- 无标题文档
查看论文信息

论文中文题名:

 三相直流无刷电机驱动芯片研究与设计    

姓名:

 马万真    

学号:

 19306204012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 模拟集成电路设计    

第一导师姓名:

 刘树林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Research and Design of Three-phase Brushless DC Motor Driver Chip    

论文中文关键词:

 三相直流无刷电机 ; 三相桥驱动电路 ; 升压电荷泵 ; PWM_ON调速    

论文外文关键词:

 Three-phase DC Brushless Motor ; Three-phase Bridge Drive Circuit ; Boost    

论文中文摘要:

~三相直流无刷电机以其噪音小、寿命长及稳定性高等优点而得到广泛应用,对其专用驱动芯片的需求也日趋增高。相较于使用MCU加驱动电路的控制方式,专用电机驱动芯片集控制与驱动于一体,简化了电机的应用电路,适应于电机驱动轻量化、集成化的发展趋势。因此,对三相直流无刷电机驱动芯片进行设计极具研究意义和实用价值。
通过对不同电机驱动电路性能特点及存在不足进行深入分析,提出了一种可实现低转矩脉动的三相直流无刷电机驱动芯片设计方案。为减小芯片面积,以全N型三相桥结构作为芯片驱动主电路;基于开关管的120°导通方式,设计了换相控制电路,实现电机在低功率损耗下的相电流切换;通过推导电机在不同调速方式下产生的转矩脉动,得出当开关管采用前60°PWM调制,后60°恒通的PWM_ON调制方式时,电机产生的转矩脉动最小,在此基础上,设计了PWM_ON调速电路,实现电机在调速期间的低转矩脉动;设计了升压电荷泵电路,产生驱动三相桥高边开关管的泵电压,并对该电压设计了欠压保护电路,防止泵电压升压不足影响芯片正常工作;设计了具有死区时间控制的开关管驱动电路,为开关管栅极提供足够的充放电电流,实现开关管的快速导通与关断,减小了开关损耗,增加了对开关管驱动的可靠性。此外,为确保芯片正常工作,设计了为低压模块提供电源电压的基准电压源电路、为实现逻辑控制提供基准时钟信号的振荡器电路、为防止驱动系统受到损坏的多种保护电路等子模块电路。对芯片内部电路的关键参数进行设计,完成了一款三相直流无刷电机驱动芯片的设计。
基于Hynix 0.18μm BCD工艺,采用Spectre仿真工具对芯片整体电路进行仿真分析,验证了所设计电路的可行性。其次,完成芯片整体版图的设计,并通过了DRC、LVS验证。最后,对流片后的三相直流无刷电机驱动芯片进行了测试,结果表明芯片的各项性能指标均满足设计要求。

论文外文摘要:

~Three-phase DC brushless motors are widely used for their advantages of low noise, long life and high stability, and the demand for their dedicated driver chips is also increasing. Compared with the control method of using MCU plus drive circuit, the dedicated motor drive chip integrates control and drive, which simplifies the application circuit of the motor and is suitable for the development trend of lightweight and integrated motor drive. Therefore, the design of the three-phase brushless DC motor driver chip is of great research significance and practical value.
Through in-depth analysis of the performance characteristics and shortcomings of different motor drive circuits, a design scheme of a three-phase brushless DC motor drive chip that can achieve low torque ripple is proposed. In order to reduce the chip area, an all-N-type three-phase bridge structure is used as the main circuit of the chip driver; based on the 120° conduction mode of the switch tube, a commutation control circuit is designed to realize the phase current switching of the motor under low power loss; The torque pulsation generated by the motor under different speed regulation modes is deduced, and it is concluded that when the switch tube adopts the PWM_ON modulation mode of the first 60° PWM modulation and the last 60° constant-pass PWM_ON modulation mode, the torque pulsation generated by the motor is the smallest. The PWM_ON speed regulation circuit is designed to realize the low torque pulsation of the motor during speed regulation; the boost charge pump circuit is designed to generate the pump voltage that drives the high-side switch tube of the three-phase bridge, and an undervoltage protection circuit is designed for this voltage. To prevent the insufficient boost of the pump voltage from affecting the normal operation of the chip; a switch tube drive circuit with dead time control is designed to provide sufficient charge and discharge current for the gate of the switch tube to achieve rapid turn-on and turn-off of the switch tube, reducing the The switching loss increases the reliability of the switching tube drive. In addition, in order to ensure the normal operation of the chip, sub-modules such as a reference voltage regulator circuit that provides power supply voltage for low-voltage modules, an oscillator circuit that provides a reference clock signal for logic control, and various protection circuits to prevent damage to the drive system are designed. circuit. The key parameters of the internal circuit of the chip are designed, and the design of a three-phase brushless DC motor driver chip is completed.
Based on Hynix 0.18μm BCD process, Spectre simulation tool is used to simulate and analyze the overall circuit of the chip, and the feasibility of the designed circuit is verified. Secondly, complete the design of the overall layout of the chip, and passed the DRC, LVS verification. Finally, the three-phase brushless DC motor driver chip after tape-out is tested, and the results show that the performance indicators of the chip meet the design requirements.

参考文献:

[1]Koichiro S, Masayuki I, Takahiro U, Keisuke N, Kenji K. Commutation Characteristics and Brush Wear of DC Motor at High Rotation Speed[C]// IEEE Holm Conference on Electrical Contacts. Denver, 2017: 176-181.

[2]Izotov A. I, Bespalov V. Ya, Mamaev G. A, Timoshenko V. N, Izotov S. A, Fominykh A. A, Prokoshev D. A. Brush-Wear Reduction in High-Altitude Direct-Current Motors[J]. Russian electrical engineering, 2018, 89(2): 93-97.

[3]Vijay A L, Venkatesa P S, Muthuraman M. S; Shobana G, Firos A, Sabarinathan B, Loss Reduced Network Using Sensorless BLDC Motor[C]// International Conference on Intelligent Computing and Control Systems (ICICCS). Madurai, 2021: 479-483.

[4]Derammelaere S, Haemers M, Viaene J D, Verbelen F, Stockman K. A quantitative comparison between BLDC, PMSM, brushed DC and stepping motor technologies[C]// International Conference on Electrical Machines and Systems (ICEMS). Chiba, 2016: 1-5.

[5]Wang S, Hong J, Sun Y, Cao H. Analysis and Reduction of Electromagnetic Vibration of PM Brush DC Motors[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4605-4612.

[6]De A, Stewart-Height A, Koditschek D. E. Task-Based Control and Design of a BLDC Actuator for Robotics[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2393-2400.

[7]Ramachandran R, Ganeshaperumal D, Subathra B. Closed-loop Control of BLDC Motor in Electric Vehicle Applications[C]// IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES). Krishnankoil, 2019: 1-5.

[8]邱靖超, 刘新妹, 殷俊龄, 杨冰. 一种基于FPGA的多通道步进电机控制系统的设计[J]. 国外电子测量技术, 2021, 40(04): 72-77.

[9]Ulasyar A, Zad H. S, Zohaib A. Intelligent Speed Controller Design for Brushless DC Motor[C]// International Conference on Frontiers of Information Technology (FIT). Islamabad, 2018: 19-23.

[10]苑利维, 于洋, 赵曾武, 田冠枝, 姜丽婷. 一种高效低噪长时可靠的推进电机控制系统设计[J]. 微电机, 2018, 51(06): 46-49.

[11]Ctibor J, Vorel P, Knobloch J, Pazdera I. BLDC Motor Control with Cascade Structure Utilizing ARM MCU[C]// International Conference on Electrical Drives & Power Electronics (EDPE). The High Tatras, 2019: 61-65.

[12]Pindoriya R. M, Mishra A. K, Rajpurohit B. S, Kumar R. FPGA Based Digital Control Technique for BLDC Motor Drive[C]// IEEE Power & Energy Society General Meeting (PESGM). Portland, 2018: 1-5.

[13]Chen G. Y, Perng J. PI speed controller design based on GA with time delay for BLDC motor using DSP[C]// IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu, 2017: 1174-1179.

[14]Goswami A, Sreejeth M, Upadhyay R, Indu S. Brushless DC Motor Based E-Rickshaw Controller Design[C]// International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). Bangalore, 2021: 196-200.

[15]Lee Y. Commutation Torque Ripple Minimization for Three Phase BLDC Motor Drive using A Simple PWM Scheme Reliable to Motor Parameter Variation[C]// IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Macao, 2019: 1-4.

[16]Kim S, Park J, Lee D. Torque ripple reduction of the BLDC motor using a modified 3-phase conduction method[C]// International ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI-NCON). Chiang Rai, 2018: 34-39.

[17]朱俊杰, 刘浩然. 直流无刷电机三段式换相转矩脉动抑制仿真研究[J]. 系统仿真学报, 2017, 29(08): 1719-1725.

[18]李东, 冯金磊, 孔全存, 刘桂礼, 赵双琦. 基于双H桥变换器的无刷直流电机转矩脉动抑制方法[J]. 电机与控制应用, 2018, 45(07): 30-37.

[19]Badawy M. O, Husain T, Sozer Y, J. A. De Abreu-Garcia. Integrated Control of an IPM Motor Drive and a Novel Hybrid Energy Storage System for Electric Vehicles[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5810-5819.

[20]Bruno A, Caruso M, Tommaso A. O. D, Miceli R, Nevoloso C, Viola F. Simple and Flexible Power Loss Minimizer with Low-Cost MCU Implementation for High-Efficiency Three-Phase Induction Motor Drives[J]. IEEE Transactions on Industry Applications, 2021, 57(2): 1472-1481.

[21]Wang K, Zheng Z, Wei D, Fan B, Li Y. Topology and Capacitor Voltage Balancing Control of a Symmetrical Hybrid Nine-Level Inverter for High-Speed Motor Drives[J]. IEEE Transactions on Industry Applications, 2017, 53(6): 5563-5572.

[22]鲍旭聪, 王晓琳, 彭旭衡, 严廷雄, 高起兴. 高速电机驱动关键技术研究综述[J]. 中国电机工程学报: 1-16.

[23]王宇, 张成糕, 郝雯娟. 永磁电机及其驱动系统容错技术综述[J]. 中国电机工程学报, 2022, 42(01): 351-372.

[24]于志飞, 谢卫, 杜彦清. 高速无刷直流电机的设计与优化[J]. 微电机, 2019, 52(03): 9-13.

[25]Rakhmawati R, Murdianto F. D, Alim M. W. Soft Starting & Performance Evaluation of PI Speed Controller for Brushless DC Motor Using Three Phase Six Step Inverter[C]// International Seminar on Application for Technology of Information and Communication. Semarang, 2018: 121-126.

[26]Xia C, Wu D, Shi T, Chen W. A Current Control Scheme of Brushless DC Motors Driven by Four-Switch Three-Phase Inverters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 547-558.

[27]王伟, 张景皓, 程明, 史乐乐. 五相逆变器双电机驱动系统直接转矩控制[J]. 中国电机工程学报, 2017, 37(14): 4192-4200+4299.

[28]刘自程, 李永东, 郑泽东. 多相电机控制驱动技术研究综述[J]. 电工技术学报, 2017, 32(24): 17-29.

[29]Wu H, Wen M, Wong C. Speed control of BLDC motors using hall effect sensors based on DSP[C]// International Conference on System Science and Engineering (ICSSE). Puli, 2016: 1-4.

[30]邓先明, 刘娜, 陈剑, 徐建单, 叶宗彬. 新型开绕组双馈电机调速系统研究[J]. 电机与控制学报, 2018, 22(07): 8-18.

[31]孙鹏, 赵志斌, 蔡雨萌, 余秋萍, 柯俊吉. 基于开关能量均衡的并联碳化硅MOSFET芯片筛选[J]. 中国电机工程学报, 2019, 39(19): 5613-5623+5889.

[32]方绍明, 李照华. 晶圆级导通电阻测试精度的改进方法[J]. 半导体技术, 2021, 46(01): 75-80.

[33]Lee Y, Kim J. Analysis of the Three-Phase Inverter Power Efficiency of a BLDC Motor Drive Using Conventional Six-Step and Inverted Pulsewidth Modulation Driving Schemes[J]. Canadian Journal of Electrical and Computer Engineering, 2019, 42(1): 34-40.

[34]Miyama Y, Ishizuka M, Kometani H, Akatsu K. Vibration reduction by applying carrier phase-shift PWM on dual three-phase windings permanent-magnet synchronous motor[C]// IEEE International Electric Machines and Drives Conference (IEMDC). Miami, 2017: 1-6.

[35]Lee Y. A New Method to Minimize Overall Torque Ripple in the Presence of Phase Current Shift Error for Three-Phase BLDC Motor Drive[J]. Canadian journal of electrical and computer engineering, 2019, 42(4): 225-231.

[36]Lee Y, Kim J. A Novel Enhanced Inverted PWM Driving Scheme for Three-Phase BLDC Motor Drive[C]// IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). JeJu, 2018: 206-212.

[37]林显琦, 毕京斌, 夏猛, 马法运. 三电平逆变器控制系统及PWM方法研究[J]. 电力电子技术, 2021, 55(03): 118-121.

[38]谭传武, 刘立君, 周玲, 刘红梅. 一种用于电源管理芯片中的电荷泵升压CMOS电路设计[J]. 电子测量技术, 2018, 41(18): 6-9.

[39]Joshi K, Manandhar S, Bakkaloglu B. A 5.6 μA Wide Bandwidth, High Power Supply Rejection Linear Low-Dropout Regulator With 68 dB of PSR Up To 2MHz[J]. IEEE Journal of Solid-State Circuits, 2020, 55(8): 2151-2160.

[40]Lim Y, Lee J, Park S, Jo Y, Choi J. An External Capacitorless Low-Dropout Regulator with High PSR at All Frequencies From 10 kHz to 1 GHz Using an Adaptive Supply-Ripple Cancellation Technique[J]. IEEE Journal of Solid-State Circuits, 2018, 53(9): 2675-2685.

[41]Murakami S, Hayashi K, Arata S, Xu G, Bui C. D, Kobayashi A, Niitsu K. Design and Verification of Stochastic Oscillator Using Multiple Ring Oscillators and OR-gate for Low-voltage Operation in 65 nm CMOS[J]. Sensors and Materials, 2020, 32(8): 2607-2614.

[42]Li Z, Liu H, Jiang S, Rao J. A novel drive circuit with overcurrent protection for solid state pulse generators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 361-366.

[43]周维瀚, 张文杰, 朱志宇, 金湘亮. 一种应用于CAN总线芯片的过压保护电路设计[J]. 半导体技术, 2019, 44(03): 171-176+200.

[44]王慧丽, 冯全源. 一种结构简单的新型CMOS欠压保护电路[J]. 电子器件, 2017, 40(03): 593-596.

[45]Lee J, Jang H, Shin S. Over Temperature Protection in Power Module for Hybrid and Electric Vehicle[C]// IEEE. Transportation Electrification Conference and Expo. Busan, 2016: 432-435.

[46]唐春萍, 段宝兴, 宋坤, 王彦东, 杨银堂. 衬底浮空的新型绝缘体上硅基横向功率器件分析[J]. 物理学报, 2021, 70(14): 348-355.

[47]Do K, Song B, Koo Y. A Novel Dual-Directional SCR Structure With High Holding Voltage for 12V Applications in 0.13μm BCD Process[J]. IEEE Transactions on Electron Devices, 2020, 67(11): 5020-5027.

[48]Dai C, Ker M. Investigation of Unexpected Latchup Path Between HV-LDMOS and LV-CMOS in a 0.25μm 60V/5V BCD Technology[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3519-3523.

[49]代钢, 牛健, 姬濯宇. 高压BCD工艺优化对NLDMOS管的性能影响[J]. 微电子学, 2020, 50(01): 142-147.

[50]Li L, Lee Y, Srinivasan S. Signoff-level full-chip ESD/reliability design verification using logic-driven layout static approach[C]// China Semiconductor Technology International Conference (CSTIC). Shanghai, 2020: 1-4.

[51]朱筠, 刘有耀, 张霞. CMOS闩锁效应虚拟仿真实验设计[J]. 实验室研究与探索, 2021, 40(03): 112-115+277.

赵悦, 盛玮, 韩坤, 刘丰满, 曹立强. 大马士革工艺中等离子体损伤的天线扩散效应[J]. 半导体技术, 2019, 44(01): 51-57+72.

中图分类号:

 TM43    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式