- 无标题文档
查看论文信息

论文中文题名:

 基于风险感知异质性的商业综合体应急疏散研究    

姓名:

 邵杰    

学号:

 20220226058    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 城市公共安全    

第一导师姓名:

 程方明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-02    

论文外文题名:

 A study on emergency evacuation of commercial complexes based on risk perception heterogeneity    

论文中文关键词:

 应急疏散 ; 商业综合体 ; 潜类别模型 ; 风险感知异质性 ; 信息诱导    

论文外文关键词:

 emergency evacuation ; commercial complexes ; latent class models ; risk perception heterogeneity ; evacuation guidance    

论文中文摘要:

随着城市经济的快速发展,商业综合体在城市化进程中充当着不可或缺的角色,它集商业零售、商务办公、餐饮等为一体,形成了一个多功能的复杂综合体。由于商业综合体规模庞大、人口密度大,一旦发生突发事件,严重威胁着商场顾客的生命和财产安全。为了提升商业综合体应急疏散过程的高效性,保障疏散人员的安全性,提高人员的疏散速度和效率尤为关键。然而,回顾已有的应急疏散研究,大多将疏散者存在着相同的生理特性开展研究,聚焦于商业综合体内外部环境、消防管理等因素对疏散者的影响。事实上,人与人之间都会存在差异性,尤其在应急状况下差异性更加明显。因此,充分考虑个体的差异性开展商业综合体应急疏散研究,对于提升城市商业综合体应急疏散水平具有重要现实意义。

本研究以商业综合体为研究对象,以行人流建模仿真为主要方法,基于风险感知异质性进行应急疏散建模。首先,通过查阅文献确定风险感知异质性的调研维度,编制商业综合体典型建筑疏散人群风险感知异质性调查问卷。根据问卷结果在Mplus分析软件的支持下,应用潜在剖面分析,以疏散人群的风险感知能力为依据对疏散者进行分类,确定最佳的风险感知潜类别数目,获得各类别疏散人群在不同观测变量上的得分。根据观测变量的得分情况分析不同人群的特征,以此定义疏散个体的风险感知属性。

其次,使用Anylogic平台结合现场实际勘察结果建立行人疏散仿真模型,通过对不考虑个体异质性的MNL模型和考虑风险感知异质性的LCM模型进行仿真模拟,并进行对比分析,总结出风险感知异质性在应急疏散过程中的影响。结果表明:考虑风险感知异质性的LCM模型疏散速度相对更快,原因在于具有生理特性的人群选择路径时会更加灵活。

最后,对疏散人员进行相应信息诱导—疏散引导,从而改变商业综合体内部系统的风险感知能力、增大疏散出口的使用效率,以期从整体上达到提高疏散效率的目的。建立基于信息诱导—疏散引导的策略模型,经仿真模拟观测其有效性。结果表明:疏散引导的加入可使各疏散通道间的空间利用率更加均衡,有效缓解人员拥挤,减少人员流动失衡,大幅提升人员疏散效率。

论文外文摘要:

With the rapid development of urban economy, commercial complexes play an indispensable role in the process of urbanization. These complexes integrate commercial retail, business offices, catering, and other functions to form a multifunctional and complex facility. Due to their large scale and high population density, unexpected events can pose a serious threat to the safety of mall customers and their property. To enhance the efficiency of emergency evacuation processes in commercial complexes, ensuring the safety of evacuees and improving the speed and efficiency of evacuation are critical.

However, existing emergency evacuation research has mostly focused on the same physiological characteristics of evacuees, and on factors such as the internal and external environment of commercial complexes and fire management. In fact, there are individual differences among people, which are particularly evident in emergency situations. Therefore, it is of great practical significance to conduct emergency evacuation research on commercial complexes while fully considering individual differences.

This study takes commercial complexes as the research object and pedestrian flow modeling and simulation as the main method, based on the heterogeneity of risk perception to carry out emergency evacuation modeling. First, the research dimensions of risk perception heterogeneity were determined by consulting literature, and a risk perception heterogeneity questionnaire for typical building evacuees in commercial complexes was compiled. Based on the questionnaire results and using latent profile analysis in Mplus analysis software, evacuees were classified based on their risk perception ability, the optimal number of risk perception latent categories was determined, and the scores of evacuees in different observation variables were obtained. Different population characteristics were analyzed based on the scores of observation variables, and the risk perception attributes of evacuees were defined accordingly.

Secondly, the pedestrian evacuation simulation model was established using the Anylogic platform and the actual site survey results. The polynomial logit model without considering individual heterogeneity and the LCM model considering risk perception heterogeneity were simulated and analyzed comparatively, and the impact of risk perception heterogeneity on the emergency evacuation process was summarized. The results showed that the LCM model considering risk perception heterogeneity had a relatively faster evacuation speed, because people with physiological characteristics would choose more flexible paths when selecting routes.

Finally, corresponding information induction-evacuation guidance was given to evacuees to change the risk perception ability of the internal system of commercial complexes and increase the efficiency of the evacuation exits, to achieve the overall goal of improving evacuation efficiency. A strategy model based on information induction-evacuation guidance was established, and its effectiveness was observed through simulation. The results showed that the addition of evacuation guidance could make the spatial utilization rate of each evacuation channel more balanced, effectively alleviate crowding, reduce personnel flow imbalance, and significantly improve personnel evacuation efficiency.

参考文献:

[1] 宋超. 商业综合体火灾场景及安全疏散数值模拟研究[D]. 西安: 西安科技大学, 2020.

[2] 吴凯东, 王卡. 商业综合体中“双动线”策略的设计方法研究[J]. 建筑与文化, 2021(10): 145-146.

[3] 陈剑平. 商业综合体的业态布局与空间设计分析[J]. 居舍, 2021(28): 85-86.

[4] Xue S, Jia B, Jiang R, et al. Pedestrian evacuation in view and hearing limited condition: The impact of communication and memory[J]. Physics Letters A, 2016, 380(38): 3029-3035.

[5] 李佳, 潘姗姗. 大型商业综合体防火及安全疏散[J]. 今日消防, 2021, 6(06): 50-51.

[6] 康乐. 大型商业综合体建筑防火安全疏散设计初探[J]. 建材与装饰, 2018(31): 84-85.

[7] 蒋鹏飞. 大型商业综合体火场疏散救人探讨[J]. 低碳世界, 2021, 11(08): 218-219.

[8] 陈星. 高层商业综合体消防性能化设计探讨[J]. 消防科学与术, 2012, 31(12): 1284-1286.

[9] 潘姗姗, 李佳.商业综合体防火分区常见划分与疏散[J]. 今日消防, 2021, 6(06): 101-102.

[10] 张蔷. 大型商业综合体的安全疏散与消防安全评估探讨[J]. 今日消防, 2021, 6(06): 103-104.

[11] 闫旭. 大型商业综合体消防安全管理研究[J]. 管理观察, 2019(14): 71-72.

[12] Kwee-Meier ST, Kabuss W, Mertens A, et al. Decision-Making for Adaptive Digital Escape Route Signage Competing with Environmental Cues: Cognitive Tunneling in High-Stress Evacuation Situations[C]// International Conference on Engineering Psychology and Cognitive Ergonomics. 2017.

[13] 王冬. 地铁场所应急疏散指示标志分析[J]. 消防技术与产品信息, 2013(12): 42-44.

[14] 郭浩翔, 胡玉玲. 基于Anylogic的应急疏散多范式建模研究[J]. 消防科学与技术, 2021, 40(05): 683-687.

[15] 李辉鹏, 柳善耀, 刘丹, 等. 考虑恐慌影响的高校食堂应急疏散仿真研究[J]. 武汉理工大学学报(信息与管理工程版), 2020, 42(04): 373-377.

[16] 胡同, 万远, 贺彪, 等. 三维楼宇应急疏散仿真系统研究[J]. 科技创新与应用, 2021(05): 19-21.

[17] 于萍. 邮轮应急疏散过程建模、模拟与布局优化分析[J]. 中国安全科学学报, 2021, 31(09): 142-149.

[18] 吴贝, 时雨. BIM集成应用下的车站客流消防应急疏散仿真[J]. 计算机仿真, 2021, 38(09): 485-489.

[19] 王书琪. 基于Pathfinder的山东德云文化广场方案消防应急疏散仿真研究[D]. 济南: 山东建筑大学, 2022.

[20] 谭家磊, 刘海力, 陈云飞, 等. 基于Anylogic的某高铁客运站人群疏散设施优化研究[J]. 安全, 2021, 42(08): 13-19.

[21] Tabirca T, Brown K N, Sreenan C J. A Dynamic Model for Fire Emergency Evacuation Based on Wireless Sensor Networks[C]// Eighth International Symposium on Parallel & Distributed Computing. IEEE, 2009.

[22] Ebihara M, Ohtsuki A, Iwaki H. A Model for Simulating Human Behavior During Emergency Evacuation Based on Classificatory Reasoning and Certainty Value Handling[J]. Blackwell Publishing Ltd, 1992, 7(1): 63-71.

[23] 严瑾. 商业综合体火灾情境下人员疏散仿真与优化研究[D]. 西安: 西安科技大学, 2021.

[24] Wang JH, Lv W, Jiang YJ, Huang GC. A cellular automata approach for modelling pedestrian-vehicle mixed traffic flow in urban city[J]. Applied Mathematical Modelling, 2023, 115.

[25] Sun YJ, Yuan TF, Chai XC, Chang Z. Emergency evacuation time model of nuclear power plant pedestrians[J]. Progress in Nuclear Energy, 2023, 157.

[26] Salvatore P, Chiara T, Alessio C, et al. Agent-Based Model for Pedestrians' Evacuation after a Blast Integrated with a Human Behavior Model[C]// Structures Congress. 2015.

[27] Tang TQ, Yuan XT, Hu PC, Wang T. Modeling and simulating the non-emergency evacuation behavior in a hospital registration hall[J]. Transportmetrica A: Transport Science, 2023, 19(1).

[28] 史宇峰, 吴高华, 李倩. 基于CA模型的城市轨道交通站台疏散仿真[J]. 交通运输研究, 2021, 7(02): 74-81.

[29] 魏娟, 郭阳勇, 李忠玉, 等. 考虑多群体恐惧传播的行人流模型及应急扩散研究[J]. 安全与环境学报, 2021, 21(02): 733-738.

[30] 宫建. 奥运应急交通疏散路径选择模型研究[D]. 北京工业大学, 2007.

[31] 韩雁喆. 考虑结伴行为的地铁车站站台行人疏散建模与仿真研究[D]. 北京: 北京交通大学, 2020.

[32] 程方明, 邵杰, 苏畅, 等. 风险感知对非适应性应急疏散行为的影响[J]. 中国安全生产科学技术, 2023, 19(01): 176-182.

[33] 毛钰. 风险感知和情绪对建筑工人应急行为的影响研究[D]. 西安: 西安科技大学, 2021.

[34] 齐晓云, 刘杰. 机场火灾旅客安全态度、风险感知与非适应性疏散行为的关系研究[J]. 中国安全生产科学技术, 2021, 17(10): 46-52.

[35] 曾杨, 黎金玲, 郭海湘, 等. 基于风险感知的室内疏散情绪传染与干预策略研究[J]. 系统仿真学报, 2022, 34(12): 2691-2708.

[36] 黄焜. 农村建成环境及风险感知对居民地震应急行为的影响研究[D]. 成都: 成都理工大学, 2020.

[37] 李华强, 范春梅, 贾建民, 等. 突发性灾害中的公众风险感知与应急管理——以5·12汶川地震为例[J]. 管理世界, 2009(06): 52-60+187-188.

[38] Ao YB, Huang K, Wang Y, Wang QM, et al. Influence of built environment and risk perception on seismic evacuation behavior: Evidence from rural areas affected by Wenchuan earthquake[J]. International Journal of Disaster Risk Reduction, 2020, 46(C).

[39] Bahmani H, Ao YB, Yang DJ, et al. Students' evacuation behavior during an emergency at schools: A systematic literature review[J]. International Journal of Disaster Risk Reduction,2023,87.

[40] 余肖禹, 谢科范, 梁本部. 应急避难场所感知与疏散行为的关系研究[J]. 管理学报, 2020, 17(06): 931-936.

[41] 梁柯, 李健, 陈颖雪, 等. 基于社会力模型的地铁车站应急疏散仿真分析[J]. 智能计算机与应用, 2019, 9(06): 236-240.

[42] 刘娴. 信息诱导对地铁站内乘客换乘路径选择行为的影响[D]. 上海: 上海工程技术大学, 2020.

[43] 张卫华, 李梦凡. 不同交通信息诱导下驾驶员路径选择行为研究[J]. 重庆交通大学学报: 自然科学版, 2018, 37(10): 8.

[44] 鲍婷婷, 陈建良. 交通预测信息对路网流量演化稳定性影响分析[J]. 公路交通科技, 2017, 34(7): 121-129.

[45] 陈善珍. 基于信息诱导与博弈行为的人群疏散动力学建模及复杂特性研究[D]. 桂林: 广西师范大学, 2015.

[46] GAO LP, LIU MJ, SUN ZZ, et al. Simulation on Impact of Information Guidance on Regional Traffic Flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(4).

[47] Yin HD, Wu JJ, Liu ZY, et al. Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation[J]. Applied Mathematical Modelling, 2019, 72(AUG.): 337-355.

[48] Bo K, Teng J, Liu XL, et al. Dissipating traffic congestion of emergency events through information guidance on mobile terminals[J]. Transportation Research Procedia, 2017, 25: 1276-1289.

[49] 王雨桐, 陈旭梅, 孙小菲. 信息诱导对交叉口驾驶行为影响[J]. 哈尔滨工业大学学报, 2017, 49(08): 171-176.

[50] Zhong SQ, Zhou LZ, Ma SF, et al. Effects of different factors on drivers’ guidance compliance behaviors under road condition information shown on VMS[J]. Transportation Research Part A, 2012, 46(9).

[51] Deng H, Wei XY, Deng YC, et al. Can information sharing among evacuees improve indoor emergency evacuation? An exploration study based on BIM and agent-based simulation[J]. Journal of Building Engineering, 2022, 62.

[52] Wang K, Yuan WF, Yao Y. Path optimization for mass emergency evacuation based on an integrated model[J]. Journal of Building Engineering, 2023, 68.

[53] Zhang P, Yang LZ, Lo SM, et al. Experimental study on evacuation behavior with guidance under high and low urgency conditions[J]. Safety Science, 2022, 154.

[54] Song X, Zhang ZH, Peng GZ, et al. Effect of authority figures for pedestrian evacuation at metro stations[J]. Physica A: Statistical Mechanics and its Applications, 2017, 465.

[55] 王锋. 当代风险感知理论研究: 流派、趋势与论争[J]. 北京航空航天大学学报(社会科学版), 2013, 26(03): 18-24.

[56] 谢宇, 范钟秀, 鲁子奇, 等. 社会科学的求实之道——谢宇教授访谈录[J]. 云梦学刊, 2012, 33(03): 5-10.

[57] Helbing, Molnár. Social force model for pedestrian dynamics[J]. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1995, 51(5).

[58] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic [J]. Nature, 2000, 407(6803).

[59] Dirk H, Dirk B, Thomas C, et al. Saving Human Lives: What Complexity Science and Information Systems can Contribute[J]. Journal of statistical physics, 2015, 158(3).

[60] 周侃, 王连震, 林翰. 行人交通仿真社会力模型改进研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(05): 826-829.

[61] Helbing, Farkas, Vicsek. Freezing by heating in a driven mesoscopic system[J]. Physical review letters, 2000, 84(6).

[62] Taras I. Lakoba. Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution[J]. Simulation, 2005, 81(5).

[63] Peter A. Thompson, Eric W. Marchant. A computer model for the evacuation of large building populations[J]. Fire Safety Journal, 1995, 24(2): 131-148.

[64] Parisi DR, Gilman M, Moldovan H. A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(17): 3600-3608.

[65] 邱皓政. 心理特质的类别化与连续性及其效标关联效度分析:潜在类别分析与因素分析的比较研究[C]//. 全国教育与心理统计与测量学术年会暨第八届海峡两岸心理与教育测验学术研讨会论文摘要集. [出版者不详], 2008: 36.

[66] 王孟成. 潜变量建模与Mplus应用基础篇[M]. 重庆大学出版社: 万卷方法, 201401. 276.

[67] 王孟成. 潜变量建模与Mplus应用进阶篇[M], 重庆: 重庆大学出版社, 2018: 34-56.

[68] 何健飞, 刘晓. 基于拥挤度的地铁应急疏散路径优化方法[J]. 中国安全科学学报, 2013, 23(02): 166-171.

[69] 杨鑫刚, 单彩虹, 陈学哲. 地铁站应急疏散数值模拟研究[J/OL]. 安全与环境学报: 1-8[2023-04-17].

[70] 程尧, 刘晓栋. 基于社会力模型的文物景区人员应急疏散仿真研究[J/OL]. 安全与环境工程: 1-10[2023-04-08].

[71] 石晶, 杨壁钧. 火灾场所老年人应急疏散行为能力影响因素及能力评估研究[C]//中国消防协会. 2022中国消防协会科学技术年会论文集. 应急管理出版社, 2022: 681-684.

[72] 郭禹辰, 李昌宇, 刘昕政, 等. 基于AnyLogic仿真的地铁应急疏散研究[J].铁道运营技术, 2022, 28(02): 51-54.

[73] 杨迪. 高速铁路客运站行人疏散特性仿真研究[J]. 电子测试, 2022, 36(17): 48-51.

[74] 王立晓, 于江波, 孙小慧. 考虑心理异质性的地铁应急疏散行为决策建模[J]. 中国安全科学学报, 2021, 31(10): 119-126.

[75] 王晓健, 王子瑄, 孙小叶. 基于AnyLogic的商业建筑应急疏散模拟仿真研究[J]. 四川建筑科学研究, 2022, 48(06): 75-81.

[76] 阮婷, 袁惠芬, 韦玉辉, 等. 基于三维人体测量的青年男性肩部形态分类[J]. 服装学报, 2020, 5(06): 488-492.

[77] 苏倩. 女装三维造型信息到二维图文表达的方法研究[D]. 上海: 东华大学, 2020.

中图分类号:

 Tu998.1    

开放日期:

 2023-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式