- 无标题文档
查看论文信息

论文中文题名:

 毫米波Massive MIMO系统非均匀平面阵列拓扑优化设计    

姓名:

 程叶倩    

学号:

 21207040037    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081002    

学科名称:

 工学 - 电子信息 - 信号与信息处理    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 无线通信    

第一导师姓名:

 庞立华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Topological Optimization Design of Non-uniform Planar Arrays for Millimeter Wave Massive MIMO Systems    

论文中文关键词:

 大规模多输入多输出 ; 非均匀平面阵列 ; 有效自由度 ; 信道特征值 ; 阵列拓扑 ; 遍历和速率    

论文外文关键词:

 Massive MIMO ; Non-uniform planar array ; Effective degree of freedom ; Channel eigenvalue ; Array topology ; Ergodic sum-rate    

论文中文摘要:

毫米波大规模多输入多输出(Massive Multiple-Input Multiple-Output, Massive MIMO)技术作为移动通信系统的关键使能技术之一,拥有大带宽、高频谱效率以及高可靠性等显著优势。在毫米波Massive MIMO系统中,天线阵列的优化部署是一项至关重要的研究课题。与传统均匀阵列相比,非均匀天线阵列可以平衡信道特征值,进而获得可观的性能增益。由于Massive MIMO系统需要部署大规模天线阵列,因而在固定孔径情况下采用非均匀平面阵列(Non-uniform Planar Array, NUPA)已成为一种发展趋势。然而,如何从理论层面优化设计NUPA拓扑仍然是一个具有挑战性的开放问题。本文基于毫米波Massive MIMO系统,优化设计出了在单用户和多用户两种场景中拓扑排布特点恰好相反的两种NUPA拓扑。具体研究内容如下:

(1)针对近场球面波(Spherical Wave, SW)传播条件下的单用户MIMO(Single User MIMO, SU-MIMO)视距(Line-of-Sight, LOS)场景,在收发端阵列沿不同轴旋转的一般情况下建立阵列的几何模型;对有效自由度(Effective Degree of Freedom, EDoF)进行表征,同时借助克罗内克乘积特性以及特征值渐近分析法,来构建水平和垂直维度分量上的信道特征值与阵元位置、阵列旋转角之间的理论关系,进而直观反映出阵元位置与EDoF之间的数学解析关系;以EDoF最大化为优化目标,以阵元位置为优化变量,以空间资源受限与相邻阵元间距不小于半波长为约束,建立NUPA拓扑优化问题;采用自适应梯度下降法求解该优化问题,最终设计出具有四周密集、中间稀疏且中心对称排布特点的NUPA拓扑。此外,我们还讨论了阵列旋转角对系统性能的本质影响。研究表明,在阵列孔径相同的情况下,所设计的NUPA拓扑在整个信噪比(Signal-Noise Ratio, SNR)范围内均能提供比其他对比阵列拓扑更高的性能增益,仿真结果还验证了理论分析的正确性,从而在理论层面为非均匀阵列拓扑优化设计提供了有效的指导准则。

(2)为了更加符合实际传输场景的需求,在SU-MIMO系统的基础上进一步扩展到多用户MIMO(Multi-User MIMO, MU-MIMO)系统。具体来说,在近场SW传播条件下的MU-MIMO莱斯信道中构建收发端阵列的几何结构关系;借助詹森不等式、大数定律等推导遍历和速率的近似表达式,以此作为优化问题的目标函数;随后利用克罗内克混合乘积、高阶泰勒展开以及迭代凸近似方法,求解了以阵元位置作为变量的优化问题;特别地,我们讨论了所设计的NUPA拓扑的排布特征,并对不同系统配置下的拓扑排布特点进行了相应分析。需要强调的是,在MU-MIMO系统中设计的NUPA拓扑呈现出四周稀疏、中间密集且中心对称的排布特点,这与SU-MIMO系统中设计的NUPA拓扑排布特点恰好相反。此外,我们还发现随着用户终端天线数的减少,阵列各单元将向中心聚拢,并从电磁波传播角度进一步分析了不同阵列拓扑的排布特征与通信场景之间的关系;仿真结果验证了所设计的具有强鲁棒性的NUPA拓扑相比于其他对比阵列拓扑的显著性能优势,其中在SNR为-5dB至20dB时,所设计的NUPA拓扑的遍历和速率比均匀平面阵列(Uniform Planar Array, UPA)平均提升约13.6%,从而为Massive MU-MIMO系统提供了一种有效的阵列拓扑设计准则。

论文外文摘要:

As one of the key enabling technologies for mobile communication systems, millimeter-wave massive multiple-input multiple-output (Massive MIMO) technology offers significant advantages such as large bandwidth, high spectral efficiency, and high reliability. In millimeter-wave Massive MIMO systems, the optimal deployment of antenna arrays is a crucial research topic. Compared with the traditional uniform array, the non-uniform antenna array can balance the channel eigenvalues and obtain considerable performance gain. Since massive MIMO systems require the deployment of large-scale antenna arrays, the use of non-uniform planar arrays (NUPAs) in the fixed apertures has become a trend. However, how to optimize the design of NUPA topology from the theoretical level remains a challenging open problem. In this paper, based on the millimeter-wave Massive MIMO system, we optimize and design two NUPA topologies with exactly opposite topological arrangement characteristics in both single-user and multi-user scenarios. The specific research contents are as follows:

(1) For the single-user MIMO (SU-MIMO) line-of-sight (LOS) scenario with near-field spherical wave (SW) propagation, a geometric model of the array is established under the general condition that the transceiver array rotates along different axes. The effective degree of freedom (EDoF) is characterized, and theoretical relations between the channel eigenvalues of the horizontal and vertical dimensions and the array element positions and array rotation angles are constructed using Kronecker product and eigenvalue asymptotic analysis, so as to intuitively reflect the mathematical analytical relation between array element positions and EDoF. The NUPA topology optimization problem is formulated with EDoF maximization as the optimization objective, array element positions as the optimization variable, and spatial resource limitation and adjacent array element spacing not less than half wavelength as constraints. Adaptive gradient descent is used to solve the optimization problem. Finally, the NUPA topology with dense surrounding, sparse middle, and symmetric center is designed. In addition, we discuss the essential effect of the array rotation angle on the system performance. It has been shown that for the same array aperture, the designed NUPA topology can provide a higher performance gain than other compared array topologies over the entire signal-noise ratio (SNR) range. The simulation results also verify the correctness of the theoretical analysis and thus provide effective guidance for the optimization design of non-uniform array topologies at the theoretical level.

(2) To meet the requirements of practical transmission scenarios, the SU-MIMO system is further extended to the multi-user MIMO (MU-MIMO) system. Specifically, the geometric structure relations of the transceiver array are constructed in the MU-MIMO Rician channel with near-field SW propagation. The approximate expression for the ergodic sum-rate, which is used as the objective function of the optimization problem, are derived using Jensen's inequality and the law of large numbers. Then, the optimization problem with array element positions as variables is solved by using the Kronecker mixture product, higher-order Taylor expansion, and iterative convex approximation. In particular, we discuss the arrangement properties of the designed NUPA and analyze the topological arrangement properties under different system configurations. It should be emphasized that the NUPA topology designed in the MU-MIMO system exhibits the feature of sparsity around, dense in the middle, and center-symmetry, which is the opposite of the NUPA topology designed in the SU-MIMO system. Moreover, we find that the elements of the array converge towards the center as the number of antennas at the user terminals decreases, and further analyze the relationship between the arrangement properties of different array topologies and the communication scenario from the perspective of electromagnetic wave propagation. Simulation results show that the designed robust NUPA topology has a significant performance advantage over other compared array topologies. When the SNR is from -5dB to 20dB, the ergodic sum-rate of the designed NUPA topology is approximately 13.6% higher than that of the uniform planar array (UPA), which provides an effective array topology design criterion for Massive MU-MIMO systems.

参考文献:

[1] Zhang P, Niu K, Tian H, et al. Technology prospect of 6G mobile communications[J]. Journal on Communications, 2019, 40(1): 141-148.

[2] Serghiou D, Khalily M, Brown T W C, et al. Terahertz channel propagation phenomena, measurement techniques and modeling for 6G wireless communication applications: A survey, open challenges and future research directions[J]. IEEE Communications Surveys and Tutorials, 2022, 24(4): 1957-1996.

[3] Islam M S, Mahmud M A R, Jewel M K H. MIMO system capacity based on multiple fading channels and varying numbers of antennas including the comparison of MIMO-NOMA and MIMO-OMA[J]. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2023, 11(4): 1025-1037.

[4] 卢安安, 高西奇. 大规模MIMO传输技术研究与展望[J]. 中国科学基金, 2020, 34(02): 186-192.

[5] Liu G, Huang Y, Li N, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92-104.

[6] Hakeem S A A, Hussein H H, Kim H W. Vision and research directions of 6G technologies and applications[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(6): 2419-2442.

[7] Tataria H, Shafi M, Molisch A F, et al. 6G wireless systems: vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166-1199.

[8] You X, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(01): 1-74.

[9] 薛春林. 毫米波无线通信信道特性分析及优化传输方案研究[D]. 南京: 东南大学, 2017.

[10] Sun S, Rappaport T S, Shafi M, et al. Propagation models and performance evaluation for 5G millimeter-wave bands[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8422-8439.

[11] He S, Zhang Y, Wang J, et al. A survey of millimeter-wave communication: Physical-layer technology specifications and enabling transmission technologies[J]. Proceedings of the IEEE, 2021, 109(10): 1666-1705.

[12] Jameel F, Haider M A A, Butt A A. Massive MIMO: A survey of recent advances, research issues and future directions[C]//2017 International Symposium on Recent Advances in Electrical Engineering (RAEE). IEEE, 2017: 1-6.

[13] Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600.

[14] Biswas S, Masouros C, Ratnarajah T. Performance analysis of large multiuser MIMO systems with space-constrained 2-D antenna arrays[J]. IEEE Transactions on Wireless Communications, 2016, 15(5): 3492-3505.

[15] Raut P W, Badjate S L. MIMO-future wireless communication[J]. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2013, 2(5): 102-106.

[16] Dala Pegorara Souto V, Dester P S, Soares Pereira Facina M, et al. Emerging MIMO technologies for 6G networks[J]. Sensors, 2023, 23(4): 1921.

[17] Sahad A J, Islam M S, Islam M R, et al. Design and analysis of a non-uniform planar antenna array[C]//2020 IEEE Region 10 Symposium (TENSYMP). IEEE, 2020: 1140-1143.

[18] 陈莘璞. 大规模MIMO天线阵列形态设计与研究[D]. 成都: 电子科技大学, 2021.

[19] Lara F, Altamirano D, Cepeda J, et al. Antenna densification in non-uniform linear and planar arrays[C]//XVIII Multidisciplinary International Congress on Science and Technology. Springer, Cham, 2024: 121-134.

[20] Gesbert D, Bolcskei H, Gore D A, et al. Outdoor MIMO wireless channels: models and performance prediction[J]. IEEE Transactions on Communications, 2002, 50(12): 1926-1934.

[21] Sarris I, Nix A R. Maximum MIMO capacity in line-of-sight[C]//2005 5th International Conference on Information Communications and Signal Processing. IEEE, 2005: 1236-1240.

[22] Sarris I, Nix A R. Design and performance assessment of high-capacity MIMO architectures in the presence of a line-of-sight component[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2194-2202.

[23] Bohagen F, Orten P, Oien G E. Design of optimal high-rank line-of-sight MIMO channels[J]. IEEE Transactions on Wireless Communications, 2007, 6(4): 1420-1425.

[24] Farsaei A, Amani N, Maaskant R, et al. Uniform linear arrays with optimized inter-element spacing for LOS massive MIMO[J]. IEEE Communications Letters, 2020, 25(2): 613-616.

[25] Gao X, Edfors O, Rusek F, et al. Massive MIMO performance evaluation based on measured propagation data[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 3899-3911.

[26] Pang L, Wang M, Zhang Y, et al. Capacity analysis and optimal spacing design for compact array massive MIMO systems with finite aperture[J]. IEEE Communications Letters, 2022, 26(10): 2282-2286.

[27] Zhu L, Zhu J, Wang S, et al. Adaptive transmit antenna selection based on PCA for millimeter wave LOS MIMO channel[J]. IEEE Access, 2019, 7: 12087-12096.

[28] Xue C, He S, Huang Y, et al. An efficient beam-training scheme for the optimally designed subarray structure in mmWave LoS MIMO systems[J]. EURASIP Journal on Wireless Communications and Networking, 2017, 2017(1): 1-12.

[29] 李蕊. 视距多天线无线通信关键技术研究[D]. 南京: 东南大学, 2019.

[30] 张国英. 毫米波通信LoS-MIMO空间复用技术研究[D]. 成都: 电子科技大学, 2022.

[31] Pinchera D, Migliore M D, Schettino F, et al. Antenna arrays for line-of-sight massive MIMO: Half wavelength is not enough[J]. Electronics, 2017, 6(3): 57.

[32] Wang P, Li Y, Peng Y, et al. Non-uniform linear antenna array design and optimization for millimeter-wave communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7343-7356.

[33] Zhou L, Ohashi Y. Design of non-uniform antenna arrays for robust millimeter-wave LOS MIMO communications[C]//2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, 2013: 1397-1401.

[34] Miranda A, Ashwin P, Gangwar V. Optimization of unequally spaced linear antenna array by employing PSO technique[C]//2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC). IEEE, 2018: 1-4.

[35] Zheng H, Zhou C, de Almeida A L F, et al. DOA estimation via coarray tensor completion with missing slices[C]//ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 5053-5057.

[36] Pizzo A, de Jesus Torres A, Sanguinetti L, et al. Nyquist sampling and degrees of freedom of electromagnetic fields[J]. IEEE Transactions on Signal Processing, 2022, 70: 3935-3947.

[37] Zheng H, Shi Z, Zhou C, et al. Coupled coarray tensor CPD for DOA estimation with coprime L-shaped array[J]. IEEE Signal Processing Letters, 2021, 28: 1545-1549.

[38] Elbir A M. V-shaped sparse arrays for 2-d doa estimation[J]. Circuits, Systems, and Signal Processing, 2019, 38(6): 2792-2809.

[39] Matsumura N, Nishimori K, Taniguchi R, et al. Novel unmanned aerial vehicle-based line-of-sight MIMO configuration independent of transmitted distance using millimeter wave[J]. IEEE Access, 2020, 8: 11679-11691.

[40] Luo X, Yang Y, Zhou Q. A firefly-cuckoo search algorithm for optimizing the beam patterns of the random antenna arrays[C]//2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). IEEE, 2018: 84-88.

[41] 肖涵. 考虑互耦效应的非均匀阵列天线布局优化研究[D]. 大连: 大连理工大学, 2021.

[42] Pratschner S, Löschenbrand D, Schwarz S, et al. Large aperture antenna array design for cellular LOS massive MIMO[C]//2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019: 1404-1408.

[43] Sun Y, Sun J, Ye L. Synthesis of thinned planar concentric circular antenna arrays using a modified artificial bee colony algorithm[J]. International Journal of Antennas and Propagation, 2023, 2023.

[44] 黄欣怡. 面向Massive MIMO的非均匀天线阵列优化设计[D]. 西安: 西安电子科技大学, 2022.

[45] Luo Z, Yu W. An introduction to convex optimization for communications and signal processing[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1426-1438.

[46] Zhang Y X, Jiao Y C, Zhang L. Antenna array directivity maximization with sidelobe level constraints using convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(4): 2041-2052.

[47] Lou M, Jin J, Wang H, et al. Performance analysis of sparse array based massive MIMO via joint convex optimization[J]. China Communications, 2022, 19(3): 88-100.

[48] 蒋毅. 天线阵列阵元位置优化方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.

[49] Shiu D S, Foschini G J, Gans M J, et al. Fading correlation and its effect on the capacity of multielement antenna systems[J]. IEEE Transactions on Communications, 2000, 48(3): 502-513.

[50] 蒲旭敏. 近距离多天线无线通信关键技术研究[D]. 成都: 电子科技大学, 2016.

[51] Wang X, Kong L, Kong F, et al. Millimeter wave communication: A comprehensive survey[J]. IEEE Communications Surveys and Tutorials, 2018, 20(3): 1616-1653.

[52] 信雪梅, 南作用. 基于大规模MIMO技术的5G无线信道建模及仿真[J]. 邮电设计技术, 2020, (07): 46-51.

[53] 陈昂, 陈力, 卫国. 近场通信与定位: 从球面波前模型到电磁场理论[J]. 中兴通讯技术, 2022, 28(05): 7-12.

[54] Cui M, Wu Z, Lu Y, et al. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions[J]. IEEE Communications Magazine, 2022, 61(1): 40-46.

[55] 孟子琦. 莱斯信道下大规模MIMO系统传输速率研究[D]. 大连: 大连海事大学, 2017.

[56] Bohagen F, Orten P, Oien G E, et al. Exact capacity expressions for dual-branch Ricean MIMO channels[J]. IEEE Transactions on Communications, 2008, 12(56): 2214-2222.

[57] 张海艳. 浅析矩阵QR分解的几种方法[J]. 陇东学院学报, 2024, 35(02): 1-6.

[58] Fan W, Alimohammad A. Givens rotation-based QR decomposition for MIMO systems[J]. IET Communications, 2017, 11(12): 1838-1845.

[59] Bentbib A H, Kanber A. Block power method for SVD decomposition[J]. Analele ştiinţifice ale Universităţii" Ovidius" Constanţa. Seria Matematică, 2015, 23(2): 45-58.

[60] Kabalci Y, Arslan H. Hybrid precoding for mmWave massive MIMO systems with generalized triangular decomposition[C]//2018 IEEE 19th Wireless and Microwave Technology Conference (WAMICON). IEEE, 2018: 1-6.

[61] Tian Y, Yuan R. New facts related to dilation factorizations of Kronecker products of matrices[J]. AIMS Mathematics, 2023, 8(12): 28818-28832.

[62] Moradi H R, Omidvar M E, Adil Khan M, et al. Around Jensen’s inequality for strongly convex functions[J]. Aequationes Mathematicae, 2018, 92(1): 25-37.

[63] 董亚男. 基于凸优化理论的D2D通信系统公平性资源分配研究[D]. 济南: 山东大学, 2019.

[64] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7): 2121-2159.

[65] Liu A, Lau V K N, Kananian B. Stochastic successive convex approximation for non-convex constrained stochastic optimization[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4189-4203.

[66] 谢海亮. 智能反射面辅助无线通信的联合波束成形研究[D]. 广州: 广东工业大学, 2022.

[67] Grant M, Boyd S. CVX: Matlab software for disciplined convex programming, version 2.1[J]. 2014.

[68] Bohagen F, Orten P, Oien G E. Construction and capacity analysis of high-rank line-of-sight MIMO channels[C]//IEEE Wireless Communications and Networking Conference. IEEE, 2005: 432-437.

[69] Guo Y, Zhang Y, Pang L, et al. Optimizing antenna topology for massive MIMO planar arrays with line-of-sight deterministic channels[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11871-11883.

[70] Took C C, Mandic D P, Zhang F. On the unitary diagonalisation of a special class of quaternion matrices[J]. Applied Mathematics Letters, 2011, 24(11): 1806-1809.

[71] Gesbert D, Shafi M, Shiu D, et al. From theory to practice: an overview of MIMO space-time coded wireless systems[J]. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 281-302.

[72] 张也. 毫米波多天线系统传输技术研究[D]. 南京: 东南大学, 2020.

[73] Xue C, He S, Ou F, et al. Asymmetric subarray structure design for mmWave LoS MIMO communication systems[C]//2016 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016: 1-6.

[74] Weyl H. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[J]. Mathematische Annalen, 1912, 71(4): 441-479.

[75] Zhang X D. Matrix analysis and applications[M]. Cambridge University Press, 2017.

[76] 王斌儒, 刘延卿. Binet-Cauchy公式及其应用[J]. 科技风, 2018, (27): 63-64.

[77] Sobczyk G. Generalized Vandermonde determinants and applications[J]. Aportaciones Matematicas, Serie Comunicaciones, 2002, 30: 203-213.

[78] 赵梦琼. 高频段大规模3D MIMO系统基于渐近分析的波束赋形设计[D]. 西安: 西安电子科技大学, 2021.

[79] 谭伟强. 集中式大规模MIMO无线传输理论方法研究[D]. 南京: 东南大学, 2017.

[80] Kumar V, Amudala D N, Budhiraja R. Analysis and optimization of hardware impaired FD rician-faded mMIMO systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4216-4233.

[81] Özdogan Ö, Björnson E, Larsson E G. Massive MIMO with spatially correlated Rician fading channels[J]. IEEE Transactions on Communications, 2019, 67(5): 3234-3250.

[82] Pan Y, De Bast S, Pollin S. Indoor direct positioning with imperfect massive MIMO array using measured near-field channels[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.

[83] 杨靖雅. 高速铁路场景下LoS MIMO信道的天线优化方法[D]. 北京: 北京交通大学, 2013.

[84] Huang Y, You L, Tsinos C G, et al. QoS-aware precoding in downlink massive MIMO LEO satellite communications[J]. IEEE Communications Letters, 2023, 27(6): 1560-1564.

[85] Zhang Q, Jin S, Wong K K, et al. Power scaling of uplink massive MIMO systems with arbitrary-rank channel means[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 966-981.

[86] Zhang Y, Zhao M, Pang L, et al. Asymptotic analysis and beamforming design for high frequency massive MIMO with a compact planar array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 12226-12231.

[87] Tan W, Ma S. Antenna array topologies for mmWave massive MIMO systems: Spectral efficiency analysis[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 12901-12915.

[88] Tataria H, Smith P, Matthaiou M, et al. Uplink analysis of large MU-MIMO systems with space-constrained arrays in Ricean fading[C]//2017 IEEE International Conference on Communications (ICC). IEEE, 2017: 1-7.

[89] Lei S, Hu H, Chen B, et al. An array position refinement algorithm for pencil beam pattern synthesis with high-order taylor expansion[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1766-1770.

[90] Xu W, Deng Z, Huang P, et al. Beampattern synthesis and optimization for frequency diverse arc array based on the virtual element[J]. Electronics, 2023, 12(10): 2231.

[91] 孙钰塽. 非均匀线阵的低旁瓣波束形成算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

[92] Tian J, Xu H, Cao L. Performance analysis of sparse array designed by improved density-tapered method[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2029(1): 012072.

[93] He X, Dong T, He J, et al. A design approach of optical phased array with low side lobe level and wide angle steering range[C]//Photonics. MDPI, 2021, 8(3): 63.

[94] Saxena P, Kothari A. Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays[J]. AEU-International Journal of Electronics and Communications, 2016, 70(9): 1339-1349.

中图分类号:

 TN92    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式