论文中文题名: | 承压过水隧洞卸荷扰动区围岩力学特性试验研究 |
姓名: | |
学号: | 19304209015 |
保密级别: | 保密(3年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩土工程 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-15 |
论文答辩日期: | 2022-05-29 |
论文外文题名: | Experimental study on mechanical properties of surrounding rock in unloading disturbed area of confined water tunnel |
论文中文关键词: | |
论文外文关键词: | Headrace tunnel ; Divisional excavation ; Excavation unloading ; Unloading seepage test ; Mechanical properties |
论文中文摘要: |
长大承压过水隧洞普遍存在于各大水电工程,是关乎电站安全运行与效益保障的重要水工建筑物。受过流形式与隧洞布置方式的影响,水电工程承压过水隧洞多数采用钻爆法施工技术;受隧洞埋深与开挖方式的影响,伴随隧洞开挖进程产生了不利于衬砌与防渗处置的卸荷扰动区围岩。卸荷扰动区围岩往往具有松弛变形与裂隙贯通的特征,既可能导致衬砌存在因非完全接触而产生变形破坏,也可能导致内外高渗压产生渗透潜蚀型破坏,从而严重影响施工、运行及检修期间隧洞围岩的安全性。 本文以某电站深埋引水隧洞为背景,以钻爆法施工技术产生的卸荷扰动区围岩为对象,综合采用理论分析与试验研究相结合的方式,研究开挖方式与卸荷渗流环境下,隧洞卸荷扰动区围岩的力学参数的变化规律及其变形破坏机理。主要研究结论如下: (1)考虑隧洞开挖进程中不同区域岩体所处应力状态差异性特点,开展了常规加卸载力学试验,对比研究了加载和卸载条件下岩样的力学特征。结果表明:加载条件下,围压是决定岩样力学性质的主导因素;围压增加,岩样的峰值强度增大、弹性模量增加、泊松比减小。卸载条件下,侧向变形远大于轴向变形;围压和卸荷速率增大,岩样的峰值强度都随之增加。对比分析发现,岩样加载状态比卸荷状态下的强度更高,卸荷比加载时的变形更大、更易发生破坏;加卸载条件下宏观破坏形态均表现为一条贯穿岩样的剪切破裂面。 (2)考虑钻爆法施工的分部开挖隧洞,分部开挖方式或强度,导致开挖岩体拥有不同卸荷速率,开挖扰动致使隧洞围岩形成卸荷扰动区。进而,参考常规加卸载力学试验所得数据开展了考虑不同卸荷速率的室内力学试验。结果表明:卸荷损伤岩样制备阶段,初始围压和卸荷速率越小,卸荷损伤岩样体应变值由正转负越快,即岩样损伤越快、出现侧向扩容现象越早。此外,初始围压对强度及变形的影响大于卸荷损伤速率;卸荷损伤岩样再卸载破坏阶段,卸荷量和卸荷速率是影响岩样强度和变形的重要因素;卸荷量较大时,岩样强度较低、变形较大;卸荷速率较大时,岩样强度较大、变形较小。综合对比分析初始围压、卸荷速率及卸荷量对岩样强度及变形破坏特征的影响,其重要程度为初始围压>卸荷量>卸荷速率。 (3)考虑隧洞开挖致使围岩松动产生裂隙网络,渗透侵蚀加剧裂隙衍生、结构劣化,开展了卸荷损伤岩样再加卸载渗流试验,分析了不同孔压对卸荷损伤岩样力学性质及变化规律的影响。结果表明:不同卸荷量损伤岩样在孔压为1MPa承压浸泡阶段,其体应变和侧胀系数随着承压时间的增长而增加,变形模量减小;孔压为1.5MPa时,卸荷量为70%时卸荷损伤岩样在承压浸泡阶段发生侧向扩容破坏。再加卸载渗流过程中,卸荷损伤岩样的渗透率随着初始围压的增大而减小,随着卸荷量和水压的增大而增加。综合对比发现,影响岩样强度、变形、渗透率特征的因素中,其重要程度为初始围压>卸荷量>水压。 |
论文外文摘要: |
Long pressure tunnel is widely used in major hydropower projects, and it is an important hydraulic structure for safe operation and benefit guarantee of power station. Due to the influence of flow form and tunnel layout, most of the confined water tunnel construction technology is drilling and blasting method. Affected by the depth and excavation method of the tunnel, surrounding rock in the disturbed area of unloading is produced along with the excavation process of the tunnel, which is not conducive to lining and anti-seepage disposal. The surrounding rock in the unloaded disturbed area is usually characterized by loose deformation and fracture connection, which may lead to deformation and failure of the lining due to incomplete contact or infiltration and potential erosion caused by high internal and external osmotic pressure, thus seriously affecting the safety of the surrounding rock during construction, operation and maintenance. Based on a power embedded diversion tunnel as the background, drilling and blasting method construction technology by unloading disturbance zone of surrounding rock, combining theoretical analysis and experimental study on the way of combining research environment, excavation and unloading seepage, the law of mechanical parameters of surrounding rock deformation and failure mechanism of unloaded disturbance zone of tunnel was studied. The main conclusions are as follows: (1) Considering the difference of stress state of rock mass in different areas during tunnel excavation, conventional loading and unloading mechanical tests were carried out to compare the mechanical characteristics of rock samples under loading and unloading conditions. The results show that the confining pressure is the dominant factor to determine the mechanical properties of rock samples under loading; With the increase of confining pressure, the peak strength, elastic modulus and Poisson's ratio of rock samples increase. Under the unloading condition, the lateral deformation is much larger than the axial deformation; With the increase of confining pressure and unloading rate, the peak strength of rock samples increases. It is found that the strength of rock samples under loading is higher than that under unloading, and the deformation of rock samples under unloading is larger and more prone to damage than that under loading; Under the loading and unloading conditions, the macroscopic failure mode is a shear fracture surface penetrating the rock sample. (2) Considering the partial excavation of tunnel by drilling and blasting method, the excavation method or intensity of partial excavation leads to different unloading rates of excavated rock mass, and the excavation disturbance leads to the formation of unloading disturbance area of tunnel surrounding rock. Furthermore, referring to the data of conventional loading and unloading mechanical tests, indoor mechanical tests considering different unloading rates were carried out. The results show that the smaller the initial confining pressure and unloading rate, the faster the volume strain of the unloaded damaged rock sample changes from positive to negative, that is, the faster the damage of the rock sample and the earlier the lateral dilatancy phenomenon occurs. In addition, the effect of initial confining pressure on strength and deformation is greater than that of unloading damage rate; In the unloading failure stage of unloading damaged rock samples, the unloading amount and unloading rate are important factors affecting the strength and deformation of rock samples; When the unloading amount is large, the rock sample has low strength and large deformation; When the unloading rate is large, the strength of the rock sample is large and the deformation is small. The effects of initial confining pressure, unloading rate and unloading amount on the strength and deformation failure characteristics of rock samples are comprehensively compared and analyzed. The importance degree is initial confining pressure > unloading amount > unloading rate. (3) Considering that the tunnel excavation causes the loosening of surrounding rock to produce fracture network, and the seepage erosion intensifies the fracture derivation and structural deterioration, the unloading and loading seepage test of unloading damaged rock samples is carried out, and the effects of different pore pressure on the mechanical properties and change rules of unloading damaged rock samples are analyzed. The results show that when the pore pressure of the damaged rock samples with different unloading amounts is 1MPa, the volume strain and lateral expansion coefficient increase with the increase of bearing time, and the deformation modulus decreases; When the pore pressure is 1.5MPa and the unloading amount is 70%, the unloading damaged rock sample has lateral dilatancy failure during the pressure immersion stage. In the process of loading and unloading seepage, the permeability of unloading damaged rock sample decreases with the increase of initial confining pressure, and increases with the increase of unloading volume and water pressure. Through comprehensive comparison, it is found that the importance of the factors affecting the strength, deformation and permeability of rock samples is initial confining pressure > unloading capacity > water pressure. |
参考文献: |
[1] 张春生.雅砻江锦屏二级水电站引水隧洞关键技术问题研究[J].中国勘察设计,2007(08):41-44. [2] 叶明.天生桥二级水电站Ⅲ号引水隧洞工程地质问题综述[J].贵州水力发电,2001(03):20-24. [3] Cook N G W. Seismicity associated with mining[J]. Engineering Geology, 1976, 10(2-4): 99-122. [5] 哈秋舲. 加载岩体力学与卸荷岩体力学[J].岩土工程学报,1998(01):114. [6] 李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001,20(03):338-341. [7] 王乐华,牛草原,张冰祎,等.不同应力路径下深埋软岩力学特性试验研究[J].岩石力学与工程学报,2019,38(05):973-981. [8] 邓华锋,原先凡,李建林,等. 软岩三轴加-卸载试验的破坏特征及抗压强度取值方法研究[J]. 岩土力学, 2014, 35(4): 959-964, 971. [9] 刘晓燕,曾海钊,何江达,等. 锦屏二级引水隧洞大理岩强度参数研究[J]. 中国农村水利水电, 2013, 367(5): 157-160, 167. [10] 刘立鹏,汪小刚,贾志欣,等. 锦屏二级水电站大理岩复杂加卸载应力路径力学特性研究[J]. 岩土力学, 2013, 34(8): 2287-2294. [25] 赵二平,李建林,王瑞红.不同应力路径下膨胀岩力学特性试验研究[J].人民长江,2014,45(03):83-86. [26] 李业,林锋,王川,等.如美水电站花岗岩卸荷力学特性试验研究[J].水利与建筑工程学报,2018,16(02):109-114. [27] 郭永成,王克辉,胡鹏,等.砂岩破坏特性与能量耗散的试验研究[J].力学与实践,2019,41(05):554-558. [28] 钱亚俊,武颖利,裴伟伟,等.不同卸荷速率下岩石强度变形特性[J].水利水运工程学报,2020(06):48-54. [29] 杜春雷.隧道围岩非等卸荷量三轴蠕变试验研究[J].资源信息与工程,2020,35(02):92-95. [30] 孙雪,李二兵,韩阳,等.卸荷路径下花岗岩变形与破坏特征试验研究[J].地下空间与工程学报,2020,16(03):665-679. [31] 李万才,邓辉,丁中辉,等.某水电站卸荷条件下英安岩力学特性试验研究[J].人民珠江,2020,41(01):13-17+68. [32] 任青阳,张黄梅,刘佳申.两种卸荷路径下泥岩流变特性试验研究[J].岩土力学,2019,40(S1):127-134. [33] 郭红军,季明,曹力.卸荷速率对粉砂岩力学特性的影响[J].西安建筑科技大学学报(自然科学版),2020,52(06):860-868. [34] 王瑞红,蒋昱州,李建林,等. 卸荷损伤对节理岩体变形特性影响研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3747-3755. [35] 张冰祎,王乐华,张胜佳. 砂岩在热湿循环作用下的卸荷损伤本构模型研究[J]. 水利水电技术, 2018, 49(12): 162-168. [38] 邱士利,冯夏庭,张传庆,等. 不同初始损伤和卸荷路径下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2012, 31(8): 1686-1697. [39] 姜桥. 水-岩作用下砂岩卸荷损伤机理及演化模型研究[D]. 三峡大学, 2020. [40] 胡振襄,周科平,李杰林,等.卸荷岩体细观损伤演化的核磁共振测试[J].北京科技大学学报,2014,36(12):1567-1574. [41] 周科平,胡振襄,李杰林,等. 基于核磁共振技术的大理岩卸荷损伤演化规律研究[J]. 岩石力学与工程学报, 2014, 33(S2): 3523-3530. [42] 赵二平,贾小兵,龚章龙,等. 不同卸荷损伤程度砂岩吸水特性试验研究[J]. 人民长江, 2019, 50(6): 188-191, 224. [43] 龚家伟,王乐华,许晓亮,等.基于Hoek-Brown准则的砂岩卸荷强度损伤试验研究[J].水电能源科学,2016,34(04):100-102+114. [44] 陈秀铜,李璐.高围压、高水压条件下岩石卸荷力学性质试验研究[J].岩石力学与工程学报,2008(S1):2694-2699. [45] 梁宁慧,刘新荣,艾万民,等.裂隙岩体卸荷渗透规律试验研究[J].土木工程学报,2011,44(01):88-92. [46] 李志敬,朱珍德,施毅,等.高围压高水压条件下岩石卸荷强度特性试验研究[J].河海大学学报(自然科学版),2009,37(02):162-165. [47] 邓华锋,王哲,李建林,等.卸荷速率和孔隙水压力对砂岩卸荷特性影响研究[J].岩土工程学报,2017,39(11):1976-1983. [48] 蒋海飞. 高围压高孔隙水压作用下岩石卸荷蠕变特性研究及其工程应用[D].重庆大学,2014. [54] 朱杰兵. 高应力下岩石卸荷及其流变特性研究[D].中国科学院研究生院(武汉岩土力学研究所),2009. [55] 唐浩,李天斌,陈国庆,等.水力作用下砂岩三轴卸荷试验及破裂特性研究[J].岩土工程学报,2015,37(03):519-525. [56] 王伟,徐卫亚,王如宾,等.低渗透岩石三轴压缩过程中的渗透性研究[J].岩石力学与工程学报,2015,34(01):40-47. [57] 刘新荣,刘俊,冯昊,等.不同初始卸荷水平和水压下砂岩卸荷力学特性试验研究[J].岩土工程学报,2018,40(06):1143-1151. [58] 徐德敏.高渗压下岩石(体)渗透及力学特性试验研究[D].成都理工大学,2008. [59] 刘俊. 高应力高水压下砂岩加卸荷力学特性及其对深埋隧道稳定性影响研究[D].重庆大学,2017. [60] 邓华锋,张恒宾,李建林,等. 水-岩作用对砂岩卸荷力学特性及微观结构的影响[J]. 岩土力学, 2018, 39(7): 2344-2352. [61] 王如宾,徐波,徐卫亚,等. 不同卸荷路径对砂岩渗透性演化影响的试验研究[J]. 岩石力学与工程学报, 2019, 38(3): 467-475. |
中图分类号: | TU45 |
开放日期: | 2025-06-14 |