- 无标题文档
查看论文信息

论文中文题名:

 分布式永磁直驱带式输送系统多电机协调控制策略研究    

姓名:

 龚豪    

学号:

 21206029004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080801    

学科名称:

 工学 - 电气工程 - 电机与电器    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电机控制    

第一导师姓名:

 周奇勋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on multi-motor coordinated control strategy of belt conveyor system based on distributed permanent magnet direct drive motor    

论文中文关键词:

 带式输送机 ; 机电耦合模型 ; 协调控制 ; 功率分配    

论文外文关键词:

 Belt conveyor ; Electromechanical coupling model ; Coordinated control ; Power allocation    

论文中文摘要:

带式输送机在现代散料输送领域广泛应用,其适应性强、运距长、维护简单、易于集中管理等特点使其成为采矿、选矿和发电等行业的理想选择。传统带式输送机通常采用集中式单点驱动方式,将异步电机与减速器相配合。然而,随着运输距离和运载量的增加,传统输送系统将面临输送带张力过大和速度动态调节迟钝等问题,这严重制约了长距离带式输送机的进一步发展。本研究以长距离带式输送机的驱动结构为研究对象,提出了一种由多个永磁直驱电机协调驱动的分布式永磁直驱带式运输系统,并对分布式永磁直驱带式输送机的机-电耦合模型、多电机转速协调和功率分配进行了研究。本文研究工作主要包括以下几个方面:

首先,比较了分布式永磁直驱带式输送机和传统带式输送机的驱动结构在机械结构、电机分布位置和电机外形等方面的差异。分析并建立分布式永磁直驱带式输送机中输送带的动力学模型以及永磁直驱电机的动力学模型。根据离散元模型的动力学方程推导出机械负载的动力学方程,并基于此构建了分布式永磁直驱带式输送机系统的机-电耦合模型。另外,在不同运行工况下,对比分析传统带式输送机和分布式永磁直驱带式输送机在输送带张力增量的变化曲线。

其次,针对分布式永磁直驱带式输送机多电机转速协调控制的问题,本文研究了电机之间柔性连接的特性以及负载扰动的规律。采用环形耦合控制策略解决电机之间转速不协调的问题,采用直接转矩控制策略控制电机运行,以降低输送带张力波动,仿真结果表明多电机控制策略在带式输送机上的有效性。

再次,针对轻载运行工况下分布式永磁直驱带式输送机运行能耗过高的问题,本文分析永磁电机运行效率与输出功率的关系及带式输送机在不同运行工况下物料装载情况,提出一种提高系统运行效率的多电机功率分配控制策略。首先设计电机运行数量调节函数,根据运输物料的装载率确定运行电机的数量;其次设计径向基神经网络控制器,以优化运行电机的分布位置;最后设计电机功率平滑调节曲线。仿真结果表明不同运行工况该多电机功率分配策略能有效提升带式输送机的运行效率。

最后,搭建了以5台永磁直驱电机协调驱动的分布式永磁直驱带式输送机实验平台,对本文提出的多电机转协调控制策略和多电机功率分配控制策略进行验证。实验数据不仅验证了分布式永磁直驱带式输送机的可行性,而且证明了所提出的控制策略的有效性,为长距离带式输送机的发展提供了一定的参考价值。

论文外文摘要:

The belt conveyor is widely used in the field of modern bulk material transportation. Its characteristics of strong adaptability, long transportation distance, simple maintenance and easy centralized management make it an ideal choice for mining, mineral processing and power generation. The traditional belt conveyor usually adopts the centralized driving mode of asynchronous motor and reducer. With the increase of transportation distance and carrying capacity, the traditional conveying system has the problems of excessive belt tension and slow speed dynamic adjustment, which seriously restricts the further development of belt conveyor in the direction of long distance and large capacity. In this study, the driving structure of long-distance belt conveyor is taken as the research object, and a distributed permanent magnet direct-drive belt conveyor system driven by multiple permanent magnet direct-drive motors is proposed. The electromechanical coupling model, multi-motor speed coordination and power distribution of distributed permanent magnet direct-drive belt conveyor are studied. The work of this study mainly includes the following aspects.

Firstly, the differences between the driving structure of the distributed permanent magnet direct drive belt conveyor and the traditional centralized drive belt conveyor are compared in terms of mechanical structure, power source distribution and motor shape. In addition, the dynamic model of the conveyor belt in the distributed permanent magnet direct drive belt conveyor and the dynamic model of the permanent magnet direct drive motor are analyzed and established. According to the dynamic equation of the discrete element model, the dynamic equation of the mechanical load is derived, and based on this, the electromechanical coupling model of the distributed permanent magnet direct drive belt conveyor system is constructed. In addition, under different operating conditions, the variation curves of belt tension increment of traditional belt conveyor and distributed permanent magnet direct drive belt conveyor are analyzed to prove that the distributed drive structure proposed in this paper has theoretical feasibility and practical value.

Secondly, aiming at the problem of multi-motor speed coordinated control of distributed permanent magnet direct drive belt conveyor, this paper studies the characteristics of flexible connection between motors and the law of load disturbance. The ring coupling control strategy is selected to solve the problem of uncoordinated speed between motors, and the dynamic performance of the new belt conveyor system is improved. The motor direct torque control strategy is selected to control the motor operation to reduce the tension fluctuation of the conveyor belt. The simulation results show that the multi-motor control strategy is effective on the belt conveyor.

Thirdly, aiming at the problem of high energy consumption of distributed permanent magnet direct drive belt conveyor, this paper studies the relationship between permanent magnet motor efficiency and output power and the material loading of belt conveyor under different operating conditions, and proposes a multi-motor power distribution control strategy that can improve the operating efficiency of the drive system. Firstly, the adjustment function of motor running quantity is designed, and the number of running motors is determined according to the loading rate of transportation materials. Secondly, the radial basis function neural network controller is designed to optimize the distribution position of the running motor. Finally, the motor power smooth adjustment curve is designed. The simulation results show that the multi-motor power distribution strategy is effective on the belt conveyor.

Finally, the experimental platform of distributed permanent magnet direct drive belt conveyor driven by five permanent magnet direct drive motors is built to verify the multi-motor coordinated control strategy and multi-motor power distribution control strategy proposed in this paper. The experimental data not only verify the feasibility of the distributed permanent magnet direct drive belt conveyor, but also prove the effectiveness of the proposed control strategy, which provides a certain reference value for the development of long-distance belt conveyor.

参考文献:

[1] 王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报, 2018, 43(2): 295-305.

[2] 葛世荣, 郝尚清, 张世洪, 等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术, 2020,48(7): 28-46.

[3] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50(1): 1-2.

[4] H. Jaroslav, G. Robert, K, Peter, et al. Removal of systematic failure of belt conveyor drive by reducing vibrations[J]. Engineering Failure Analysis, 2019, 99: 192-202.

[5] 陈晓晶. 井工煤矿运输系统智能化技术现状及发展趋势[J]. 工矿自动化, 2022, 48(6): 6-14+35.

[6] 陈雪. 基于模糊控制的带式输送机节能运行系统研究[J]. 山西能源学院学报, 2018, 31(04): 33-35.

[7] 陈薇, 李鑫. 刚柔耦合大型带式输送机的平衡模型降阶[J]. 煤炭学报, 2014, 39(S2): 569-575.

[8] Feng Y, Zhang M T, Li G P. Dynamic characteristic analysis and startup optimization design of an intermediate drive belt conveyor with non-uniform load[J]. Science Progress, 2019, (5): 187-196.

[9] A. Miriam, G. Anna, M. Daniela. Analysis of tensile properties of worn fabric conveyor belts with renovated cover and with the different carcass type[J]. Eksploatacja i Niezawodnosc–Maintenance and Reliability, 2020, 22(3): 472-481.

[10] D. Miao, Y. M. Wang, S. X. Li. Sound-based improved densent conveyor belt longitudinal tear detection[J]. IEEE Access, 2022, 10: 123801-123808.

[11] K. Witold, S. Natalia. K. Martyna, et al. Specific energy consumption of a belt conveyor system in a continuous surface mine[J]. Energies, 2020, 13(5214): 1-10.

[12] M. Carr, C. Wheeler, P. Robinson, et al. Reducing the energy intensity of overland conveying using a novel rail-running conveyor system[J]. International Journal of Mining, Reclamation and Environment, 2021, 35(3): 1-16.

[13] H. Daijie, P. Yusong, L. Gabriel. Green operations of belt conveyors by means of speed control[J]. Powder Technology, 2017, (5): 330-341.

[14] Bian J. Optimum design and modal analysis of reducer worm drive for belt conveyor by matlab and ansys[C]. 2019 IEEE 4th Advanced Information Technology Electronic and Automation Control Conference (IAEAC), 2019,1: 2614-2619.

[15] 郑茂全. 煤矿带式输送机的优化控制与状态监测的研究[D]. 西安: 西安科技大学, 2015.

[16] D. He, Y. Pang, G. Lodewijks. Green operations of belt conveyors by means of speed control[J]. Applied Energy, 2017, 188(15): 330-341.

[17] D. He, Y. Pang, G. Lodewijks, et al. Healthy speed control of belt conveyors on conveying bulk materials[J]. Powder Technology, 2018, 327: 408-419.

[18] 李现国, 苗长云, 张艳, 等. 基于统计特征的钢丝绳芯输送带故障自动检测[J]. 煤炭学报, 2012, 37(07): 1233-1238.

[19] 杨小林, 葛世荣, 祖洪斌, 等. 带式输送机永磁智能驱动系统及其控制策略[J]. 煤炭学报, 2020, 45: 1-13.

[20] 张磊, 郝建伟, 鲍久圣, 等. 全永磁驱动带式输送机控制策略及动力学行为[J]. 机械工程学报, 2022, 58(21): 134-147.

[21] D. M. Xiao, X. J. Li, K. F. He. Power balance of starting process for pipe belt conveyor based on master-slave control[J]. IEEE Access, 2018, 6: 16924-16931.

[22] 张强, 王禹, 王海舰, 等. 双端驱动刮板输送机机电耦合模型及动力学仿真分析[J]. 煤炭科学技术, 2019, 47(1): 159-165.

[23] 张炳义, 冯桂宏. 一种用于皮带输送机的外转子永磁直驱同步电动机[P]. 中国专利: ZL20100291564.7, 2010.

[24] 叶云岳, 单梅华. 直线电机驱动式皮带输送机[P]. 中国专利: ZL200420004021.2, 2004.

[25] 王尧, 李淑君, 赵文玉, 孟文俊. 带式输送机用直线电机静动态特性试验与分析[J]. 工程设计学报, 2017, 24(03): 303-310.

[26] L. Xiao, L. Y. Zhang, F. Gao, et al. Parameter identification of energy consumption dynamic model for double-motor-driven belt conveyers based on actor-critic framework[J]. Journal of Power Electronics, 2022, 22(3): 442-453.

[27] C. Y. Yang, J. H. Liu, H. Li, L. N. Zhou. Energy modeling and parameter identification of dual-motor-driven belt conveyors without speed sensors[J]. Energies, 2018, 11(12): 1-17.

[28] 叶宇豪, 彭飞, 黄允凯. 多电机同步运动控制技术综述[J]. 电工技术学报, 2021, 36(14): 2922-2935.

[29] 金奎, 厉伟, 张炳义, 等. 长距离带式输送机电机自抗扰变速节能控制策略[J]. 电机与控制应用, 2022, 49(12): 21-27.

[30] 肖雄, 王浩丞, 武玉娟, 等. 基于双滑模估计的主从结构共轴双电机模型预测直接转矩控制无速度传感器控制策略[J]. 电工技术学报, 2021, 36(5): 1014-1026.

[31] 史婷娜, 辛雄, 夏长亮. 采用虚拟电机的改进偏差耦合多电机同步控制[J]. 中国电机工程学报, 2017, 37(23): 7004-7013+7092.

[32] M. C. Zhao, Q. W. Wang, Y. W. Wang, et al. Multi-motor cooperative control strategy for speed synchronous control of construction platform[J]. Electronics, 2023, 11(24): 1-17.

[33] V. J. Stil, T. Varga, T. Bensic, et al. A survey of fuzzy algorithms used in multi-motor systems control[J]. Electronics, 2020, 9(11): 1-14.

[34] 周奇勋, 刘帆, 吴紫辉, 等. 永磁同步电机转矩与定子磁链模型预测控制预测误差补偿方法[J]. 电工技术学报, 2022, 37(22): 5728-5739.

[35] 刘国海, 陈仁杰, 张多, 等.两电机调速系统的神经网络逆无模型自适应鲁棒解耦控制[J]. 中国电机工程学报, 2019, 39(03): 868-874+965.

[36] Q. X. Zhou, F. Liu, H. Gong. Robust three-vector model predictive torque and stator flux control for PMSM drives with prediction error compensation[J]. Journal of Power Electronics, 2022, 22(11): 1917-1926.

[37] D. He, Y. Pang, G. Lodewijks. Speed control of belt conveyors during transient operation[J]. Powder Technology, 2016, 301: 622-631.

[38] Y. W. Cho, E. S. Kim, K. C. Lee, et al. Tracking control of a robot manipulator using a direct model reference adaptive control[J]. International Robots and Systems, 1999, 7(3): 100-105.

[39] 程文雅, 罗亮, 刘知贵. 改进偏差耦合补偿的反演同步控制算法的研究[J]. 机械设计与制造, 2016(2): 41-44+48.

[40] 周奇勋, 李声晋, 卢刚, 等. 双余度机载永磁无刷直流伺服系统转矩均衡性[J]. 电工技术学报, 2009, 24(6): 17-23.

[41] Ueki S, Kawasaki H, Mouri T. Adaptive coordinated control of mufti-fingered hands with sliding contact[C]. Proceedings of 2006 SICE-ICASE International Joint Conference. New Jersey: IEEE Press, 2017: 5893-5898.

[42] H. B. Liu, S. Y. Li, T. Y. Chai. Intelligent coordinated control of power-plant main steam pressure and power output[J]. Journal of Systems Engineering and Electronics, 2014, 15(3): 350-358.

[43] 金奎, 厉伟, 张炳义, 等. 长距离带式输送机电机自抗扰变速节能控制策略[J]. 电机与控制应用, 2022, 49(12): 21-27.

[44] 吉建华, 苗长云, 李现国, 等. 基于PSO带式输送机PID控制器参数智能整定的适应度函数设计[J]. 机械工程学报, 2022, 58(21): 134-147.

[45] 张代成, 煤矿带式输送机永磁滚筒电机控制系统研究[D]. 江苏: 中国矿业大学, 2021.

[46] Y. P. Yao, B. S. Zhang. Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors[J]. Ploe One, 2020, 15(7): 1-16.

[47] F. Guo, T. Yang, C. Li, et al. Wheeler. Active modulation strategy for capacitor voltage balancing of three-level neutral-point clamped converters in high-speed drives[J]. IEEE Transaction on Industrial Electronics, 2022, 69(3): 2276–2287.

[48] 赵少迪,鲍久圣,徐浩. 矿用带式输送机承载托辊的磁性液体润滑与密封性能[J]. 机械工程学报, 2021, 57(21): 211-219.

[49] 王旭峰, 梁影. 刮板输送机动张力特性分析与仿真[J]. 煤炭科学技术, 2019, 47(S2): 59-63.

[50] 邓永胜, 宋伟刚, 赵琛. 双滚筒传动带式输送机的电机功率平衡[J]. 东北大学学报, 2008, 21(5): 520-523.

[51] C. Y. Yang, J. H. Liu, H. Li, et al. Energy modeling and parameter identification of dual-motor-driven belt conveyors without speed sensors[J]. Energies, 2018, 11(12): 1-17.

[52] 张强, 王禹, 王海舰, 等. 双端驱动刮板输送机机电耦合模型及动力学仿真分析[J]. 煤炭科学技术, 2019, 47(1): 15-165.

[53] 李金兰, 多点驱动带式输送机的设计研究[D]. 成都:西南交通大学, 2016.

[54] L. H. Mo. Power balance control of multi-motor driving using double fuzzy controller[C]. Proceedings of the IEEE Intelligent Computing and Intelligent Systems (ICIS), 2010(3): 67–70.

[55] L. H. Mo, S. Chen, Y. Q. Wang. Power balance control of multi-motor driving belt system using fuzzy neural network[C]. Proceedings of the IEEE Intelligent Control and Information Processing (ICICIP), 2010: 719–724.

[56] 徐传洪. 带式输送机运行阻力分析与研究[D]. 青岛,山东科技大学, 2018.

[57] 杨彩红, 毛军, 里春林. 输送带压陷阻力的研究[J]. 煤炭学报, 2010, 35(1): 150-153.

[58] 谢厚抗,鲍久圣, 葛世荣, 等. 带式输送机承载托辊旋转阻力特性试验研究[J]. 煤炭学报, 2019, 44(S2): 731-736.

[59] Q. X. Zhou, H. Gong, G. H. Du, et al. Distributed permanent magnet direct drive belt conveyor system and its control strategy [J]. Energies,2022,15(22):1-18.

[60] Y. P. Yao, B. S. Zhang. Influence of the elastic modulus of a conveyor belt on the power allocation of multi-drive conveyors[J]. Plos One. 2020, 15: 1-16.

[61] D. J. He, Y. S. P, L. Gabriel. Green operations of belt conveyors by means of speed control[J]. Applied Energy. 2017, 188: 330-341.

[62] K. Witold, S. Natalia, K. Martyna, et al. Specific energy consumption of a belt conveyor system in a continuous surface mine[J]. Energies. 2020, 13: 1-10.

[63] Q. X. Zhou, H. Gong, W. H. Sun, et al. Active speed control of belt conveyor with variable speed interval based on fuzzy algorithm[J]. Journal of Electrical Engineering & Technology, 2023, 22:1917–1926.

[64] 季明逸, 游有鹏. 基于虚拟主轴法的同步控制策略研究[J]. 机电一体化, 2012, 18(8): 36-41.

[65] T. Zuo, H. Lu, W. Fan, et al, Research on dual drive synchronization performance based on virtual shaft control strategy[C], IEEE 2017 2nd International Conference on Robotics and Automation Engineering, 2017: 254-258.

[66] Y. H. Ye, F. Peng, Y. K. Huang. Overview of multi-motor synchronous motion control technology[J]. Transactions of China Electrotechnical Society. 2021, 36: 2922-2935.

[67] J. S. Vedrana, V. Toni, B. Tin, et al, Survey of fuzzy algorithms used in multi-motor systems control[J]. Electronics. 2022, 9: 1-14.

[68] 杨红, 傅子霞, 陈慧玲. 机械设计基础课程设计指导书[M]. 南京: 南京大学出版社, 2017.

[69] 刘静, 朱花, 常军然. 机械设计综合实践[M]. 重庆: 重庆大学出版社, 2020.

中图分类号:

 TM341    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式