论文中文题名: | 煤气净化单元含硫尾气制备二硫化碳的工艺模拟 |
姓名: | |
学号: | 20213225040 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 化工过程模拟与优化 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-26 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Process Simulation for CS2 Production from Sulfur-containing Tail Gas in Coal Gas Purification Section |
论文中文关键词: | |
论文外文关键词: | Low-temperature methanol washing ; Kinetics ; Carbonyl sulfide ; Azeotrope ; Pressure Swing Distillation ; Aspen Plus |
论文中文摘要: |
当前煤气的净化处理主要应用低温甲醇洗工艺进行脱硫脱碳,含硫尾气中富集的H2S主要通过Claus工艺进行回收生产硫磺,该工艺产品附加值较低且耗能大。因此,本研究旨在寻找一种对H2S高附加值利用的工艺路线。 H2S与CO经由羰基硫(COS)可以合成高附加值的二硫化碳(CS2),但该反应需要较高浓度的H2S气体作为原料。经典的低温甲醇洗工段得到的含硫尾气中H2S占比仅30~40 mol%。本研究在原工艺吸收塔T101的脱碳段与脱硫段富液解吸之前,分别增加闪蒸器以脱除大量的CO2减少后续含硫尾气中CO2的占比。使用商业软件Aspen Plus对改造工艺进行了可行性研究,结果表明可将含硫尾气中H2S浓度提高到60 mol%。 通过用户模型将动力学参数嵌入到Aspen的RPLUG平推流反应器,构建了H2S和CO羰基化反应器的机理模型。针对反应的进料组成,空速,反应温度进行了分析与优化,结果表明使用绝热固定床反应器在170℃时进料配比1:3(H2S:CO),COS产率最高。由于H2S和COS能够形成共沸物,为了避免引入新的杂质和过高的分离成本,本研究使用变压精馏方法进行分离,以年度总费用(TAC)作为评判标准确定了高压塔与低压塔的最优操作参数,得到90 mol% COS。将高浓度的COS通过Gibbs反应器转化为CS2,最后通过常规精馏将CS2提纯至99 mol%作为产品。最终将CS2合成工段与低温甲醇洗工段耦合,将羰基化反应剩余的硫化物循环到吸收塔以回收利用,使含硫尾气中H2S的H以74%转化为H2,S以99.93%转化为CS2。 本研究模拟的两个工段进行耦合的工艺,得到高附加值产品CS2,同时H2S中潜在氢源得到了回收利用。整个工艺流程低能耗、低污染、H2S转化率高,为含硫尾气中H2S的高附加值应用提供了新思路。 |
论文外文摘要: |
Currently, the purification process of gas mainly uses the low-temperature methanol washing technology for desulfurization and decarbonization. The H2S enriched in the tail gas acidic gas is mainly recovered and produced into sulfur through the Claus process, which has low added value and consumes a lot of energy. Therefore, this study aims to find a process route for high added value utilization of H2S. H2S can be synthesized into high added value carbon disulfide (CS2) through carbonyl sulfide (COS) reaction with CO, but this reaction requires a high concentration of H2S gas as raw material. The classic low-temperature methanol washing process only yields acid gas with H2S content of 30-40mol%. In this study, flash tanks were added before the decarbonization and desulfurization sections of absorber tower T101 in the original process to remove a large amount of CO2 and reduce the proportion of CO2 in the subsequent acid gas. The feasibility of the modified process was studied using commercial software Aspen Plus, and the results showed that the H2S concentration in the acid gas could be increased to 60 mol%. The kinetic parameters were embedded into Aspen's RPLUG plug flow reactor using a user model, and a mechanism model of the H2S and CO carbonylation reactor was constructed. Analysis and optimization were conducted on the feed composition, space velocity, and reaction temperature, and the results showed that the highest COS yield could be achieved using an adiabatic fixed bed reactor with a feed ratio of 1:3 (H2S:CO) at 170°C. As H2S and COS can form azeotropes, a variable pressure distillation method was used for separation to avoid introducing new impurities and high separation costs. The optimal operating parameters for the high-pressure tower and low-pressure tower were determined based on the total annual cost (TAC), and 90 mol% COS yield was obtained. The high concentration of COS was then converted to CS2 through a Gibbs reactor, and the CS2 was purified to 99 mol% as the final product through conventional distillation. Finally, the CS2 synthesis section was coupled with the low-temperature methanol washing section, and the remaining sulfides from the carbonylation reaction were recycled to the absorber tower for recovery, resulting in 74% conversion of H2S to H2 and 99.93% conversion of S to CS2 in the acid gas. The process of coupling the two simulated sections in this study resulted in the production of high-value-added product CS2, while the potential hydrogen source in H2S was recovered and utilized. The entire process has low energy consumption, low pollution, and high H2S conversion rate, providing a new approach for the high-value application of H2S in acidic gases. |
参考文献: |
[1] 王小强.结合新发展理念探讨我国煤化工产业发展方向[J].煤化工, 2019, 47(2): 53, 72-75. [2] 王星朗.新疆煤化工产业发展现状[J].化工管理, 2020(016): 80-81. [3] 孙海勇,杨芊,樊金璐.新疆煤炭及煤化工产业发展现状与趋势分析[J].煤炭经济研究, 2020, 40(02): 58-62. [5] 曾自强,张育芳.天然气集输工程[M].北京:石油工业出版社, 2001, 381-392. [6] 李新建.天然气湿法脱硫工艺[J].河南化工,2008,25(8):8-10. [10] 郭欣,李士雨,李金来.低温甲醇洗装置低温段系统能效优化[J].化学工程, 2012, 40(10): 10-12. [12] 张鸿宇,周丽,张希良.我国现代煤化工产业现状及政策综述[J].现代化工, 2018, 38(05):1-5. [14] BP p.l.c. Quantifying energy,BP statistical review of world energy [18] 张述伟.一种回收低温甲醇洗装置酸性气中甲醇的方法[P]中国, 201711014307. 2019.05.03. [19] Linde A. Method and device forgenerating fuel for a gasturbine:US. 9925489[P]. 200 2, 10, 24. [20] 刘潇,李天文.二硫化碳合成工艺研究进展[J].山东化工, 2019, 48(3):2. [21] 王泽鑫.改性氧化锌基脱硫剂制备及脱硫性能的研究[D].太原:太原理工大学,2018. [22] 吴泽鑫,张涛,张辰.半焦连续法与天然气法生产二硫化碳及主要污染物贡献对比[J].河南化工, 2022(009): 039. [26] 孙春兰,齐红社,王素美,等.低温甲醇洗工段的分析方法[J].天然气化工(C1化学与化工),2014, 39(04): 92-94. [27] 肖珍平,马宏方,应卫勇,等.煤制合成气低温甲醇洗吸收塔数学模拟与分析[J].煤炭学报, 2013, 38(12): 2247-2252. [28] 张泳建,李忠,孟凡会,等.低温甲醇净化合成油尾气重整气的模拟分析[J].过程工程学报, 2013, 13(02): 264-269. [29] 郭欣,李金来,李士雨,等.低温甲醇洗吸收塔的计算机模拟[J].煤炭转化, 2013, 36(01): 89-92. [37] 张述伟,胡乃平,王长英,等.用低温甲醇净化不含硫原料气的工艺流程简化[J].高校化学工程学报, 1999(06): 517-522. [38] 董新法.物性估算原理及计算机计算[M].北京:化学工业出版社, 2006. [42] 唐翌明.低压原料气的低温甲醇洗流程设计[D].大连:大连理工大学, 2016. [43] 李英泽.基于数据分析与流程模拟的低温甲醇洗操作优化[D].广州:华南理工大学,2021. [47] 张巧芬,常温脱硫过程中羰基硫生成动力学研究[D].太原:太原理工大学, 2012. [55] 姜元勇,徐曾和.固定床中传质阻力的数值分析[J].化学工程与装备, 2011(1): 6. [56] 宋维端.气—固非催化反应动力学模型的研究[J].化学反应工程与工艺, 1986(04): 32-40. [58] 孙红先,赵听友,蔡冠梁.化工模拟软件的应用与开发[J].计算机与应用化学, 2007(09): 1285-1288. [59] Horsley L H. Azeotropic Data[M], American Chemical Society: Washington, DC, 1973. |
中图分类号: | TQ546.5 |
开放日期: | 2023-06-26 |