- 无标题文档
查看论文信息

论文中文题名:

 复杂地形下机载LiDAR监测土壤侵蚀的能力研究    

姓名:

 李豆    

学号:

 18210210079    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地貌遥感与水土保持    

第一导师姓名:

 李朋飞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-06    

论文外文题名:

 The ability of airborne LiDAR to monitor soil erosion in the topographically complex area    

论文中文关键词:

 黄土高原 ; 土壤侵蚀监测 ; 机载LiDAR ; DoD不确定性 ; 滤波算法 ; 插值算法     

论文外文关键词:

 Loess Plateau ; Soil erosion monitoring ; Airborne LiDAR ; DoD uncertainty ; Filtering algorithm ; Interpolation method    

论文中文摘要:
黄土高原土壤侵蚀严重。近半个世纪以来,学者们采用不同方法监测该区域的土壤侵蚀,但已有研究多基于径流小区开展,大范围(如流域尺度)的土壤侵蚀监测严重缺乏。近年来,新兴的测绘遥感技术,如机载LiDAR,为大范围土壤侵蚀的高效监测提供了可能,但其监测土壤侵蚀的能力尚不清楚。鉴于此,本文以黄土高塬沟壑区董庄沟流域为研究区,探索了机载LiDAR监测地形变化的不确定性(误差),进而基于文献分析获取的土壤侵蚀数据,评估了其监测不同土壤侵蚀过程的能力。首先获取了研究区的无人机LiDAR数据,对比了MCC、ETEW、ATIN、PM、SBF等5种常用滤波算法的精度,确定了适合于研究区的滤波算法;其次,分析IDW、LINE、NN和TIN等4种插值算法DEM求差 (DEM of Difference, DoD)不确定性的空间分布、大小及其与地形和点云密度等关键影响因素的关系,明确了适用于研究区的插值算法,并建立了DoD误差与地形和点云密度之间的关系。最后,通过比较最小DoD误差与不同土壤侵蚀过程导致的地形变化,评估机载LiDAR技术可监测的土壤侵蚀类型。同时,基于构建的高精度DEM,建立了侵蚀沟道与沟长和面积的统计模型。可为黄土高原土壤侵蚀的大尺度、高效率监测提供理论与方法支撑。主要研究结果如下: (1)滤波算法比较方面。MCC和PM的I类(地面点云错分比例)误差通常最低,ETEW和SBF最高,ATIN居中,各算法的II类误差(非地面点云错分比例)和总误差(总体点云错分比例)大小顺序与I类误差大致相反,PM在陡峭区域的点云滤波效果最优。坡度和植被覆盖度显著影响各算法的I类误差。MCC和PM的I类误差随坡度上升和植被覆盖度下降的速率最小,ETEW最大,SBF和ATIN居中。随着点云密度增加,MCC、PM、ATIN的I类误差无明显变化,II类误差和总误差缓慢下降,SBF和ETEW的I类误差增加,II类误差和总误差下降。 (2)DoD误差空间分布及插值算法对比方面。各插值算法DoD不确定性空间分布相似,仅在局部存在明显差异,梁峁坡区域DoD误差绝对值的均值和标准差明显小于沟谷坡区域,沟道处DoD误差极值均位于地形陡峭的沟壁上。基于TIN的DoD误差绝对值小于其他三种插值算法(IDW、NN和LINE)。DoD误差绝对值与地形粗糙度显著正相关(R2>0.99,p<0.001),与点云密度显著负相关(R2>0.97,p<0.001)。经多元回归,建立了DoD误差绝对值与地形粗糙度和点云密度的回归方程(R2>0.95,p<0.001),其可用于估算DoD误差的空间分布,为提升机载LiDAR的地形变化监测精度提供了依据。 (3)土壤侵蚀监测与评估方面。通过对比DoD误差绝对值与不同土壤侵蚀过程侵蚀量,发现采用DoD方法,机载LiDAR可监测由次暴雨引起的切/冲沟类型的土壤侵蚀以及浅层滑坡和深层滑坡,有可能监测浅沟侵蚀,但不能监测细沟侵蚀。基于机载LiDAR点云所生成高精度DEM提取的沟道体积(V)、长度(L)和面积(A_g),得到体积与沟长拟合公式为V=0.015L^2.917(R2=0.541,p<0.001),与面积拟合公式为V=0.0005〖A_g〗^2.338(R2=0.98, p<0.001),面积与体积拟合结果明显优于沟长与体积的拟合关系,建议采用面积与体积的关系预测沟道体积。
论文外文摘要:
The Chinese Loess Plateau is one of the world’s mostly eroded areas. During the past decades, scholars have used various methods to monitor soil erosion on the Loess Plateau. However, due to the limitation of monitoring methods, soil erosion has been primarily monitored at the erosion plot scale, while the large-scale (e.g. watershed scale) monitoring was seriously lacking. In recent years, emerging remote sensing technologies, such as airborne LIDAR, have made it possible to effectively monitor soil erosion process over a large area, but their ability to monitor soil erosion remains unclear. Hence, this study, taking Dongzhuanggou, a small watershed in the gullied loess plateau, as the study area, explored the uncertainty (error) of airborne LiDAR in terrain change detections and evaluated its ability to monitor different soil erosion processes based on soil erosion measurements obtained from literatures. Firstly, five commonly-used filtering algorithms (MCC, ETEW, ATIN, PM and SBF) were assessed to determine the suitable algorithms for the study area. Secondly, four interpolation methods (IDW, LINE, NN and TIN) were used to generate DEM of difference (DoD). The suitable interpolation method was identified for the study area. The spatial distribution and magnitude (DoD_ua) of DoD uncertainty (error) was studied and the relationship between DoD_ua and key influencing factors such as terrain and point cloud density were investigated. Mutltivirable relationships were then established between DoD_ua and local roughness and point cloud density. Finally, the ability of airborne LiDAR technology to monitor soil erosion was evaluated by comparing the minimum DoD_ua with the terrain changes induced by different soil erosion processes. At the same time, based on the high-resolution DEM derived from the airborne point clouds, regressions were also established between gully volume and gully length as well as gully area. The results provide a theoretical and practical reference for the large-scale and efficient soil erosion monitoring on the Loess Plateau. The main findings are as follows: (1) Type I errors (misclassification ratio of ground points) of MCC and PM were generally lowest, type I error of the ETEW and SBF were highest, and those of ATIN were in the middle. The sequence of type II (misclassification ratio of non-ground points) and total errors (misclassification ratio of total points) of the algorithms were roughly opposite to that of the type I error. The PM, compared to other algorithms, yielded the best filtering results for steep-sloping areas. Slope gradients and vegetation coverage significantly affected type I errors of the employed algorithms rather than type II and total errors. The increase (decrease) rate of type I error with slope gradients (vegetation coverage) was lowest for MCC and PM, and highest for ETEW, with that of SBF and ATIN being in the middle. With the increase of the point density, the type I errors of MCC, ATIN and PM did not change apparently, and the type II and total errors slowly decreased, while the type I errors of SBF and ETEW increased, and the type II errors and total errors decreased. (2) The spatial pattern of DoD uncertainty derived using different interpolation methods were similar. The magnitude of DoD uncertainty (DoD_ua) on hillslopes is much lower than that of gully areas, with peak values emerging on gully walls. Among the four interpolation methods, TIN usually achieved the lowest (DoD_ua), and NN produced less fluctuating (DoD_ua), while LINE and IDW usually produced highest and / or most fluctuating DoD_ua, particularly for gully areas. The DoD_ua significantly increased with local roughness (R2>0.99, p<0.001), while it decreased exponentially with point density (R2>0.97, p<0.001). Multivariable regressions were established between DoD_ua derived using different interpolation methods and local roughness and point density, providing an alternative method for the derivation of spatial DoD uncertainty, particularly for ALS data source. (3) In terms of a comparison of DoD_ua and meansured soil erosion rates, LiDAR is able to detect soil erosion of permanent gullies at an event scale and deep-seated / shallow landslides. It is possible to monitor erosion of shallow (ephemeral) gullies, and may not be able to monitor rill erosion. Based on the gully volume (V), gully length (L) and gully area (A_g) derived based on the high-resolution DEM, regressions were established between V and L (V=0.015L^2.917(R2=0.541, p<0.001)) as well as V and A_g (V=0.0005〖A_g〗^2.338(R2=0.98, p<0.001)). The relationship between V and A_g is stronger than that between V and L, suggesting that a prediction of gully erosion based on the A_g relationship should be preferred.
参考文献:

[1] BOCHET E, GARCíA‐FAYOS P, POESEN J. Topographic thresholds for plant colonization on semi‐arid eroded slopes [J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2009, 34(13): 1758-71.

[2] 王占礼. 中国土壤侵蚀影响因素及其危害分析 [J]. 农业工程学报, 2000, 16(04): 32-6.

[3] 李占斌, 朱冰冰, 李鹏. 土壤侵蚀与水土保持研究进展 [J]. 土壤学报, 2008, 45(05): 802-9.

[4] 南秋菊 华珞. 国内外土壤侵蚀研究进展 [J]. 首都师范大学学报(自然科学版), 2003, 24(2): 86-95.

[5] 郑粉莉, 高学田. 坡面土壤侵蚀过程研究进展 [J]. 地理科学, 2003, 23(2): 103-8.

[6] 姚文艺, 李勉. 黄土高原土壤侵蚀及综合治理研究评述 [J]. 中国水土保持, 2005, (04): 19-21.

[7] FENG X, SUN G, FU B, et al. Regional effects of vegetation restoration on water yield across the Loess Plateau, China [J]. Hydrol Earth Syst Sci, 2012, 16(26): 17-28.

[8] SUN W, SHAO Q, LIU J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China [J]. Catena, 2014, 121(1): 51-63.

[9] 桑广书. 黄土高原历史地貌与土壤侵蚀演变研究进展 [J]. 浙江师范大学学报(自然科学版), 2004, 27(04): 78-82.

[10] 陈永宗, 景可, 蔡国强. 黄土高原现代侵蚀与治理 [M]. 北京: 科学出版社, 1988.

[11] 付会芳. 黄土高原水土流失及其防治措施 [J]. 水土保持研究, 1997, 4(1): 161-5.

[12] LI P, MU X, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau [J]. Earth-Science Reviews, 2017, 7(170):17-30.

[13] 朱显谟. 黄土区土壤侵蚀的分类 [J]. 土壤学报, 1956, 4(2): 99-115.

[14] 朱显谟. 黄土高原水蚀的主要类型及其有关因素 [J]. 水土保持通报, 1982, (03): 40-4.

[15] 龚时旸, 蒋德麒. 黄河中游黄土丘陵沟壑区沟道小流域的水土流失及治理 [J]. 中国科学, 1978, 21(6): 671-8.

[16] 吴普特, 周佩华. 地表坡度对雨滴溅蚀的影响 [J]. 水土保持通报, 1991, 11(3): 8-13+28.

[17] 高学田, 包忠谟. 降雨特性和土壤结构对溅蚀的影响 [J]. 水土保持学报, 2001, 15(3): 24-6+47.

[18] 杨吉山, 姚文艺, 郑明国, 等. 岔巴沟淤地坝小流域重力侵蚀产沙量分析 [J]. 水利学报, 2017, 48(2): 241-5.

[19] 黄秉维. 关于西北黄土高原土壤侵蚀因素的问题 [J]. 科学通报, 1954, (06): 65-6.

[20] 郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展 [J]. 农业机械学报, 2016, 47(8): 48-59+116.

[21] 刘元保, 朱显谟, 周佩华, 等. 黄土高原土壤侵蚀垂直分带性研究 [J]. 水土保持研究, 1988, 7(1): 5-8.

[22] 陆兆熊, 蔡强国, 朱同新, 等. 黄土丘陵沟壑区土壤侵蚀过程研究 [J]. 中国水土保持, 1991, (11): 21-4+64-5.

[23] 王占礼, 吴永红, 白志刚, 等. 黄土高原典型地区土壤侵蚀研究 [J]. 世界科技研究与发展, 2000, (01): 76-9.

[24] 陈力, 刘青泉, 李家春. 坡面细沟侵蚀的冲刷试验研究 [J]. 水动力学研究与进展, 2005, 20(6): 761-6.

[25] 徐建民. 黄土高原浅沟发育主要影响因素及其防治措施研究 [J]. 水土保持学报, 2008, 22(4): 39-41.

[26] 李浩, 杨薇, 刘晓冰, 等. 沟蚀发生的地貌临界理论计算中数据获取方法及应用 [J]. 农业工程学报, 2019, 35(18): 127-33.

[27] 杨吉山, 姚文艺, 王玲玲. 黄土沟道重力侵蚀规律及机理研究 [J]. 人民黄河, 2014, 36(6): 93-6.

[28] 张洪江, 程金花. 土壤侵蚀原理.第3版 [M]. 北京: 科学出版社, 2014.

[29] LI P, ZANG Y, MA D, et al. Soil erosion rates assessed by RUSLE and PESERA for a Chinese Loess Plateau catchment under land‐cover changes [J]. Earth Surface Processes and Landforms, 2020, 45(3): 707-22.

[30] 曾齐红, 毛建华, 李先华, 等. 激光雷达点云平面拟合过滤算法 [J]. 武汉大学学报(信息科学版), 2008, 33(1): 25-8.

[31] 周晓明, 马秋禾, 许晓亮, 等. LIDAR点云滤波算法分析——以ISPRS测试实验为参考 [J]. 测绘工程, 2011, 20(5): 36-9.

[32] 黄先锋, 李卉, 王潇, 等. 机载LiDAR数据滤波方法评述 [J]. 测绘学报, 2009, 38(5): 466-9.

[33] 刘经南, 张小红. 激光扫描测高技术的发展与现状 [J]. 武汉大学学报(信息科学版), 2003, 28(2): 132-7.

[34] STOCKDONF H F, SALLENGER JR A H, LIST J H, et al. Estimation of shoreline position and change using airborne topographic lidar data [J]. Journal of Coastal Research, 2002, 18(3): 502-13.

[35] THOMA D P, GUPTA S C, BAUER M E, et al. Airborne laser scanning for riverbank erosion assessment [J]. Remote sensing of Environment, 2005, 95(4): 493-501.

[36] ABDULLAH A, RAHMAN A, VOJINOVIC Z. LiDAR filtering algorithms for urban flood application: Review on current algorithms and filters test [J]. Laserscanning09, 2009, 38(3/W8): 30-6.

[37] GREGOIRE T G, NæSSET E, MCROBERTS R E, et al. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass [J]. Remote sensing of environment, 2016, 173(2): 98-108.

[38] HOLM S, NELSON R, STåHL G. Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar [J]. Remote sensing of environment, 2017, 197(8): 85-97.

[39] ELTNER A, MULSOW C, MAAS H. Quantitative measurement of soil erosion from TLS and UAV data [J]. International Archives of the Photogrammetry, Remote Sensing, and Spatial Information Sciences, 2013, 40(W2): 4-6.

[40] JAMES L A, WATSON D G, HANSEN W F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA [J]. Catena, 2007, 71(1): 132-44.

[41] GOODWIN N R, ARMSTON J D, MUIR J, et al. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland [J]. Geomorphology, 2017, 282(APR.1): 195-208.

[42] VERICAT D, SMITH M W, BRASINGTON J. Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys [J]. Catena, 2014, 120(11):164-76.

[43] 陈永宗. 黄河中游黄土丘陵区的沟谷类型 [J]. 地理科学, 1984, 4(4): 321-7.

[44] 姚文艺, 肖培青. 黄土高原土壤侵蚀规律研究方向与途径 [J]. 水利水电科技进展, 2012, 32(2): 73-8.

[45] 陈永宗. 黄土高原土壤侵蚀规律研究工作回顾 [J]. 地理研究, 1987, 6(01): 78-87.

[46] 桑广书. 黄土高原历史地貌与土壤侵蚀演变研究进展 [J]. 浙江师范大学学报(自然科学版), 2004, 27(4): 398-402.

[47] 桑广书. 黄土高原历史时期地貌与土壤侵蚀演变研究 [D]. 陕西:陕西师范大学, 2003.

[48] 刘善建. 天水水土流失测验的初步分析 [J]. 科学通报, 1953, (12): 59-65.

[49] 赵珩钪, 曹斌挺, 焦菊英. 黄土丘陵沟壑区退耕坡地不同植物群落的土壤侵蚀特征 [J]. 中国水土保持科学, 2017, 15(03): 105-13.

[50] 焦菊英, 王志杰, 魏艳红, 等. 延安流域极端暴雨下侵蚀产沙特征野外观测分析 [J]. 农业工程学报, 2017, 33(13): 159-67.

[51] 江忠善, 刘志, 贾志伟. 地形因素与坡地水土流失关系的研究 [J]. 中国科学院水利部西北水土保持研究所集刊(黄土高原试验区土壤侵蚀和综合治理减沙效益研究专集), 1990, 12(02): 1-8+24.

[52] 陈永宗. 黄土高原国土整治中几个问题的探讨 [J]. 自然资源学报, 1988, 3(01): 3-10.

[53] 伍铁牛. 更新世黄土高原中南部土壤侵蚀研究 [D]. 杨凌:中国科学院研究生院(教育部水土保持与生态环境研究中心), 2010.

[54] 段钊, 赵法锁, 陈新建. 陕北黄土高原区滑坡发育类型与时空分布特征——以吴起县为例 [J]. 灾害学, 2011, 26(04): 54-8.

[55] 陈俊杰, 孙莉英, 刘俊体, 等. 不同坡长和雨强条件下坡度对细沟侵蚀的影响 [J]. 水土保持通报, 2013, 33(2): 1-5.

[56] 陆绍娟, 王占礼, 谭贞学. 黄土坡面细沟水流剪切力及其侵蚀效应研究 [J]. 水土保持通报, 2013, 33(6): 46-50.

[57] 郭明明, 王文龙, 李建明, 等. 黄土区坡耕地耕作对浅沟径流产沙及其形态发育特征的影响 [J]. 农业工程学报, 2015, 31(15): 114-23.

[58] 程圣东, 李鹏, 李聪, 等. 降雨-植被格局耦合作用对坡沟系统水沙特征影响 [J]. 应用基础与工程科学学报, 2016, 24(2): 230-41.

[59] 赵宇, 陈晓燕, 米宏星, 等. 基于体积法对黄土细沟侵蚀沿程分布模拟的研究 [J]. 土壤学报, 2014, 51(6): 1234-41.

[60] 郭军权, 刘敏, 王文龙. 上方来水对浅沟侵蚀产沙的野外放水冲刷试验研究 [J]. 水土保持学报, 2012, 26(3): 49-52.

[61] 汤立群. 坡面降雨溅蚀及其模拟 [J]. 水科学进展, 1995, 6(4): 304-10.

[62] 刘国彬, 张光辉. 原状土冲刷法与人工模拟降雨法研究土壤抗冲性对比分析 [J]. 水土保持通报, 1996, 16(02): 32-7.

[63] 甘卓亭, 叶佳, 周旗, 等. 模拟降雨下草地植被调控坡面土壤侵蚀过程 [J]. 生态学报, 2010, 30(09): 2387-96.

[64] 张信宝. 137Cs法测算黄土高原土壤侵蚀速率的初步研究 [J]. 地球化学, 1991, (3): 212-8.

[65] 石辉, 田均良, 刘普灵. 利用REE示踪法研究小流域泥沙来源 [J]. 中国科学:E辑, 1996, 26(5): 474-80.

[66] 宋炜, 刘普灵, 杨明义. 利用REE示踪法研究坡面侵蚀过程 [J]. 水科学进展, 2004, 15(2): 197-201.

[67] 李聪, 李鹏, 李占斌, 等. REE示踪坡面径流侵蚀演变过程试验研究 [J]. 水土保持学报, 2014, 28(3): 19-28.

[68] 高光耀, 傅伯杰, 刘宇, 等. 基于改进SCS-CN和RUSLE模型的黄土丘陵坡面径流侵蚀模拟[C]. //中国地理学会学术年会. 中国科学院新疆生态与地理研究所建所五十年庆典论文摘要F集. 北京:科学出版社, 2011: 1-2.

[69] 李斌兵, 肖培青, 余叔同. 黄土丘陵沟壑区坡沟系统切沟侵蚀数值模拟 [J]. 中国水土保持科学, 2012, 10(1): 19-24.

[70] 马修军, 谢昆青. GIS环境下流域降雨侵蚀动态模拟研究-以PCRaster系统和LISEM模型为例 [J]. 环境科学进展, 1998, 7(5): 137-44.

[71] 叶浩, 石建省, 程彦培, 等. ‘劈’砂岩重力侵蚀定量计算的GPS、GIS方法初探 [J]. 地球学报, 2004, 25(4): 479-82.

[72] 高彦华, 汪宏清. 遥感技术在土壤侵蚀动态监测中的应用 [J]. 中国水土保持, 2004, (1): 37-8.

[73] 史德明, 石晓日. 应用遥感技术监测土壤侵蚀动态的研究 [J]. 土壤学报, 1996, (1): 48-58.

[74] 李智广, 曾大林. 开发建设项目土壤流失量预测方法初探 [J]. 中国水土保持, 2001, (4): 27-29+48

[75] 隋立春, 张宝印. Lidar遥感基本原理及其发展 [J]. 测绘科学技术学报, 2006, 23(02): 52-4.

[76] AO Z, YANJUN S, WENKAI L, et al. One-Class Classification of Airborne LiDAR Data in Urban Areas Using a Presence and Background Learning Algorithm [J]. Remote Sensing, 2017, 9(10): 1001-16.

[77] 靳克强, 龚志辉, 汤志强, 等. 机载LiDAR技术原理及其几点应用分析 [J]. 测绘与空间地理信息, 2011, 34(1): 154-6+60.

[78] 朱士才. LIDAR的技术原理以及在测绘中的应用 [J]. 现代测绘, 2006, 29(04): 16-7.

[79] 李豆, 李朋飞, 穆兴民, 等. 机载LiDAR测量复杂地形中滤波算法的比较研究 [J]. 水土保持研究, 2021, 28 (4): 171-178.

[80] 郭向前, 郝伟涛, 李响. 基于机载LIDAR技术的研究及其展望 [J]. 测绘与空间地理信息, 2013, 36(2): 69-72.

[81] 赵峰, 李增元, 王韵晟, 等. 机载激光雷达(LiDAR)数据在森林资源调查中的应用综述 [J]. 遥感信息, 2008,(1): 106-10.

[82] AXELSSON P. Processing of laser scanner data—algorithms and applications [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3): 138-47.

[83] 惠振阳, 程朋根, 官云兰, 等. 机载LiDAR点云滤波综述 [J]. 激光与光电子学进展, 2018, 55(6):1-9.

[84] VOSSELMAN G. Slope based filtering of laser altimetry data [J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2; PART 3): 935-42.

[85] KILIAN J, HAALA N, ENGLICH M. Capture and evaluation of airborne laser scanner data [J]. International Archives of Photogrammetry and Remote Sensing, 1996, (31)383-8.

[86] SITHOLE G, VOSSELMAN G. Report: ISPRS comparison of filters [R]. Netherlands, ISPRS commission III, 2003.

[87] AXELSSON P. DEM generation from laser scanner data using adaptive TIN models [J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4): 110-7.

[88] AGUILAR F J, MILLS J P, DELGADO J, et al. Modelling vertical error in LiDAR-derived digital elevation models [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 103-10.

[89] GUO Q, LI W, YU H, et al. Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods [J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(6): 701-12.

[90] AGUILAR F J, AGüERA F, AGUILAR M A, et al. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy [J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(7): 805-16.

[91] OKYAY U, TELLING J, GLENNIE C L, et al. Airborne lidar change detection: An overview of Earth sciences applications [J]. Earth-Science Reviews, 2019, (198):102929.

[92] SARA, BANGEN, JAMES, et al. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems [J]. Water Resources Research, 2016, 52(2): 1176-93.

[93] LI L, NEARING M A, NICHOLS M H, et al. Using terrestrial LiDAR to measure water erosion on stony plots under simulated rainfall [J]. Earth Surface Processes and Landforms, 2020, 45(2): 484-95.

[94] LAGUE D, BRODU N, LEROUX J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (NZ) [J]. ISPRS journal of photogrammetry and remote sensing, 2013, 82(8): 10-26.

[95] NOURBAKHSHBEIDOKHTI S, KINOSHITA A, CHIN A, et al. A Workflow to Estimate Topographic and Volumetric Changes and Errors in Channel Sedimentation after Disturbance [J]. Remote Sensing, 2019, 11(5): 586.

[96] GIRARDEAUMONTAUT D, ROUX M, MARC R, et al. Change detection on points cloud data acquired with a ground [J]. Netherlands, Commission III, 2005.

[97] WILLIAMS J G, ANDERS K, WINIWARTER L, et al. Multi-directional change detection between point clouds [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172(2):95-113.

[98] SCHAFFRATH K R, BELMONT P, WHEATON J M. Landscape-scale geomorphic change detection: Quantifying spatially variable uncertainty and circumventing legacy data issues [J]. Geomorphology, 2015, 250(DEC.1): 334-48.

[99] LANE S N, RICHARDS K S, CHANDLER J H. Developments in monitoring and modelling small-scale river bed topography [J]. Earth Surface Processes and Landforms, 1994, 19(4): 349-68.

[100] LANE S N, WESTAWAY R M, MURRAY HICKS D. Estimation of erosion and deposition volumes in a large, gravel‐bed, braided river using synoptic remote sensing [J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2003, 28(3): 249-71.

[101] JOSEPH M. WHEATON J B, STEPHEN E. DARBY AND DAVID A. SEAR. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets [J]. Earth Surface Processes and Landforms, 2010, 35(2): 136-56.

[102] RICHARD. DEMs of Difference [J]. Geomorphological Techniques, 2012, 2(3.2).

[103] FAVALLI M, FORNACIAI A, MAZZARINI F, et al. Evolution of an active lava flow field using a multitemporal LIDAR acquisition [J]. Journal of Geophysical Research Solid Earth, 2010, 115(B11): 203

[104] MILAN D J, HERITAGE G L, HETHERINGTON D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river [J]. Earth Surface Processes & Landforms, 2007, 32(11): 1657-74.

[105] FEY C, WICHMANN V. Long-range terrestrial laser scanning for geomorphological change detection in alpine terrain - handling uncertainties [J]. Earth Surface Processes and Landforms, 2017, 42(4): 789-802.

[106] FULLER I C, LARGE A R G, MILAN D J. Quantifying channel development and sediment transfer following chute cutoff in a wandering gravel-bed river [J]. Geomorphology, 2003, 54(3-4): 307-23.

[107] BRASINGTON J, RUMSBY B T, MCVEY R A. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey [J]. Earth Surface Processes & Landforms, 2000, 25(9): 973-90.

[108] STOJIC M, CHANDLER J H, ASHMORE P E, et al. The assessment of sediment transport rates by automated digital photogrammetry [J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(5): 387-95.

[109] CROKE J, TODD P, THOMPSON C, et al. The use of multi temporal LiDAR to assess basin-scale erosion and deposition following the catastrophic January 2011 Lockyer flood, SE Queensland, Australia [J]. Geomorphology, 2013, 184(FEB.15): 111-26.

[110] RAZAK K A, STRAATSMA M, VAN WESTEN C, et al. Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization [J]. Geomorphology, 2011, 126(1-2): 186-200.

[111] BRASINGTON J, LANGHAM J, RUMSBY B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport [J]. Geomorphology, 2003, 53(3-4): 299-316.

[112] MILNE J, SEAR D. Modelling river channel topography using GIS [J]. International Journal of Geographical Information Science, 1997, 11(5): 499-519.

[113] MILAN D J, HERITAGE G L, LARGE A R G, et al. Filtering spatial error from DEMs: Implications for morphological change estimation [J]. Geomorphology, 2011, 125(1): 160-71.

[114] HERITAGE G L, MILAN D J, LARGE A R, et al. Influence of survey strategy and interpolation model on DEM quality [J]. Geomorphology, 2009, 112(3-4): 334-44.

[115] JAMES L A, HODGSON M E, GHOSHAL S, et al. Geomorphic change detection using historic maps and DEM differencing: The temporal dimension of geospatial analysis [J]. Geomorphology, 2012, 137(1): 181-98.

[116] KINZEL P J, WRIGHT C W, NELSON J M, et al. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river [J]. Journal of Hydraulic Engineering, 2007, 133(7): 838-42.

[117] HODGSON M E, BRESNAHAN P. Accuracy of airborne lidar-derived elevation [J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(3): 331-9.

[118] MARTIN Y, CHURCH M. Bed‐material transport estimated from channel surveys: Vedder River, British Columbia [J]. Earth Surface Processes and Landforms, 1995, 20(4): 347-61.

[119] PELLETIER J D, OREM C A. How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-LiDAR change detection [J]. Earth Surface Processes & Landforms, 2014, 39(4):1822-32.

[120] OKYAY U, TELLING J, GLENNIE G L, et al. Airborne lidar change detection: An overview of Earth Sciences applications [J]. Earth-Science Reviews, 2019, (198): 102929.

[121] 陶敏, 陈喜, 张志才, 等. 黄土高原区不同地貌类型下入渗水深度研究——以南小河沟为例 [J]. 中国农村水利水电, 2017, (6): 87-91.

[122] 袁静, 张富, 李怀有, 等. 南小河沟流域不同措施处理下的水土流失规律 [J]. 水土保持通报, 2014, 34(3): 39-43.

[123] 陶敏, 陈喜. 黄土高塬沟壑区覆被变化生态水文效益分析 [J]. 人民黄河, 2015, 37(3): 96-9.

[124] 黄艳丽, 李占斌, 苏辉, 等. 人工林对黄土高原小流域上下游不同坡面土壤水分的影响 [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15):108-116.

[125] 卞玉敏, 吕海深, 赵盼盼. 南小河沟土地利用变化对水文过程的影响 [J]. 人民黄河, 2015, 37(9): 88-91.

[126] EVANS J S, HUDAK A T. A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 1029-38.

[127] ZHAO X, SU Y, LI W, et al. A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas [J]. Canadian Journal of Remote Sensing, 2018, 44(4):287-298.

[128] ZHANG K, WHITMAN D. Comparison of three algorithms for filtering airborne lidar data [J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(3): 313-24.

[129] JULGE K, ELLMANN A, GRUNO A. Performance analysis of freeware filtering algorithms for determining ground surface from airborne laser scanning data [J]. Journal of Applied Remote Sensing, 2014, 8(1): 083573.

[130] HARALICK R M, STERNBERG S R, ZHUANG X, . Image analysis using mathematical morphology [J]. IEEE Transpattern Anal & Machintell, 1987, 9(4): 532-50.

[131] ZHANG K, CHEN S-C, WHITMAN D, et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data [J]. IEEE transactions on geoscience and remote sensing, 2003, 41(4): 872-82.

[132] JULGE K, ELLMANN A, GRUNO A. Performance analysis of freeware filtering algorithms for determining ground surface from airborne laser scanning data [J]. Journal of Applied Remote Sensing, 2014, 8(1): 1-15.

[133] ZHAO X, SU Y, LI W, et al. A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas [J]. Canadian Journal of Remote Sensing, 2018, 44(4): 287-98.

[134] HANCOCK G R. The impact of different gridding methods on catchment geomorphology and soil erosion over long timescales using a landscape evolution model [J]. Earth Surface Processes and Landforms, 2006, 31(8): 1035-50.

[135] BATER C W, COOPS N C. Evaluating error associated with lidar-derived DEM interpolation [J]. Computers & Geosciences, 2009, 35(2): 289-300.

[136] LU G Y, WONG D W. An adaptive inverse-distance weighting spatial interpolation technique [J]. Computers & geosciences, 2008, 34(9): 1044-55.

[137] 张锦明, 郭丽萍, 张小丹. 反距离加权插值算法中插值参数对DEM插值误差的影响 [J]. 测绘科学技术学报, 2012, 29(01): 55-60.

[138] POPESCU S C, WYNNE R H, NELSON R F. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size [J]. Computers and electronics in agriculture, 2002, 37(1-3): 71-95.

[139] BOISSONNAT J-D, CAZALS F. Natural neighbor coordinates of points on a surface [J]. Computational Geometry, 2001, 19(2-3): 155-73.

[140] 冯波, 陈明涛, 岳冬冬,等. 基于两种插值算法的三维地质建模对比[J]. 吉林大学学报(地球科学版), 2019, 49(004):1200-1208.

[141] SIBSON R. A Brief Description of Natural Neighbor Interpolation [C] //proceedings of the Interpreting Multivariate Data, F, 1981.

[142] POLIS M F, MCKEOWN D M. Iterative TIN generation from digital evaluation models [C] //proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, F, 1992.

[143] HU P, LIU X, HU H. Accuracy Assessment of Digital Elevation Models based on Approximation Theory [J]. Photogrammetric Engineering & Remote Sensing, 2009, 75(1): 49-56.

[144] GOODWIN N R, ARMSTON J, STILLER I, et al. Assessing the repeatability of terrestrial laser scanning for monitoring gully topography: A case study from Aratula, Queensland, Australia [J]. Geomorphology, 2016, 262(Jun.1)24-36.

[145] YANG X, LI M, NA J, et al. Gully boundary extraction based on multidirectional hill-shading from high-resolution DEMs [J]. Transactions in Gis, 2017, 21(6):1204-16.

[146] ZHANG, ZHU, QK, et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area [J]. CATENA, 2017, 2017, 148(1): 195-203.

[147] EVANS M, LINDSAY J. High resolution quantification of gully erosion in upland peatlands at the landscape scale [J]. Earth Surface Processes and Landforms, 2010, 35(8): 876-86.

[148] EVANS M, ALLOTT T, HOLDEN J, et al. Understanding gully blocking in deep peat [R]. Derbyshire: Moors for the Future Report, 2005.

[149] MONTEALEGRE A L, LAMELAS M T, DE LA RIVA J. A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4072-85.

[150] MOORE I D, Grayson R B, Tony L, et al. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications [J]. Hydrological Processes, 1991, 5(1): 3-30.

[151] MALCOLM S, JEAN B, HERBERT M Q. Geophysical parametrization and interpolation of irregular data using natural neighbours [J]. Geophysical Journal International, 1995, 122(3): 837-57.

[152] ABRAMOV O, MCEWEN A. Technical note: An evaluation of interpolation methods for Mars Orbiter Laser Altimeter (MOLA) data [J]. International Journal of Remote Sensing, 2004, 25(3): 669-76.

[153] LIU X, ZHANG Z. LiDAR data reduction for efficient and high quality DEM generation [J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, beijing.2008, 37:173-8.

[154] 胡胜. 黄土高原滑坡空间格局及其对地貌演化的影响 [D]. 西安:西北大学,2019.

[155] 姚文波, 刘文兆, 侯甬坚. 汶川大地震陇东黄土高原崩塌滑坡的调查分析 [J]. 生态学报, 2008, 28(12): 5917-26.

[156] 曹斌挺, 焦菊英, 王志杰, 等. 2013年延河流域特大暴雨下的滑坡特征 [J]. 水土保持研究, 2015, 22(6): 103-9.

[157] 杨立中, 王高峰, 王爱军, 等. 陇东黄土丘陵区滑坡形成机理分析-以环县西北地区为例 [J]. 中国地质灾害与防治学报, 2016, 27(2): 39-48.

[158] 祝俊华, 陈志新, 祝艳波, 等. 延安市滑坡分布规律及发育特征 [J]. 地质科技情报, 2017, 02(36): 241-8.

[159] 滕宏泉, 范立民, 向茂西, 等. 黄土沟壑区地质灾害发生的降雨临界值分析——延安市 2013 年 7 月份强降雨诱发大面积地质灾害为例 [J]. 陕西省地质环境监测总站 2013 年度学术研讨会优秀论文, 2013.

[160] ZHUANG J Q, PENG J B. A coupled slope cutting—a prolonged rainfall-induced loess landslide: a 17 October 2011 case study [J]. Bulletin of Engineering Geology and the Environment, 2014, 73(4): 997-1011.

[161] GUO W Z, CHEN Z X, WANG W L, et al. Telling a different story: The promote role of vegetation in the initiation of shallow landslides during rainfall on the Chinese Loess Plateau [J]. Geomorphology, 2019, 350(1): 068-79.

[162] 韩勇, 郑粉莉, 徐锡蒙, 等. 子午岭林区浅层滑坡侵蚀与植被的关系——以富县"7·21"特大暴雨为例 [J]. 生态学报, 2016, 36(15): 4635-43.

[163] 黄玉华, 冯卫, 李政国. 陕北延安地区2013年"7.3"暴雨特征及地质灾害成灾模式浅析 [J]. 灾害学, 2014, 29(2): 54-9.

[164] 白先发, 高建恩, 贾立志, 等. 极端暴雨条件下黄土区典型梯田防蚀效果研究 [J]. 水土保持研究, 2015, 22(03): 10-5.

[165] 刘秉正, 翟明柱, 吴法啟. 渭北高原沟谷侵蚀初探 [J]. 中国科学院水利部西北水土保持研究所集刊(黄土高原试验区土壤侵蚀和综合治理减沙效益研究专集), 1990.

[166] 王雷, 龙永清, 徐佳, 等. 黄土侵蚀沟稳定性监测与初步分析 [J]. 地理与地理信息科学, 2017, 33(4): 119-122

[167] GUAN Y, YANG S, CHANGSEN ZHAO H L, et al. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau [J]. Soil and Tillage Research, 2021, 205(1):104800.

[168] TANG B, JIAO J, ZHANG Y, et al. The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the Northern Loess Plateau, China [J]. Soil and Tillage Research, 2020, 204(10): 104716.

[169] 郭晋伟, 何亮, 裴志林, 等. 极端暴雨条件下黄土高原水平梯田损毁情况调查分析——以岔巴沟流域"7·26"特大暴雨为例 [J]. 水土保持研究, 2019, 26 (06): 111-137.

[170] 王楠,陈一先,白雷超, 等. 陕北子洲县"7·26"特大暴雨引发的小流域土壤侵蚀调查 [J]. 水土保持通报, 2017, 37(4): 4-13.

[171] YANG B, WANG W-L, GUO M-M, et al. Soil erosion of unpaved loess roads subjected to an extreme rainstorm event: a case study of the Jiuyuangou watershed on the Loess Plateau, China [J]. Journal of Mountain Science, 2019, 16(6): 1396-407.

[172] 冯兰茜, 王文龙, 郭明明, 等. 根系密度对黄土塬沟头溯源侵蚀产沙和形态演化过程的影响 [J]. 农业工程学报, 2020, 36 (06): 96-104.

[173] 康宏亮, 王文龙, 薛智德, 等. 冲刷条件下黄土丘陵区浅沟侵蚀形态及产流产沙特征 [J]. 农业工程学报, 2016, 32(20): 161-70.

[174] 郑粉莉, 康绍忠. 黄土坡面不同侵蚀带侵蚀产沙关系及其机理 [J]. 地理学报, 1998, 65(5): 422-8.

[175] 徐锡蒙, 郑粉莉, 覃超, 等. 黄土丘陵沟壑区浅沟发育动态监测与形态定量研究 [J]. 农业机械学报, 2019, 50(4): 274-82.

[176] 杨波, 王文龙, 张闯娟, 等. "7 26"暴雨下不同土地利用坡面浅沟沟槽发育特征及体积估算 [J]. 农业工程学报, 2019, 35(9): 121-8.

[177] 侯建才. 黄土丘陵沟壑区小流域侵蚀产沙特征示踪研究 [D]. 西安: 西安理工大学, 2007.

[178] 丁晋利, 郑粉莉, 张信宝, 等. 利用 7 Be 研究侵蚀性降雨前后坡面土壤侵蚀空间分布特征 [J], 2005, 25(2): 16-19.

[179] GUO M, YANG B, WANG W, et al. Distribution, morphology and influencing factors of rills under extreme rainfall conditions in main land uses on the Loess Plateau of China [J]. Geomorphology, 2019, 345(1-3): 106847.

[180] ZHANG Y, ZHAO Y, LIU B, et al. Rill and gully erosion on unpaved roads under heavy rainfall in agricultural watersheds on China's Loess Plateau [J]. Agriculture, Ecosystems & Environment, 2019, 284(15):106580.

[181] WANG Z J, JIAO J Y, RAYBURG S, et al. Soil erosion resistance of "Grain for Green" vegetation types under extreme rainfall conditions on the Loess Plateau, China [J]. Catena, 2016, 141(6): 109-16.

[182] GUO W, BAI Y, CUI Z, et al. The impact of concentrated flow and slope on unpaved loess-road erosion on the Chinese Loess Plateau [J]. Land Degradation & Development, 2021, 27(1).

[183] DELONG S B, PRENTICE C S, HILLEY G E, et al. Multitemporal ALSM change detection, sediment delivery, and process mapping at an active earthflow [J]. Earth Surface Processes and Landforms, 2012, 37(3): 262-72.

[184] DEWITTE O, JASSELETTE J-C, CORNET Y, et al. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium [J]. Engineering Geology, 2008, 99(1-2): 11-22.

[185] BULL J, MILLER H, GRAVLEY D, et al. Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand [J]. Geomorphology, 2010, 124(1-2): 75-84.

[186] BURNS W J, COE J A, KAYA B S, et al. Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon [J]. Environmental and Engineering Geoscience, 2010, 16(4): 315-41.

[187] CORSINI A, BORGATTI L, CERVI F, et al. Estimating mass-wasting processes in active earth slides–earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR [J]. Natural Hazards and Earth System Sciences, 2009, 9(2): 433-9.

[188] CAPRA A, MAZZARA L M, SCICOLONE B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy [J]. Catena, 2005, 59(2): 133-46.

[189] KOMPANI-ZARE M, SOUFI M, HAMZEHZARGHANI H, et al. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran [J]. Catena, 2011, 86(3): 150-9.

[190] NACHTERGAELE J, POESEN J, STEEGEN A, et al. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils [J]. 2001, 40(3-4): 0-252.

[191] LI Z, ZHANG Y, ZHU Q, et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area [J]. Catena, 2017, 148(5): 195-203.

中图分类号:

 p237    

开放日期:

 2022-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式