- 无标题文档
查看论文信息

论文中文题名:

 煤层钻孔随钻温度-CO变化规律及风险预测研究    

姓名:

 张家祥    

学号:

 22220226074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-19    

论文答辩日期:

 2025-06-06    

论文外文题名:

 Study on the variation law and risk prediction of drilling temperature-CO while drilling in coal seam    

论文中文关键词:

 煤层钻孔 ; 随钻温度 ; CO浓度 ; 关键官能团 ; 风险预测    

论文外文关键词:

 Coal seam drilling ; Temperature while drilling ; CO concentration ; Key functional groups ; Risk prediction    

论文中文摘要:

风力排渣钻孔施工过程中,钻杆(钻头)高速旋转与煤体摩擦产生高温,加之压风中O2的不断输入,引起煤体氧化阴燃。由于钻孔通风和蓄热环境造成的无可见光缓慢燃烧,通常导致煤温度上升并产生大量CO,一旦孔内CO大量产生,易引发施钻人员伤亡事故,严重威胁到煤矿的安全生产和施钻人员生命安全。因此,研究钻孔作业诱发煤体阴燃的温度演变规律及CO生成特性是监测和防治该类灾害的基础。为此,本研究聚焦钻孔诱发煤阴燃CO超限问题,开展系统性研究:自主搭建煤层钻孔相似模拟实验平台,研究不同条件(钻机转速、进钻速度、煤体应力)对煤体升温特性的影响,探究CO生成规律;通过傅里叶红外光谱(FTIR)实验,分析钻后煤屑关键活性基团变化规律,从微观角度阐明钻孔作业时CO产生机理;基于鲸鱼优化(WOA)与最小二乘支持向量机(LSSVM)算法,构建煤阴燃风险预测模型,实现以钻头转速、进钻速度、煤体应力、进钻时长等多参数的煤体温度及CO浓度预测。该研究对煤矿井下监测系统优化和煤矿安全高效生产有着重要的现实意义。主要成果如下:

(1)自主搭建煤层钻孔相似模拟实验平台,掌握不同钻机转速(990、690、390 r/min)与进钻速度(1.5、1.0、0.5 cm/s)及煤体应力(原煤、1#型煤-85MPa围压压制、2#型煤-70MPa围压压制)等工况条件下CO浓度和煤体温度的变化规律。结果表明:钻机转速增大会提高CO生成速率和煤温升高速率,且CO涌出量随转速增加呈指数增长;进钻速度加快使CO产生速率上升,但因排渣效率提高导致最大浓度降低。同时,原煤的CO生成速率与温升速率显著高于型煤,且1#型煤明显高于2#型煤。通过线性回归分析发现,CO平均生成速率与煤体升温速率呈显著线性正相关(R²=0.727,p<0.01)。

(2)采用FTIR实验,分析煤层钻进后煤屑表面活性官能团的特性,揭示煤层钻孔过程中CO生成机理。结果表明:钻进过程中煤分子结构发生显著变化,硫键、醚键的碳氧键及游离氢氧键含量减少,而活性碳氧键(如醇、酚、醛类)及碳氢键(甲基、亚甲基)、链式碳碳键明显增加。煤表面含氧官能团(醇羟基、羧基、醛基、醚键、过氧键)显著增多,这些含氧官能团为CO的生成提供氧源。结合化学键解离能分析,CO生成存在双重路径:初期由机械破碎导致化学键断裂释放CO;后期因钻头摩擦生热,促使高活性含氧官能团热分解产生CO。

(3)采用鲸鱼优化算法(WOA)优化最小二乘支持向量机(LSSVM)参数,构建钻孔作业中煤阴燃风险预测模型。针对LSSVM模型精度受核函数宽度和惩罚因子影响问题,WOA算法全局寻优这两个参数,解决了参数选择的难题。实验验证表明:在煤体温度预测方面,WOA-LSSVM的平均绝对误差(MAE)较单一LSSVM降低56.3%,9种工况下的误差降幅达56.3%~92%,决定系数R²均接近1,显示出极强的拟合能力;CO浓度预测中,R²值稳定在0.99834~0.99994区间,预测精度显著提升。

论文外文摘要:

During the construction of wind slag discharge drilling operations, the high-speed rotation of the drill pipe and friction with the coal body generate high temperatures. The continuous supply of O₂ from the compressed air promotes oxidation and smoldering of the coal. Due to the drilling ventilation and a heat-retaining environment, this slow combustion occurs without visible light, leading to a rise in coal temperature and the production of large amounts of CO. Once a high concentration of CO accumulates in the hole, it can easily endanger drilling personnel, posing a serious threat to coal mine safety and worker safety. Studying the temperature evolution and CO generation characteristics of coal smoldering induced by drilling operations is essential for monitoring and preventing such disasters. This study focuses on the problem of CO overlimit during coal smoldering induced by drilling and conducts systematic research. An independently built simulated experiment platform for coal seam drilling was used to investigate the effects of various conditions (drilling speed, feed rate, coal stress) on coal heating characteristics and to analyze CO generation patterns. Fourier transform infrared spectroscopy (FTIR) was employed to analyze changes in key active groups of coal cuttings after drilling, clarifying the CO production mechanism at a microscopic level. Based on the whale optimization algorithm (WOA) and least squares support vector machine (LSSVM), a coal smoldering risk prediction model was developed to forecast coal temperature and CO concentration using parameters such as bit speed, drilling speed, coal stress, and drilling time. This research has important practical significance for optimizing coal mine monitoring systems and ensuring safe, efficient production. The main results are as follows:

(1) A simulated coal seam drilling platform was constructed, and variations in CO concentration and coal temperature under different conditions (e.g., drilling speed, feed rate, coal stress) were analyzed. Results show that higher drilling speeds increase CO formation rates and coal temperature rise rates, with CO emissions growing exponentially. Increasing the feed rate raises the CO production rate, but the maximum concentration decreases due to improved slag discharge efficiency. Raw coal exhibits significantly higher CO generation and temperature rise rates than briquette coal, with 1# briquette outpacing 2# briquette. Linear regression revealed a strong positive correlation (R²= 0.727, p < 0.01) between average CO formation rate and coal heating rate.

(2) FTIR analysis of active functional groups on coal cuttings revealed the CO formation mechanism during drilling. The molecular structure of coal undergoes significant changes: the content of carbon-oxygen bonds, free hydrogen-oxygen bonds, sulfur bonds, and ether bonds decreases, while active carbon-oxygen bonds, carbon-hydrogen bonds, and chain carbon-carbon bonds increase markedly. Oxygen-containing functional groups on the coal surface increase, providing oxygen sources for CO formation. Combined with chemical bond dissociation energy analysis, CO formation follows a dual pathway: initial CO release results from mechanical bond breaking, while later-stage CO is produced by thermal decomposition of highly active oxygen-containing groups due to drill bit friction.

(3) The whale optimization algorithm (WOA) was applied to optimize LSSVM parameters, constructing a coal smoldering risk prediction model. To address the impact of kernel function width and penalty factor on LSSVM accuracy, WOA globally optimized these parameters, resolving selection issues. Results show that for coal temperature prediction, WOA-LSSVM achieves a 56.3% lower mean absolute error (MAE) than standalone LSSVM, with errors reduced by 56.3 ~ 92% across nine conditions. The coefficient of determination (R²) approaches 1, demonstrating strong fitting. For CO concentration prediction, R² ranges from 0.99834 ~ 0.99994, indicating significantly improved accuracy.

参考文献:

[1] 项定先. 碳达峰碳中和目标下的能源现状分析及发展趋势路径[J]. 工业安全与环保, 2021, 47(S1): 20-24.

[2] 袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6.

[3] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178.

[4] 汪有刚, 李宏艳, 齐庆新, 等. 采动煤层渗透率演化与卸压瓦斯抽放技术[J]. 煤炭学报, 2010, 35(3): 406-410.

[5] 刘春. 松软煤层瓦斯抽采钻孔塌孔失效特性及控制技术基础[D]. 中国矿业大学, 2014.

[6] 方俊, 李泉新, 许超, 等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术, 2018, 46(5): 130-137+172.

[7] 陈硕, 路长, 苏振国, 等. 煤矿瓦斯爆炸发展规律及防治的综述及展望[J]. 火灾科学, 2021, 30(2): 63-79.

[8] 刘海瑞. 新田煤矿高瓦斯煤层群瓦斯综合抽采技术研究[D]. 中国矿业大学, 2021.

[9] 龚小兵. 基于压气控尘-环缝引射技术的钻孔干式除尘装置研究[J]. 煤矿安全, 2021, 52(8): 95-101.

[10] 邓军, 李鑫, 王凯, 等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术, 2024, 52(1):154-177.

[11] Liu J, Liu Z K, Wei Y Z, et al. Change characteristics of negative drainage pressure along the drill hole: theoretical analyses and field tests[J]. Acs Omega, 2022, 7(23): 19948-19956.

[12] 魏保安, 王振刚. 煤矿井下煤层钻孔打钻着火事故分析和预防[J]. 现代企业教育, 2012, (6): 97.

[13] 薛纯运, 孙守良. “11·8”打钻着火事故原因分析及防范措施[J]. 中州煤炭, 2013, (2): 93-96.

[14] 周晓庆, 戚灵灵, 王兆丰. 煤矿钻孔煤粉着火因素分析及防治技术[J]. 矿业安全与环保, 2022, 49(2): 102-106.

[15] 郝晓飞. 锚固剂对矿山支护安全的影响及控制对策[J]. 中国石油和化工标准与质量, 2019, 39(22): 186-187.

[16] 岳高伟, 李豪君, 王兆丰, 等. 松散煤体导热系数的温度及粒度效应[J]. 中国安全生产科学技术, 2015, 11(2): 17-22.

[17] 张恺光. 干式钻孔风力排渣新技术[J]. 煤矿安全, 1984, (12): 23-28.

[18] 赵坤, 刘佩. 大倾角碎软低渗煤层下向长钻孔工艺研究与应用[J]. 矿业安全与环保, 2023, 50(2): 93-96.

[19] 董钢锋, 李宏达. 突出煤层顺层长钻孔成孔工艺的研究[J]. 矿业安全与环保, 2002, (5): 9-11+10.

[20] 林府进, 徐贵发, 董钢锋. 松软突出煤层顺层长钻孔成孔技术研究[J]. 矿业安全与环保, 2006, (2): 10-11+14+89.

[21] 杨永良, 李增华, 高文举, 等. 煤层钻孔风力排渣模拟实验研究[J]. 采矿与安全工程学报, 2006, (4): 415-418.

[22] Yang S, Wen G C, Yan F Z, et al. Evaluating the maximum rate of penetration for drilling borehole in soft coal seam[J]. Energy Science & Engineering, 2020, 8(9): 3273-3284.

[23] 牛国庆, 张伟. 顺煤层钻孔风力排渣临界风速及压力损失研究[J]. 中国安全科学学报, 2013, 23(11): 60-65.

[24] 何明川. 本煤层防突钻孔施工排粉工艺[J]. 煤炭科学技术, 2006, (2): 29-31.

[25] 韩颖, 张飞燕, 杨志龙. 煤层钻孔孔壁稳定性分析[J]. 中国安全科学学报, 2014, 24(6): 80-85.

[26] 郭恒, 林府进. 基于弹塑性力学分析的煤层钻孔孔壁稳定性研究[J]. 矿业安全与环保, 2010, 37(S1): 106-109.

[27] 刘建林, 刘飞, 李泉新, 等. 碎软煤层瓦斯抽采钻孔孔壁稳定性分析[J]. 煤矿安全, 2018, 49(8): 189-193.

[28] 韩颖, 张飞燕, 刘少飞. 模拟煤层钻进过程中钻孔稳定性试验研究[J]. 中国安全生产科学技术, 2018, 14(7): 32-39.

[29] 朱红青, 盛锴. 全尺寸煤层钻孔稳定性的数值模拟研究[J]. 煤炭技术, 2017, 36(5): 136-138.

[30] 黄长国. 深部松软煤层钻孔孔周煤体变形产渣特征研究[J]. 煤炭工程, 2020, 52(4): 92-96.

[31] 张旭锟. 松软煤层钻孔周围裂隙发育规律的研究[D]. 华北科技学院, 2018.

[32] 朱传奇, 谢广祥, 王磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报, 2022, 47(7): 2609-2622.

[33] 孙宵一. 松软煤层顺层钻孔应力响应特征及产渣规律研究[D]. 重庆大学, 2021.

[34] 林柏泉, 李庆钊, 周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报, 2021, 46(6): 1715-1726.

[35] 文虎. 煤自燃过程的实验及数值模拟研究[D]. 西安科技大学, 2003.

[36] 汤其建, 张国枢, 陈清华. 松散煤体导热系数影响因素分析[J]. 江西煤炭科技, 2006, (4): 24-26.

[37] 岳高伟, 李豪君, 王兆丰, 等. 松散煤体导热系数的温度及粒度效应[J]. 中国安全生产科学技术, 2015, 11(2): 17-22.

[38] 岳高伟, 霍留鹏, 王兆丰, 等. 高低温环境下松散煤导热系数研究[J]. 河南理工大学学报(自然科学版), 2017, 36(2): 1-6.

[39] 邓军, 任帅京, 肖旸, 等. 煤低温氧化与热解过程的传热特性对比研究[J]. 煤炭学报, 2019, 44(S1): 171-177.

[40] Rua M O B, Aragon A J D, Baena P B. A study of fire propagation in coal seam with numerical simulation of heat transfer and chemical reaction rate in mining field[J]. International Journal of Mining Science and Technology, 2019, 29(6): 873-879.

[41] Zheng H M, Wang J X, Yu Q X. Simulation of spontaneous combustion region in coal piles under multi-field coupling[J]. International Journal of Coal Preparation and Utilization, 2021, 41(12): 855-867.

[42] Wang C P, Chen L J, Bai Z J, et al. Study on the dynamic evolution law of spontaneous coal combustion in high-temperature regions[J]. Fuel, 2022, 314, 123036.

[43] 李达. 含裂纹钻孔周围温度场及破裂压力分析[D]. 中国地质大学(北京), 2021.

[44] 胡正毅, 达拉拉伊·帕维尔, 曹品鲁, 等. 气体局部反循环电动机械冰钻技术[J]. 吉林大学学报(地球科学版), 2012, 42(S3): 374-378.

[45] 胡正毅. 空气孔底局部反循环电动机械冰层取心钻具研究[D]. 吉林大学, 2015.

[46] 何真培, 李树刚, 林海飞, 等. Matlab在预测矿井瓦斯涌出量中的应用[J]. 矿业安全与环保, 2011, 38(3): 32-35+1.

[47] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(2): 181-186+272.

[48] 李亚洲. 冰层热融钻进机理研究及冰下湖钻探用热融钻头研制[D]. 吉林大学, 2021.

[49] 李亚洲, 孙友宏, 张楠, 等. 冰层定向取芯钻进技术研究现状及展望[J]. 冰川冻土, 1-16.

[50] 崔继明. 热力耦合作用下钻井围岩稳定性及其破坏临界条件[D]. 太原理工大学, 2017.

[51] 崔继明, 郤保平, 李广林. 温度对钻井围岩流变特性影响的数值模拟研究[J]. 矿业研究与开发, 2017, 37(8): 41-46.

[52] 洪俊, 薛航, 王彦晓, 等. 基于光纤光栅的小热惯量温度场监测实验[J]. 光学仪器, 2013, 35(5): 7-10+14.

[53] 朱继鹏. 温度效应对煤瓦斯解吸扩散规律的影响研究[D]. 中国矿业大学, 2022.

[54] Qiu U P, Li X H, Ning J G, et al. Study on thermal energy conversion theory in drilling process of coal and rock mass with different stresses[J]. Energies, 2019, 12(22).

[55] Chang X, Zhou J, Guo Y T, et al. Heat transfer behaviors in horizontal wells considering the effects of drill pipe rotation, and hydraulic and mechanical frictions during drilling procedures[J]. Energies, 2018, 11(9).

[56] Wang Z F, Liang J N, Yu R, et al. Study on the equivalent average temperature variation of the coal core during the freeze coring process[J]. Acs Omega, 2022, 7(4): 3557-3567.

[57] Li Y Z, Talalay P G, Fan X P, et al. Modeling of hot-point drilling in ice[J]. Annals of Glaciology, 2021, 62(85-86): 360-373.

[58] 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10-18+24.

[59] 陈凯, 朱钰. 机器学习及其相关算法综述[J]. 统计与信息论坛, 2007, (5): 112.

[60] Tahavvor A R, Sepehrinia S. Prediction of the temperature of the hole drilling process using artificial neural networks[J]. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 2014, 38(M1): 269-274.

[61] Lei C, Deng J, Cao K, et al. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J]. Fuel, 2019, 239: 297-311.

[62] 马兴民. 基于RSVM的综采工作面安全评价研究[D]. 河北工程大学, 2011.

[63] Yang L, Fang X, Wang X, et al. Risk prediction of coal and gas outburst in deep coal mines based on the sapso-elm algorithm[J]. International Journal of Environmental Research and Public Health, 2022, 19(19).

[64] 武梦婷, 陈秋松, 齐冲冲. 基于机器学习的边坡安全稳定性评价及防护措施[J]. 工程科学学报, 2022, 44(2): 180-188.

[65] Zhang L D, Song Z Y, Wu D J, et al. Prediction of coal self-ignition tendency using machine learning[J]. Fuel, 2022, 325.

[66] Zhao D K, Wu Q, Cui F P, et al. Using random forest for the risk assessment of coal-floor water inrush in panjiayao Coal Mine, northern China[J]. Hydrogeology Journal, 2018, 26(7): 2327-2340.

[67] Jiang P, Craig P, Crosky A, et al. Risk assessment of failure of rock bolts in underground coal mines using support vector machines[J]. Applied Stochastic Models in Business and Industry, 2018, 34(3): 293-304.

[68] Wang Y. Prediction of rock burst risk in coal mines based on a locally weighted C4.5 algorithm[J]. Ieee Access, 2021, 9: 15149-15155.

[69] 马力, 李天翔, 来兴平, 等. 基于Fourier级数的露天矿抛掷爆破效果GA-LSSVM预测[J]. 煤炭学报, 2022, 47(12): 4455-4465.

[70] Zhang C L, Wang E Y, Xu J, et al. A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal[J]. Fuel, 2021, 287:119493.

[71] 余孝民, 张杰, 都海龙. 长平矿软硬复合煤体高效钻进技术研究[J]. 煤炭科学技术, 2018, 46(4): 65-70.

[72] 刘新民, 王力, 王建利, 等. 韩城桑树坪二号井松软煤层钻进技术研究与实践[J]. 煤田地质与勘探, 2017, 45(3): 165-169.

[73] Zhao D, Chen H, An J F, et al. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology[J]. AIP Advances, 2018, 8(5): 055325.

[74] 王龙, 邓志亮, 王兆丰, 等. 煤层井下低温取芯过程瓦斯损失量推算模拟试验[J]. 煤炭科学技术, 2025, 1-13.

[75] 刘颖健. 煤氧化过程中自由基-活性基团作用机理[D]. 华北理工大学, 2016.

[76] Petersen H I, Rosenberg P, Nvtoft H P, Oxygen groups in coals and alginite-rich kerogen revisited[J]. International Journal of Coal Geology, 2008, 74(2): 93-113.

[77] Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.

[78] 回立川, 于千皓. 多策略混合的改进沙猫群优化算法及其应用[J]. 控制与决策, 2024, 39(10): 3216-3224.

[79] 吴忠强, 王国勇, 谢宗奎, 等. 基于WOA-UKF算法的锂电池容量与SOC联合估计[J]. 计量学报, 2022, 43(5): 649-656.

[80] 李天翔, 李江, 卢亚峰. 基于HHO-LSSVM的露天煤矿抛掷爆破效果预测研究[J]. 中国安全生产科学技术, 2023, 19(S1): 110-116.

[81] 王君瑞, 吴新举, 赵东琦, 等. 基于WOA-VMD与PSO-SVM的锂离子电池内短路故障诊断方法[J]. 工程科学学报, 2023, 45(12): 2162-2172.

[82] 高科, 吕航宇, 戚志鹏, 等. 基于PCA-BP神经网络的巷道通风摩擦阻力系数预测模型[J]. 矿业安全与环保, 2024, 51(1): 7-13.

[83] 杨帆, 姜勇, 杨元君. 信息融合技术在矿井安全监测系统中的应用[J]. 武汉工程大学学报, 2014, 36(5): 64-67.

[84] 董丁稳, 屈世甲, 王红刚. 矿井瓦斯监测数据特征分析及预处理[J]. 工矿自动化, 2015, 41(9): 1-4.

[85] 汪马成. 基于PSO-SVM模型的建筑施工项目安全预警方法研究[D]. 上海工程技术大学, 2016.

中图分类号:

 TD752.3    

开放日期:

 2025-09-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式