- 无标题文档
查看论文信息

论文中文题名:

 表面细晶化处理对高熵合金高温水蒸气氧化行为的影响    

姓名:

 贺锦涛    

学号:

 22211225063    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 金属腐蚀与防护    

第一导师姓名:

 张慧慧    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Effect of surface fine crystallization treatment on high temperature steam oxidation behavior of high entropy alloy    

论文中文关键词:

 晶粒细化 ; 高熵合金 ; 水蒸气 ; 高温氧化    

论文外文关键词:

 Grain refinement ; High entropy alloy ; Steam ; High temperature oxidation    

论文中文摘要:

超超临界机组关键部件(锅炉过热器、再热器等)在高温水蒸气环境中的长期运行对结构材料性能提出了更高要求。传统合金难以完全适应这种工况需求,一定程度上限制了电力工业的技术发展。高熵合金基于其特有的“四大效应”,展现出优于传统合金的综合性能及潜在高温应用价值。本研究以AlxTiyCoCrFeNi系高熵合金为对象,系统分析其在800 ℃高温纯水蒸气环境中的抗氧化特性,评估其作为发电机组高温部件材料的适用性,同时探究其在1250 ℃超高温水蒸气条件下的氧化行为,为极端环境应用提供理论参考。

本研究首先探讨了AlxTiyCoCrFeNi系高熵合金在1250 ℃高温水蒸气环境中的氧化行为。结果表明,几种合金都同时发生了外氧化和内氧化。AlxCoCrFeNi高熵合金外氧化膜呈现典型的双层结构,由外层的(Fe,Co,Ni)Cr2O4尖晶石型氧化物和内层的Cr2O3组成。在氧化过程中,Al元素主要以内氧化的形式存在,生成不连续的Al2O3内氧化层。Cr2O3膜层具有良好的致密性和热力学稳定性,能够有效抑制氧气与金属离子的扩散。此外,Al0.3Ti0.3CoCrFeNi高熵合金在氧化过程中形成多层氧化膜结构,表层为(Ni,Co)Fe2O4尖晶石氧化物,内层为TiO2与Cr2O3的混合氧化层,展现出一定程度的高温抗氧化能力。

进一步研究了AlxTiyCoCrFeNi系高熵合金在800 ℃高温水蒸气环境中的氧化行为。结果表明,AlxCoCrFeNi高熵合金形成了单一的外氧化膜Cr2O3,该膜结构致密、完整,具备优异的抗氧化性能。随着Al含量的增加,合金的氧化速率常数呈上升趋势。这说明虽然Al元素在氧化过程中以内氧化形式生成Al2O3,但这一过程对提升合金整体抗氧化性能的贡献有限。Al0.3Ti0.3CoCrFeNi高熵合金形成了表层为TiO2和(Ni,Co)Fe2O4混合氧化层,内层为Cr2O3的双层氧化膜结构。Ti的引入虽然有助于TiO2的形成,但在该高熵合金体系中,反而导致材料的整体抗氧化性能下降。

本研究还分析了表面细晶化处理对AlxCoCrFeNi系高熵合金氧化行为的影响。高熵合金氧化膜结构因处理方式不同表现出差异性。表面细晶化处理能够形成单一、致密且连续的Cr2O3保护膜,显著提升了合金的抗氧化性能。相比之下,抛光处理的合金表面生成的外氧化膜则是由不连续的(Co,Ni)Fe2O4尖晶石和内层为Cr2O3的双层结构氧化膜组成,保护能力较弱,氧化增重较大,且易发生剥落。Al元素在氧化过程中依然以内氧化形式存在。表面细晶化处理的合金中,氧化速率随Al含量增加而上升,而表面抛光处理合金的氧化速率则呈现出相反的趋势。晶粒细化可在氧化初期促进Cr2O3的形核与成膜,并通过增强Cr元素的扩散,维持Cr2O3膜的长期保护性能。

论文外文摘要:

The long-term operation of key components of ultra-supercritical unit (boiler superheater, reheater, etc.) in high temperature water steam environment puts forward higher requirements for structural material properties. Traditional alloys are difficult to fully adapt to the requirements of this working condition, which limits the technological development of the power industry to a certain extent. Based on its unique “four effects”, high entropy alloys show better comprehensive properties and potential high temperature application value than traditional alloys. This study takes AlxTiyCoCrFeNi high entropy alloy as the object, systematically analyzes its oxidation resistance in 800 ℃ high temperature pure water vapor environment, evaluates its applicability as a high temperature component material of generator set, and explores its oxidation behavior in 1250 ℃ ultra-high temperature water vapor conditions, providing theoretical reference for applications in extreme environments.

In this study, the oxidation behaviour of the AlxTiyCoCrFeNi system of high-entropy alloys in a high-temperature water vapour environment at 1250 °C was first investigated. The results show that both external and internal oxidation occurred in several alloys. The external oxide film of AlxCoCrFeNi high-entropy alloys shows a typical double-layer structure, which consists of (Fe,Co,Ni)Cr2O4 spinel-type oxide in the outer layer and Cr2O3 in the inner layer. During the oxidation process, the Al element mainly exists in the form of internal oxidation, generating a discontinuous internal oxide layer of Al2O3. The Cr2O3 film layer has good densification and thermodynamic stability, which can effectively inhibit the diffusion of oxygen and metal ions. In addition, the Al0.3Ti0.3CoCrFeNi high-entropy alloy forms a multilayer oxide film structure during the oxidation process, with the surface layer of (Ni,Co)Fe2O4 spinel oxide and the inner layer of mixed TiO2 and Cr2O3 oxide layer, which demonstrates a certain degree of high-temperature antioxidant capability.

The oxidation behaviour of the AlxTiyCoCrFeNi system high-entropy alloys in a high-temperature water vapour environment at 800 °C was further investigated. The results show that the AlxCoCrFeNi high-entropy alloys form a single outer oxide film Cr2O3, which has a dense and intact structure with excellent antioxidant properties. The oxidation rate constants of the alloys showed an increasing trend with the increase of Al content. This indicates that although the Al element generates Al2O3 in the form of internal oxidation during the oxidation process, this process has a limited contribution to the enhancement of the overall antioxidant properties of the alloy. The Al0.3Ti0.3CoCrFeNi high entropy alloy forms a double-layer oxide film structure with TiO2 and (Ni,Co)Fe2O4 mixed oxide layers on the surface, and Cr2O3 in the inner layer. Although the introduction of Ti contributes to the formation of TiO2, it has no effect on the formation of Cr2O3 in the inner layer of the alloy. TiO2 formation, but in this high-entropy alloy system, it rather leads to a decrease in the overall antioxidant performance of the material.

In this study, the effect of surface fine crystallisation treatment on the oxidation behaviour of AlxCoCrFeNi-based high-entropy alloys was also analysed. The oxide film structure of the high-entropy alloys showed differences depending on the treatments: the surface fine-crystallisation treatment was able to form a single, dense and continuous protective film of Cr2O3, which significantly enhanced the oxidation resistance of the alloys. In contrast, the outer oxide film of the polished alloy consists of a discontinuous (Co,Ni)Fe2O4 spinel and an inner layer of Cr2O3 in a two-layer structure, which has a weaker protective capacity, has a higher oxidation weight gain and is prone to flaking, and the Al element is still present in the form of internal oxidation during the oxidation process. The oxidation rate increases with the increase of Al content in surface fine grain treated alloys, while the oxidation rate of surface polished treated alloys shows the opposite trend. Grain refinement promotes the nucleation and film formation of Cr2O3 in the early stages of oxidation and maintains the long-term protective properties of the Cr2O3 film by enhancing the diffusion of the Cr element.

参考文献:

[1]G.D. Surywanshi, B.B.K. Pillai, V.S. Patnaikuni, et al. 4-E analyses of chemical looping combustion based subcritical, supercritical and ultra-supercritical coal-fired power plants[J]. Energy Conversion and Management, 2019, 200: 112050.

[2]A. Illana Sánchez, M.T.D. Miguel, G. García-Martín, et al. Experimental study on steam oxidation resistance at 600 ℃ of Inconel 625 coatings deposited by HVOF and laser cladding[J]. Surface and Coatings Technology, 2022, 451: 129081.

[3]B. Cantor, I.T.H. Chang, P. Knight, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375: 213-218.

[4]J.W. Yeh, S.K. Chen, S.J. Lin, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

[5]T.K. Tsao, A.C. Yeh, C.M. Kuo, et al. On the superior high temperature hardness of precipitation strengthened high entropy Ni-based alloys[J]. Advanced Engineering Materials, 2017, 19(1): 1600475.

[6]T.K. Tsao, A.C. Yeh, H. Murakami. The microstructure stability of precipitation strengthened medium to high entropy superalloys[J]. Metallurgical and Materials Transactions A, 2017, 48: 2435-2442.

[7]B. Xiao, L. Xu, L. Zhao, et al. Creep properties, creep deformation behavior, and microstructural evolution of 9Cr-3W-3Co-1CuVNbB martensite ferritic steel[J]. Materials Science and Engineering: A, 2018, 711: 434-447.

[8]F. Abe. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 ℃ and above[J]. Engineering, 2015, 1(2): 211-224.

[9]D.S. Bhiogade. Ultra supercritical thermal power plant material advancements: a review[J]. Journal of Alloys and Metallurgical Systems, 2023, 3: 100024.

[10]R. Viswanathan, K. Coleman, U. Rao. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11): 778-783.

[11]S. Kihara, A. Ohtomo, I. Kajigaya, et al. Recent plant experience and research into fireside corrosion in Japan[J]. Materials and Corrosion, 1988, 39(2): 69-83.

[12]J.L. Blough, G. Stanko, W.T. Bakker, et al. Superheater corrosion in ultra-supercritical power plants[C]. NACE-International Corrosion Conference Series, 2000.

[13]J. Henry, G. Zhou, T. Ward. Lessons from the past: materials-related issues in an ultra-supercritical boiler at Eddystone plant[J]. Materials at High Temperatures, 2007, 24(4): 249-258.

[14]A. Agüero, I. Baráibar, M. Gutiérrez, et al. Steam Oxidation of Aluminide-Coated and Uncoated TP347HFG Stainless Steel under Atmospheric and Ultra-Supercritical Steam Conditions at 700 ℃[J]. Coatings, 2020, 10(9): 839.

[15]F. Abe, H. Kutsumi, H. Haruyama, et al. Improvement of oxidation resistance of 9 mass% chromium steel for advanced-ultra supercritical power plant boilers by pre-oxidation treatment[J]. Corrosion Science, 2017, 114: 1-9.

[16]S. Guan, C.Y. Cui. A newly developed wrought Ni-Fe-Cr-based superalloy for advanced ultra-supercritical power plant applications beyond 700 ℃[J]. Acta Metallurgica Sinica (English Letters), 2015, 28: 1083-1088.

[17]B. Gludovatz, A. Hohenwarter, D. Catoor, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.

[18]X.Z. Lim. Metal mixology[J]. Nature, 2016, 533(7603): 306-307.

[19]J.W. Yeh. Physical metallurgy of high-entropy alloys[J]. Journal of Minerals, 2015, 67(10): 2254-2261.

[20]M.C. Gao, C. Zhang, P. Gao, et al. Thermodynamics of concentrated solid solution alloys[J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 238-251.

[21]O. Senkov, J. Miller, D. Miracle, et al. Accelerated exploration of multi-principal element alloys for structural applications[J]. Calphad, 2015, 50: 32-48.

[22]O.N. Senkov, G.B. Wilks, J.M. Scott, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.

[23]W. Li, D. Xie, D. Li, et al. Mechanical behavior of high-entropy alloys[J]. Progress in Materials Science, 2021, 118: 100777.

[24]L.M. Martyushev, V.D. Seleznev. Maximum entropy production principle in physics, chemistry and biology[J]. Physics Reports, 2006, 426(1): 1-45.

[25]Y.F. Ye, Q. Wang, J. Lu, et al. High-entropy alloy: challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362.

[26]K.Y. Tsai, M.H. Tsai, J.W. Yeh. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887-4897.

[27]J.W. Yeh, S.Y. Chang, Y.D. Hong, et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J]. Materials Chemistry and Physics, 2007, 103(1): 41-46.

[28]J.W. Yeh, S.J. Lin, T.S. Chin, et al. Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A, 2004, 35: 2533-2536.

[29]Y. Zhang, X. Yang, P.K. Liaw. Alloy design and properties optimization of high-entropy alloys[J]. Journal of Minerals, 2012, 64: 830-838.

[30]Y. Zhou, Y. Zhang, Y. Wang, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J]. Applied Physics Letters, 2007, 90(18).

[31]W.L. Hsu, C.W. Tsai, A.C. Yeh, et al. Clarifying the four core effects of high-entropy materials[J]. Nature Reviews Chemistry, 2024, 8(6): 471-485.

[32]S.K. Dewangan, A. Mangish, S. Kumar, et al. A review on high-temperature applicability: a milestone for high entropy alloys[J]. Engineering Science and Technology, An International Journal, 2022, 35: 101211.

[33]J.W. Yeh. Alloy design strategies and future trends in high-entropy alloys[J]. Journal of Minerals, 2013, 65(12): 1759-1771.

[34]S. Ranganathan. Alloyed pleasures: Multimetallic cocktails[J]. Current Science, 2003, 85(5): 1404-1406.

[35]J.M. Wu, S.J. Lin, J.W. Yeh, et al. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content[J]. Wear, 2006, 261(5-6): 513-519.

[36]O.N. Senkov, D.B. Miracle, K.J. Chaput, et al. Development and exploration of refractory high entropy alloys-A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128.

[37]陈强, 朱金伟, 赵宇辰, 等. 难熔高熵合金抗氧化性能研究现状[J]. 空天防御, 2024, 7(06): 96-103.

[38]Y.X. Liu, C.Q. Cheng, J.L. Shang, et al. Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x=0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1341-1351.

[39]T.M. Butler, M.L. Weaver. Influence of annealing on the microstructures and oxidation behaviors of Al8(CoCrFeNi)92, Al15(CoCrFeNi)85, and Al30(CoCrFeNi)70 high-entropy alloys[J]. Metals, 2016, 6(9): 222.

[40]T. Butler, J. Alfano, R. Martens, et al. High-temperature oxidation behavior of Al-Co-Cr-Ni- (Fe or Si) multicomponent high-entropy alloys[J]. Journal of Minerals, 2015, 67: 246-259.

[41]J. Dąbrowa, G. Cieślak, M. Stygar, et al. Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x=0, 0.5, 1) [J]. Intermetallics, 2017, 84: 52-61.

[42]J. Lu, Y. Chen, H. Zhang, et al. Y/Hf-doped AlCoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance[J]. Corrosion Science, 2020, 166: 108426.

[43]E. Lang. The role of active elements in the oxidation behavior of high temperature metals and alloys[M]. Springer Science & Business Media, 2012.

[44]D.J. Young. High temperature oxidation and corrosion of metals[M]. Elsevier Ltd, 2008.

[45]J. Alcock, E. Easterbrook, J. Mackowiak. Thermodynamics and kinetics of Gas-Metal systems[J]. Corrosion, 1994, 7:145-196.

[46]D.R. Gaskell, D.E. Laughlin. Introduction to the Thermodynamics of Materials[M]. Chemical Rubber Company Press, 2017.

[47]B. Gleeson. Thermodynamics and theory of external and internal oxidation of alloys[J]. Shrier’s Corrosion, 2010, 1: 180-194.

[48]李美栓. 金属的高温腐蚀[M]. 北京:冶金工业出版社, 2001.

[49]Z. Wang, X. Li, W. Li, et al. Comparative study on oxidation behavior of Ti2AlN coatings in air and pure steam[J]. Ceramics International, 2019, 45(7): 9260-9270.

[50]C. Tang, H. Shi, A. Jianu, et al. High-temperature oxidation of AlCrFeNi- (Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition[J]. Corrosion Science, 2021, 192: 109809.

[51]B. Pujilaksono, T. Jonsson, H. Heidari, et al. Oxidation of binary FeCr alloys (Fe-2.25Cr, Fe-10Cr, Fe-18Cr and Fe-25Cr) in O2 and in O2+H2O environment at 600 ℃[J]. Oxidation of Metals, 2011, 75: 183-207.

[52]C. Stephan-Scherb, W. Schulz, M. Schneider, et al. High-temperature oxidation in dry and humid atmospheres of the equiatomic CrMnFeCoNi and CrCoNi high-and medium-entropy alloys[J]. Oxidation of Metals, 2021, 95: 105-133.

[53]C. Fujii, R. Meussner. The mechanism of the high-temperature oxidation of iron-chromium alloys in water vapor[J]. Journal of the Electrochemical Society, 1964, 111(11): 1215.

[54]J.N. Shen, L.J. Zhou, T.F. Li. High-temperature oxidation of Fe-Cr alloys in wet oxygen[J]. Oxidation of Metals, 1997, 48: 347-356.

[55]H. Asteman, J.E. Svensson, L.G. Johansson, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxidation of Metals, 1999, 52: 95-111.

[56]N. Mu, K. Jung, N. Yanar, et al. The effects of water vapor and hydrogen on the high-temperature oxidation of alloys[J]. Oxidation of Metals, 2013, 79: 461-472.

[57]H. Asteman, J.E. Svensson, M. Norell, et al. Influence of water vapor and flow rate on the high-temperature oxidation of 304L; effect of chromium oxide hydroxide evaporation[J]. Oxidation of Metals, 2000, 54(1): 11-26.

[58]T. Sand, C. Geers, Y. Cao, et al. Effective reduction of chromium-oxy-hydroxide evaporation from Ni-base alloy 690[J]. Oxidation of Metals, 2019, 92: 259-279.

[59]曹正航, 王威, 孙振忠, 等. 难熔高熵合金力学性能的研究进展[J]. 粉末冶金工业, 2024, 34(03): 114-121.

[60]张金钰, 周泳江, 张翀, 等. 3d过渡金属高熵高温合金的研究进展[J]. 材料热处理学报, 2025, 46(02): 1-13.

[61]王海威, 肖文波. 高速激光熔覆FeCoCrNiMn高熵合金熔覆层组织及耐磨性研究[J]. 矿冶工程, 2024, 44(05): 148-152.

[62]许桐, 陈庆军, 郑作栋, 等. 高熵合金成分设计与性能研究进展[J]. 材料研究与应用, 2023, 17(06): 1039-1050.

[63]H. Asteman, W. Hartnagel, D. Jakobi. The influence of Al content on the high temperature oxidation properties of state-of-the-art cast Ni-base alloys[J]. Oxidation of Metals, 2013, 80(1): 3-12.

[64]D.J. Young, B.A. Pint. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor[J]. Oxidation of Metals, 2006, 66: 137-153.

[65]T. Jonsson, B. Pujilaksono, H. Heidari, et al. Oxidation of Fe-10Cr in O2 and in O2+H2O environment at 600 ℃: A microstructural investigation[J]. Corrosion Science, 2013, 75: 326-336.

[66]K.Y. Pineda-Arriaga, J.H. Ramírez-Ramírez, F.A. Pérez-González, et al. Oxidation in Water Vapor of Inconel 625 Fabricated by Additive Manufacturing[J]. High Temperature Corrosion of Materials, 2024, 101(1): 1-11.

[67]T. Guo, Y. Chen, H. Shao, et al. Molecular dynamics, thermodynamics and experimental studies on the corrosion mechanism of T92 and TP347H steels in high-pressure CO2 and H2O at 600 ℃[J]. Applied Surface Science, 2023, 621: 156879.

[68]G.B. Hoflund, W.S. Epling. Oxidation study of a polycrystalline Ni/Cr alloy I: room-temperature exposure to O2[J]. Thin Solid Films, 1997, 307(1-2): 126-132.

[69]R. Li, Y. Zeng, X. Xiong, et al. Oxidation Behavior of the Si-B-X (X=Mo, Cr, or Ti) Alloys in the Temperature Range of 1000-1400 ℃[J]. ACS Omega, 2022, 7(17): 15145-15157.

[70]T.S. Jo, S.H. Kim, D.G. Kim, et al. Thermal degradation behavior of inconel 617 alloy[J]. Metals and Materials International, 2008, 14: 739-743.

[71]A. Solimani, T. Nguyen, J. Zhang, et al. Morphology of oxide scales formed on chromium-silicon alloys at high temperatures[J]. Corrosion Science, 2020, 176: 109023.

[72]L.Z. Mohamed, W.A. Ghanem, M.M. Lotfy, et al. Oxidation characteristics of porous Ni-12 wt.% Cr alloy at 1000 ℃ in air[J]. Ain Shams Engineering Journal, 2018, 9(4): 2993-3000.

[73]M. Izadi, M. Soltanieh, S. Alamolhoda, et al. Mehdizade. Microstructural characterization and corrosion behavior of AlxCoCrFeNi high entropy alloys[J]. Materials Chemistry and Physics, 2021, 273(1): 124937.

[74]Z. Yu, Y. Yan, J. Qiang, et al. Microstructure evolution and compressive property variation of AlCoCrFeNi high entropy alloys produced by directional solidification[J]. Intermetallics, 2023, 152: 107749.

[75]Y. Yang, X. Luo, T. Ma, et al. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process[J]. Journal of Alloys and Compounds, 2021, 864: 158717.

[76]傅广艳, 牛焱, 吴维. 二元双相Cu-50Cr合金在700-900 ℃空气中的氧化[J]. 金属学报, 1998, (02): 159-163.

[77]潘太军, 贺云翔, 李杰, 等. 二元双相Cu-Cr合金在700和800 ℃空气中的氧化行为研究[J]. 金属学报, 2014, 50(03): 337-344.

[78]A. Dash, A. Paul, S. Sen, et al. Recent advances in understanding diffusion in multiprincipal element systems[J]. Annual Review of Materials Research, 2022, 52(1): 383-409.

[79]J. Zhu, S. Lu, Y. Jin, et al. High-temperature oxidation behaviours of AlCoCrFeNi high-entropy alloy at 1073-1273 K[J]. Oxidation of Metals, 2020, 94: 265-281.

[80]R.B. Rebak, V.K. Gupta, L. Michael. Oxidation characteristics of two FeCrAl alloys in air and steam from 800 ℃ to 1300 ℃[J]. Journal of Minerals, 2018, 70: 1484-1492.

[81]F. Abe, H. Araki, H. Yoshida, et al. The role of aluminum and titanium on the oxidation process of a nickel-base superalloy in steam at 800 ℃[J]. Oxidation of Metals, 1987, 27(1): 21-36.

[82]W. Przybilla, M. Schütze. Growth stresses in the oxide scales on TiAl alloys at 800 and 900 ℃[J]. Oxidation Of Metals, 2002, 58(3): 337-359.

[83]L. Liu, J. Zhang, C. Zhai, et al. Addressing challenges in high-temperature oxidation of ultra-supercritical boiler tubes via FeCoNiCrMo high-entropy alloy coatings[J]. Surface and Coatings Technology, 2024, 477: 130351.

[84]J. Wang, J. Zhuo, Q. Yao. Investigation of the fireside corrosion of a new wrought Ni-Fe-Cr-based alloy in advanced ultra-supercritical steam boilers[J]. Corrosion Science, 2022, 199: 110152.

[85]Z. Zhong, Y. Gu, Y. Yuan, et al. A new wrought Ni-Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700 ℃[J]. Materials Letters, 2013, 109: 38-41.

[86]C. Kim, C. Tang, M. Grosse, et al. Oxidation mechanism and kinetics of nuclear-grade FeCrAl alloys in the temperature range of 500-1500 ℃ in steam[J]. Journal of Nuclear Materials, 2022, 564: 153696.

[87]M. Archana, C. J. Rao, S. Ningshen, et al. High-temperature air and steam oxidation and oxide layer characteristics of alloy 617[J]. Journal of Materials Engineering and Performance, 2021, 30(2): 931-943.

[88]X. Chen, C. Wu, Z. Guo. Synthesis of efficient Cu/CoFe2O4 catalysts for low temperature CO oxidation[J]. Catalysis Letters, 2019, 149(2): 399-409.

[89]A. Sathe, M.A. Peck, C. Balasanthiran, et al. X-ray photoelectron spectroscopy of transition metal ions attached to the surface of rod-shape anatase TiO2 nanocrystals[J]. Inorganica Chimica Acta, 2014, 422: 8-13.

[90]Z. Liang, Q. Zhao. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam[J]. Materials at High Temperatures, 2019, 36(1): 87-96.

[91]彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为[J]. 金属学报, 2014, 50(2): 202-211.

[92]S. Kumar, A. Sourav, B. Murty, et al. Role of Al and Cr on cyclic oxidation behavior of AlCoCrFeNi2 high entropy alloy[J]. Journal of Alloys and Compounds, 2022, 919: 165820.

[93]I. Olefjord, H. Mathieu, P. Marcus. Intercomparison of surface analysis of thin aluminium oxide films[J]. Surface and Interface Analysis, 1990, 15(11): 681-692.

[94]J. Mantilla, L.L. Félix, M. Rodriguez, et al. Washing effect on the structural and magnetic properties of NiFe2O4 nanoparticles synthesized by chemical sol-gel method[J]. Materials Chemistry and Physics, 2018, 213: 295-304.

[95]F. Wang. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales[J]. Oxidation of Metals, 1997, 48(3): 215-224.

中图分类号:

 TG174.43    

开放日期:

 2025-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式