论文中文题名: | 基于声发射信息熵的含缺口TC4板裂纹萌生机理研究 |
姓名: | |
学号: | 22205224124 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 材料损伤检测技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-17 |
论文答辩日期: | 2025-05-29 |
论文外文题名: | Study on crack initiation mechanism of TC4 plate with notch based on acoustic emission information entropy |
论文中文关键词: | |
论文外文关键词: | TC4 titanium allow ; crack initiation ; acoustic emission information entropy ; scanning electron microscopy |
论文中文摘要: |
材料常见的几何非连续的破坏形式,一般表现为缺口,对材料的破坏作用很大。对于带有缺口的金属薄板在断裂破坏时经历裂纹的萌生和扩展两个阶段,特别是当裂纹起源为缺口时,能够精确测量出萌生载荷是优化冲压加工的关键所在。钛及钛合金因其高强度、耐腐蚀性和抗氧化性能、高温强度高,在航空航天领域中成为航空发动机叶片、核反应堆压力容器等重要零件的主要材料。但服役过程中结构在复杂工作环境下早期裂纹扩展引起的疲劳断裂问题,每年使全球蒙受巨大的经济损失。考虑到TC4钛合金表面存在丰富β相微裂纹难以被传统的无损检测手段发现和识别,为此,提出裂纹萌生动态识别新途径。 通过设计具有不同半径凹口的TC4板材试样,在万能试验机上进行了位移控制拉伸试验,加载速率设置为0.2 mm/min。在整个阶段使用高精度声发射系统收集损伤信号。利用表征参数分析法对声发射信号进行表征处理,并比较各种特征参数来预测试样在拉伸断裂过程中的裂纹萌生时间。 本文应用累积振铃计数Shannon熵以及Kullback-Leibler相对熵给出了新的损伤判别准则,熵曲线斜率变小为损伤判据对应于缺口根部微裂纹成核的临界点,且通过拉伸卸载试验设计获得了成核过程中的等效载荷参数,并通过纵向截面金相显微镜分析校核了缺口根部微裂纹的空间定性结果。统计发现成核载荷测得值和理论预测值相对偏差在15%以内,工程上表明信息熵预测方法的可接受。采用扫描电子显微镜纳米尺度下对断口特征进行表征,实现对断口特征与微观变化的关联性研究。 本研究成果开发的在线健康监测算法基于熵值阈值判别原则实现微秒级损伤状态判读,较传统方法的检测灵敏度提升两个数量级。经工程验证该技术在试验中可将裂纹萌生时间预测误差控制在8 min以内,为构建钛合金结构全寿命周期管理体系提供了可靠的技术支撑。 |
论文外文摘要: |
The geometric discontinuity features commonly present in engineering components are usually manifested in the form of notches, which directly affect the fracture behavior of materials during service. Accurately determining the critical load for crack initiation and propagation during the fracture process of metal sheets with notches, especially when the crack originates from the root of the notch, has significant engineering value for optimizing the cutting process. Titanium and titanium alloys have become the core materials for key components such as aerospace engine blades and nuclear reactor pressure vessels due to their high strength, excellent corrosion resistance, and good high-temperature stability. However, the structural failure caused by early crack propagation behavior under complex service conditions results in significant global economic losses every year. In response to the industry difficulty of capturing nanoscale microcracks in the β - phase enrichment zone on the surface of TC4 titanium alloy using conventional non-destructive testing methods, this study proposes a new method for real-time monitoring of crack initiation status. By designing TC4 sheet specimens with different radius notches, displacement controlled tensile tests were conducted on a universal testing machine with a loading rate set at 0.2 mm/min. Use high-precision acoustic emission systems to collect damage signals throughout the entire stage. Using the characterization parameter analysis method to characterize and process acoustic emission signals, and comparing various characteristic parameters to predict the crack initiation time of the specimen during tensile fracture. This article proposes a novel damage assessment criterion based on cumulative ringing count Shannon entropy and Kullback Leibler relative entropy. When the slope of the entropy curve decreases beyond the damage criterion, it corresponds to the critical state of microcrack nucleation at the root of the notch. Subsequently, the equivalent load parameters during the nucleation process were obtained through the design of tensile unloading tests, and the spatial positioning accuracy of microcracks at the root of the notch was verified through metallographic analysis of longitudinal sections. The statistical results show that the relative deviation between the measured values of nucleation load and the theoretical predicted values remains within the threshold of 15%, confirming the engineering reliability of the information entropy prediction method. Characterization of fracture morphology at the nanoscale using scanning electron microscopy to achieve correlation analysis between fracture mechanisms and microscopic changes. The online health monitoring algorithm developed in this research achievement is based on the entropy threshold discrimination principle to achieve microsecond level damage state interpretation, which improves the detection sensitivity by two orders of magnitude compared to traditional methods. Through engineering verification, this technology can control the prediction error of crack initiation time within 8 minutes in experiments, providing reliable technical support for the construction of a full life cycle management system for titanium alloy structures. |
参考文献: |
[1]Einstein Herbert H. Fractures: tension and shear. Rock Mech Rock Eng. 2021;54 (7):3389–3408. [4]李宝亮.钛合金型材挤压变形行为及组织演变研究[D].太原科技大学,2024. [5]张世强.多轴非规则载荷下船体结构低周疲劳裂纹萌生寿命研究[D].北部湾大学,2024. [6]杨晓倩.表面高能改性对Ti6Al4V合金疲劳小裂纹萌生与扩展的影响[D].贵州大学,2024. [7]张天成.高速列车制动盘热疲劳裂纹萌生机理及磨损性能研究[D].长春工业大学,2023. [8]吴嘉铭.基于无损检测的金属焊缝缺陷检测系统研究[D].西安理工大学,2024. [9]申承金.纤维增强水工沥青混凝土配合比优化及剪切性能试验研究[D].西安理工大学,2024. [42]阳能军, 姚春江, 袁晓静, 等. 基于声发射的材料损伤检测技术[M]. 北京: 北京航空 航天大学,2016. [49]沈功田. 声发射检测技术及应用[M]. 北京: 科学出版社,2015. [51]贺秀丽, 梁红玉, 闫志峰.AZ31镁合金单向及交变载荷作用下声发射波形特征对比 分析[J]. 锻压技术,2021,46(08):193-198. [52]史悦, 董丽虹, 王海斗, 等. 声发射技术在疲劳失效领域的研究进展[J]. 材料导报, 2016, 30 (03): 109-115. [66]Shannone C. A mathematical theory of communication[C]. Wiley-IEEE Press. Wiley-IEEE Press, 1948. [79]陈彦禄.变转速滚动轴承长故障信号特征提取的同步压缩变换研究[D].湖南工业大学,2024.DOI:10.27730/d.cnki.ghngy.2024.000221. [80]于欣楠.旋转机械复杂多分量信号分析及故障诊断应用研究[D].北京科技大学,2024.DOI:10.26945/d.cnki.gbjku.2024.000442. |
中图分类号: | TB523 |
开放日期: | 2025-06-19 |