材料性能的影响及强度预测[J].硅酸盐通报,2017,36(11):3841-3847.

[49] 张鹏,高谦,温震江,等.充填体强度影响因素及组合预测模型[J].东北大学学报(自然科学版),2021,42(02):232-241.

[50] 王勇,吴爱祥,王洪江,等.初始温度条件下全尾胶结膏体损伤本构模型[J].工程科学学报,2017,39(01):31-38.付士雪.冬期施工混凝土温度优化计算及强度预测[D].哈尔滨工业大学,2019.

[51] Gao R G,Wang W J,Xiong X, et al.Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings,Construction and Building Materials,2023,409.

[52] Fall M , Samb S S . Effect of high temperature on strength and microstructural properties of cemented paste backfill[J]. Fire Safety Journal,2009,44(4):642~651.

[53] Yang P,Liu L,Suo Y L,et al.Mechanical properties,pore characteristics and microstructure of modified magnesium slag cemented coal-based solid waste backfill materials: Affected by fly ash addition and curing temperature,Process Safety and Environmental Protection,2023,176: 1007-1020.

[54] Wang B W,Li Q L,Dong P B,et al.Performance investigation of blast furnace slag based cemented paste backfill under low temperature and low atmospheric pressure,Construction and Building Materials,2023,363: 129744.

[55] 李西龙,张发源,丁培培,等.尾矿连续沉积过程中超孔隙水压力演化的温度-渗流-力学-化学耦合模型[J].工程地质学报,2020,28(05):1132-1139.

[56] 冯国瑞,解文硕,郭育霞,等.早期受载对矸石胶结充填体力学特性及损伤破坏的影响[J].岩石力学与工程学报,2022,41(04):775-784.

[57] 朱庚杰,朱万成,齐兆军,等.固废基充填胶凝材料配比分步优化及其水化胶结机理[J].工程科学学报,2023,45(08):1304-1315.

[58] 阮竹恩,武鹏杰,吴爱祥,等.矿用精炼渣基早强胶凝材料配比优化与水化机理[J].中国有色金属学报,2023,33(09):3064-3076.

[59] Liang C,Aaron M. Experimental study on evolutive fracture behavior and properties of sulfate-rich fiber-reinforced cemented paste backfill under pure mode-I,mode-II,and mode-III loadings[J]. International Journal of Rock Mechanics and Mining Sciences,2023,169.

[60] 杜兆文,陈绍杰,尹大伟,等.氯盐侵蚀环境下膏体充填体稳定性试验研究[J].中国矿业大学学报,2021,50(03):532-538+547.

[61] 贺洪坤,王超.硫酸盐-氯盐侵蚀对充填体稳定性的影响试验研究[J].煤矿安全,2021,52(05):54-58+65.

[62] 王成. 渗流作用下膏体充填体力学性能演变及损伤机制[D].江西理工大学,2022.

[63] 李西龙,张发源,丁培培,等.尾矿连续沉积过程中超孔隙水压力演化的温度-渗流-力学-化学耦合模型[J].工程地质学报,2020,28(05):1132-1139.

[64] 吴爱祥,王勇,王洪江.膏体充填技术现状及趋势[J].金属矿山,2016(07):1-9.

[65] 刘浪. 矿山充填膏体配比优化与流动特性研究[D].中南大学,2014.

[66] 冯国瑞,李庆东,戚庭野,等.超声波法评价矸石膏体的静态抗离析性能[J].采矿与安全工程学报,2020,37(06):1231-1237.

[67] 刘福春,白龙剑,严庆文,等.充填采场内膏体流动规律及接顶率预测模型[J].有色金属(矿山部分),2023,75(03):124-130+136.

[68] 彭啸鹏,杨小聪,郭利杰.充填尾砂颗粒干扰沉降过程实验研究[J].煤炭学报,2019,44(05):1521-1526.

[69] Yin S H,Hou Y Q,Yang S X,et al.Study on static and dynamic flocculation settlement characteristics of fine tailings slurry and influence of flocculant on strength of fine tailings backfill,Case Studies in Construction Materials,2022,17.

[70] 李圣腾. 矿山非均匀沉降胶结充填体热学性能研究[D].西安科技大学,2021.

[71] 史采星,郭利杰,陈鑫政.采场充填料浆流动与离析规律的试验研究[J].黄金科学技术,2018,26(04):520-527.

[72] 卢宏建,梁鹏,甘德清,等.充填料浆流动沉降规律与充填体力学特性研究[J].岩土力学,2017,38(S1):263-270.

[73] 邱华富,刘浪,孙伟博,等.采空区充填体强度分布规律试验研究[J].中南大学学报(自然科学版),2018,49(10):2584-2592.

[74] 方治余. 高温深井下含冰粒充填料浆流动沉降规律研究[D].西安科技大学,2021.

[75] 李立涛. 金川粗骨料充填料浆离析机理及控制技术研究[D].北京科技大学,2020.

[76] 朱磊,宋天奇,古文哲,等.矸石浆体输送阻力特性及采空区流动规律试验研究[J].煤炭学报,2022,47(S1):39-48.

[77] 李文臣,郭利杰,陈鑫政,等.尾砂胶结充填体三维空间强度分布相似模拟试验研究[J].黄金科学技术,2018,26(04):528-534.

[78] 许文远,杨小聪,郭利杰.充填体不均匀性相似模拟实验研究[J].金属矿山,2011(05):18-22+69.

[79] 尹升华,闫泽鹏.粗骨料对膏体泌水性及力学性能的影响(英文)[J].Journal of Central South University,2023,30(02):555-567.

[80] 邵亚建. 采场内膏体料浆流动特性及充填接顶技术研究[D].北京科技大学,2021.

[81] 李涛. 煤矿矸石高浓度胶结充填料浆流动性研究[D].中国矿业大学(北京),2022.

[82] 刘鹏亮,崔锋,王浩宇,等.粗细颗粒混合纯矸石充填料浆流动性实验研究[J].煤炭技术,2021,40(12):27-31.

[83] Wang Z H,Feng G R,Qi T Y,et al,Evaluation of static segregation of cemented gangue-fly ash backfill material using electrical resistivity method,Measurement,2020,154,107483.

[84] 郝宇鑫,黄玉诚,李育松等.矸石似膏体充填料浆临界流速影响因素研究[J].煤炭工程,2022,54(04):128-133.

[85] 温震江,高谦,王永定,等.不同浓度料浆流变特性与混合骨料级配相关性试验[J].东北大学学报(自然科学版),2020,41(05):642-648.

[86] 王建栋,吴爱祥,王贻明,等.粗骨料膏体抗离析性能评价模型与实验研究[J].中国矿业大学学报,2016,45(05):866-872.

[87] 吴爱祥,李红,程海勇,等.全尾砂膏体流变学研究现状与展望(下):流变测量与展望[J].工程科学学报,2021,43(04):451-459

[88] 沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2015.

[89] 蔡美峰.岩石力学与工程[M].北京:科学出版社,2013.

[90] 谷德振.地质构造与工程建设[J].科学通报,1963(10):23-29.

[91] 刘小亮,陈新,宋笑凡.软硬互层岩体变形破坏机制物理模拟试验研究[J].岩石力学与工程学ang报,2023,42(S2):3980-3995.

[92] Wang Y Y ,Guo B ,Tang C A ,et al. Numerical study on size effect and anisotropy of columnar jointed basalts under uniaxial compression[J]. Bulletin of Engineering Geology and the Environment,2021,81(1).

[93] 曹帅. 胶结充填体结构与动力学特性研究及应用[D].北京科技大学,2017.

[94] Xu W,Cao Y,Liu B. Strength efficiency evaluation of cemented tailings backfill with different stratified structures. Eng Struct 2019;180:18-28.

[95] Cao S,Song W. Effect of Filling Interval Time on Long-Term Mechanical Strength of Layered Cemented Tailing Backfill. Adv Mater Sci Eng 2016;2016:9507852.

[96] Cao S,Song W,Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill. Constr Build Mater 2018;174:190-201.

[97] Wang J,Song W,Cao S,Tan Y. Mechanical properties and failure modes of stratified backfill under triaxial cyclic loading and unloading. Int J Min Sci Technol 2019;29(5):809-14.

[98] Zhang C,Fu J,Song W,Kang M,Li T,Wang N. Analysis on mechanical behavior and failure characteristics of layered cemented paste backfill(LCPB) under triaxial compression. Constr Build Mater 2022;324:126631.

[99] Wang J,Fu J,Song W,Zhang Y,Wu S. Acoustic emission characteristics and damage evolution process of layered cemented tailings backfill under uniaxial compression. Constr Build Mater 2021;295:123663.

[100] Zhang Y,Wang X,Wei C,Zhang Q. Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates. Trans Nonferrous Met Soc China 2017;27(7):1608-17.

[101] Sun W,Zhang S,Li J,Li Z. Experimental study on energy dissipation of layered backfill under impact load. Constr Build Mater 2022;347:128478.

[102] Gao T,Sun W,Liu Z,Cheng H. Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill. Constr Build Mater 2022;343:128110.

[103] Fu J,Wang J,Song W. Damage constitutive model and strength criterion of cemented paste backfill based on layered effect considerations. J Mater Res Technol 2020;9(3):6073-84.

[104] Wang Y M,Wu J Y,Pu H,Chen WQ,Yin Q,Yang S,Ma D.Effect of interface geometric parameters on the mechanical properties and damage evolution of layered cemented gangue backfill: Experiments and models,Construction and Building Materials,2022(349): 128678.

[105] 武娜.节理岩体力学特性尺寸效应与各向异性研究[D].大连理工大学,2020.

[106] 金浏;贾立坤;余文轩;张仁波;杜修力.低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J].材料导报,2023,37(05):108-114.

[107] 陈银红;伍法权;乔磊;王兆远;周晓霞;伍劼.小尺寸岩样尺寸效应特性研究[J].工程地质学报,2023,31(02):460-468.

[108] 邓志刚.冲击倾向性煤体强度尺寸效应的影响因素研究[J].煤炭科学技术,2019,47(08):59-63.

[109] 张宁.完整岩石物理力学特征的尺寸效应研究[D].长安大学,2023.

[110] 高艳华.等效岩体REV确定及节理力学行为研究[D].北京科技大学,2016.

[111] 周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996(04):35-41.

[112] 张贵科. 节理岩体正交各向异性等效力学参数与屈服准则研究及其工程应用[D].河海大学,2006.

[113] Yilmaz E , Belem T , Benzaazoua M . Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions[J]. Engineering Geology,2015,185:52~62.

[114] 郭育霞,赵永辉,冯国瑞等.矸石胶结胶结充填体单轴压缩损伤破坏尺寸效应研究[J].岩石力学与工程学报,2021,40(12):2434~2444.

[115] 刘周超. 不同尺寸胶结胶结充填体力学特性及损伤破坏机制[D].江西理工大学,2022.

[116] Xue G,Yilmaz E,Song W,et al. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes[J]. Construction and Building Materials,2020,241.

[117] 吴凡;杨晓炳;杨志强;高谦.高浓度粗骨料充填料浆抗离析特性及其数学模型[J].中南大学学报(自然科学版),2020,51(05):1309-1316.

[118] 古文哲;杨宝贵;朱磊;赵萌烨.矸石浆体充填空间特征研究与工程实践[J].矿业科学学报,2023,8(03):409-418.

[119] 汤伏全;柴成富;郭千慧子;武金辉.基于图像识别的矿山相似材料实验模型变形信息提取[J/OL].煤炭科学技术,1-11[2023-11-26].

[120] 邵亚建.采场内膏体料浆流动特性及充填接顶技术研究[D].北京科技大学,2021.

[121] 刘英. 马吉水电站坝址区右岸岩体不同尺度表征单元体及几何特征研究[D].吉林大学,2019.

[122] 石宏伟. 废石尾砂充填料浆管输阻力模型研究及应用[D].昆明理工大学,2015.

[123] 王小林. 掺粗骨料高浓度充填自流输送平直管道磨损规律[D].北京科技大学,2023.

[124] Zhang L H ,Zhang Z Y ,Liu C,et al. CFD-DEM simulations of a fluidized bed with droplet injection: Effects on flow patterns and particle behavior[J]. Advanced Powder Technology,2023,34(1).

[125] 王艳,左震,文波等.煤矸石粗集料理化性质和形状特征对混凝土强度的影响[J].矿业科学学报,2022,7(05):554-564.

[126] 刘浪,谢磊,朱梦博等.超高流动性改性镁渣基充填材料的性能[J].工程科学学报,2023,45(08):1324-1334

[127] Khani A,Baghbanan A,Hashemolhosseini H. Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses. Int J Rock Mech Min Sci 2013;63:104-12.

[128] Goktan RM,Gunes YN. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J South Afr Inst Min Metall 2005;105(10):727-33.

[129] Goktan RM,Gunes YN. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J South Afr Inst Min Metall 2005;105(10):727-33.

[130] Khani A,Baghbanan A,Hashemolhosseini H. Numerical investigation of the effect of fracture intensity on deformability and REV of fractured rock masses. Int J Rock Mech Min Sci 2013;63:104-12.

[131] Goktan RM,Gunes YN. A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency. J South Afr Inst Min Metall 2005;105(10):727-33.

[132] Yarali O,Kahraman S. The drillability assessment of rocks using the different brittleness values. Tunn Undergr Space Technol 2011;26(2):406-14.

[133] Liu Z,Zhou N,Zhang J. Random gravel model and particle flow based numerical biaxial test of solid backfill materials. Int J Min Sci Technol 2013;23(4):463-7.

[134] Hasannejad M,Berenjian J,Pouraminian M,Sadeghi Larijani A. Studying of microstructure,interface transition zone and ultrasonic wave velocity of high strength concrete by different aggregates. J Build Pathol Rehab 2021;7(1):9.

[135] 刘浪,罗屹骁,朱梦博等.建筑物下特厚煤层镁渣基全固废连采连充开采技术及实践[J/OL].煤炭科学技术:1-11[2023-11-27]

[136] Tang Y,Fu J,Song W. Mechanical properties and crack evolution law of layered cemented filling body. J Beijing Univ Sci Technol 2020;042(010):1286-98.

[137] Asadi MS,Rasouli V,Barla G. A Laboratory Shear Cell Used for Simulation of Shear Strength and Asperity Degradation of Rough Rock Fractures. Rock Mech Rock Eng 2013;46(4):683-99.

[138] Karimi KB,Noorian BM. Numerical study of the effect of rock anisotropy on stresses around an opening located in the fractured rock mass. J Pet Sci Eng 2022;208:109593.

[139] Bonicelli A,Giustozzi F,Crispino M. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Constr Build Mater 2015;91:102-10. [32] Yue Z,Meng F,Zhou

[140] Zou X,Wang C,Han Z. A proposed method for estimating in-situ stress direction using panoramic stereo-pair imaging and stressed borehole geometric shapes. Int J Rock Mech Min Sci 2018;104:94-9.

[141] Yu X,Kemeny J,Tan Y,Song W,Huang K. Mechanical properties and fracturing of rock-backfill composite specimens under triaxial compression. Constr Build Mater 2021;304:124577.

[142] Shan P,Lai X. Mesoscopic structure PFC∼2D model of soil rock mixture based on digital image. J Vis Commun Image Represent 2019;58:407-15.

[143] Li X,Lan L,Zhang J,Tang J,Lv M,Liu C,Han X. A new method for measuring the adhesion strength of rock-concrete specimens based on the calibration interface of the modified flat-joint model. Eng Fail Anal 2022;142:106752.

[144] Chen M,Yang SQ,Ranjith PG,Zhang YC. Cracking behavior of rock containing non-persistent joints with various joints inclinations. Theor Appl Fract Mech 2020;109:102701.

[145] Ma T,Li F,Yang Y,Li L. Study on energy evolution and crack propagation of rock mass under single hole uncoupled charge blasting. Appl Eng Sci 2022;11:100112.

[146] Shi D,Zhou J,Liu W,Deng Y. Non-circular particle simulation and macro-microscopic mechanism research on direct shear mechanical properties of sandy soil. Chin J Geotech Eng 2010;32(10):1557-65.

[147] Ouadfel H,Rothenburg L. `Stress–force–fabric' relationship for assemblies of ellipsoids. Mech Mater 2001;33(4):201-21.

[148] Zhao J,Guo N. The interplay between anisotropy and strain localisation in granular soils: a multiscale insight. Géotechnique 2015;65(8):642-56.

[149] Yang S Q,Yin P F,Zhang Y C,Chen M,Zhou XP,Jing HW,Zhang QY. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci 2019;114:101-21.

[150] Zou C,Wong LNY. Experimental studies on cracking processes and failure in marble under dynamic loading. Eng Geol 2014;173:19-31.

[151] Dai F,Xia K,Zheng H,Wang YX. Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen. Eng Fract Mech 2011;78(15):2633-44.

[152] Xia CC,Tang ZC,Xiao WM,Song YL. New peak shear strength criterion of rock joints based on quantified surface description. Rock Mech Rock Eng 2014;47(2):387-400.

[153] Yang Z Y,Lo S C,Di C C. Reassessing the joint roughness coefficient (JRC) estimation using Z2.Rock Mech Rock Eng 2001;34(3):243-251.

[154] Kulatilake P H S W ,Park J ,Balasingam P,Morgan,R. Quantification of Aperture and Relations Between Aperture,Normal Stress and Fluid Flow for Natural Single Rock Fractures. Geot & Geol Eng 2008; 26(3):269-281.

[155] Zhou N,Han X,Zhang J ,et al. Compressive deformation and energy dissipation of crushed coal gangue[J]. Powder Technology,2016,297:220-228.

[156] Yang P,Li L . Investigation of the short-term stress distribution in stopes and drifts backfilled with cemented paste backfill[J]. International Journal of Mining Science & Technology,2015,25(005):721-728.

[157] Yang P,Li L . Investigation of the short-term stress distribution in stopes and drifts backfilled with cemented paste backfill[J]. International Journal of Mining Science & Technology,2015,25(005):721-728.

[158] Acoustic emission characteristics and damage evolution process of layered cemented tailings backfill under uniaxial compression[J]. Construction and Building Materials,2021,295(68):123663.

[159] By A , Wz A , Chen H A ,et al. Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave[J]. Construction and Building Materials,249.

[160] 张志增. 横观各向同性岩体位移反分析的理论与应用研究[D].清华大学,2011.

[161] Zou X,Wang C,Han Z. A proposed method for estimating in-situ stress direction using panoramic stereo-pair imaging and stressed borehole geometric shapes[J]. International Journal of Rock Mechanics and Mining Sciences,2018,104(1): 94-99.

[162] Deng T,Yang L. Characteristics of velocity ratio of P-wave and S-wave for anisotropic rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(10): 2023-2029.

[163] 王传乐,杜广印,李二兵,等. 北山深部花岗岩常规三轴压缩条件下的强度参数演化及能量耗散[J]. 岩石力学与工程学报,2021,40(11):11.

[164] Shiotani T,Ohtsu M,Ikeda K. Detection andevaluation of AE waves due to rock deformation[J].Construction & Building Materials,2001,15(5-6): 235-46.

[165] Alkan H,Cinar Y,Pusch G. Rock salt dilatancyboundary from combined acoustic emission and triaxialcompression tests[J]. International Journal of RockMechanics & Mining Sciences,2007,44(1): 108-108.

[166] 屈稚林. 麻黄梁煤矿CT301工作面窄条带膏体充填开采技术研究[D].中国矿业大学,2019.

中图分类号:

 TD745    

开放日期:

 2026-01-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式