- 无标题文档
查看论文信息

论文中文题名:

 基于声发射信息熵的含缺口TC4板裂纹萌生机理研究    

姓名:

 谢佳昊    

学号:

 22205224124    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械    

研究方向:

 材料损伤检测技术    

第一导师姓名:

 钟斌    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-17    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Study on crack initiation mechanism of TC4 plate with notch based on acoustic emission information entropy    

论文中文关键词:

 TC4钛合金 ; 裂纹萌生 ; 声发射信息熵 ; 扫描电镜    

论文外文关键词:

 TC4 titanium allow ; crack initiation ; acoustic emission information entropy ; scanning electron microscopy    

论文中文摘要:

材料常见的几何非连续的破坏形式,一般表现为缺口,对材料的破坏作用很大。对于带有缺口的金属薄板在断裂破坏时经历裂纹的萌生和扩展两个阶段,特别是当裂纹起源为缺口时,能够精确测量出萌生载荷是优化冲压加工的关键所在。钛及钛合金因其高强度、耐腐蚀性和抗氧化性能、高温强度高,在航空航天领域中成为航空发动机叶片、核反应堆压力容器等重要零件的主要材料。但服役过程中结构在复杂工作环境下早期裂纹扩展引起的疲劳断裂问题,每年使全球蒙受巨大的经济损失。考虑到TC4钛合金表面存在丰富β相微裂纹难以被传统的无损检测手段发现和识别,为此,提出裂纹萌生动态识别新途径。 通过设计具有不同半径凹口的TC4板材试样,在万能试验机上进行了位移控制拉伸试验,加载速率设置为0.2 mm/min。在整个阶段使用高精度声发射系统收集损伤信号。利用表征参数分析法对声发射信号进行表征处理,并比较各种特征参数来预测试样在拉伸断裂过程中的裂纹萌生时间。 本文应用累积振铃计数Shannon熵以及Kullback-Leibler相对熵给出了新的损伤判别准则,熵曲线斜率变小为损伤判据对应于缺口根部微裂纹成核的临界点,且通过拉伸卸载试验设计获得了成核过程中的等效载荷参数,并通过纵向截面金相显微镜分析校核了缺口根部微裂纹的空间定性结果。统计发现成核载荷测得值和理论预测值相对偏差在15%以内,工程上表明信息熵预测方法的可接受。采用扫描电子显微镜纳米尺度下对断口特征进行表征,实现对断口特征与微观变化的关联性研究。 本研究成果开发的在线健康监测算法基于熵值阈值判别原则实现微秒级损伤状态判读,较传统方法的检测灵敏度提升两个数量级。经工程验证该技术在试验中可将裂纹萌生时间预测误差控制在8 min以内,为构建钛合金结构全寿命周期管理体系提供了可靠的技术支撑。

论文外文摘要:

The geometric discontinuity features commonly present in engineering components are usually manifested in the form of notches, which directly affect the fracture behavior of materials during service. Accurately determining the critical load for crack initiation and propagation during the fracture process of metal sheets with notches, especially when the crack originates from the root of the notch, has significant engineering value for optimizing the cutting process. Titanium and titanium alloys have become the core materials for key components such as aerospace engine blades and nuclear reactor pressure vessels due to their high strength, excellent corrosion resistance, and good high-temperature stability. However, the structural failure caused by early crack propagation behavior under complex service conditions results in significant global economic losses every year. In response to the industry difficulty of capturing nanoscale microcracks in the β - phase enrichment zone on the surface of TC4 titanium alloy using conventional non-destructive testing methods, this study proposes a new method for real-time monitoring of crack initiation status.

By designing TC4 sheet specimens with different radius notches, displacement controlled tensile tests were conducted on a universal testing machine with a loading rate set at 0.2 mm/min. Use high-precision acoustic emission systems to collect damage signals throughout the entire stage. Using the characterization parameter analysis method to characterize and process acoustic emission signals, and comparing various characteristic parameters to predict the crack initiation time of the specimen during tensile fracture.

This article proposes a novel damage assessment criterion based on cumulative ringing count Shannon entropy and Kullback Leibler relative entropy. When the slope of the entropy curve decreases beyond the damage criterion, it corresponds to the critical state of microcrack nucleation at the root of the notch. Subsequently, the equivalent load parameters during the nucleation process were obtained through the design of tensile unloading tests, and the spatial positioning accuracy of microcracks at the root of the notch was verified through metallographic analysis of longitudinal sections. The statistical results show that the relative deviation between the measured values of nucleation load and the theoretical predicted values remains within the threshold of 15%, confirming the engineering reliability of the information entropy prediction method. Characterization of fracture morphology at the nanoscale using scanning electron microscopy to achieve correlation analysis between fracture mechanisms and microscopic changes.

The online health monitoring algorithm developed in this research achievement is based on the entropy threshold discrimination principle to achieve microsecond level damage state interpretation, which improves the detection sensitivity by two orders of magnitude compared to traditional methods. Through engineering verification, this technology can control the prediction error of crack initiation time within 8 minutes in experiments, providing reliable technical support for the construction of a full life cycle management system for titanium alloy structures.

参考文献:

[1]Einstein Herbert H. Fractures: tension and shear. Rock Mech Rock Eng. 2021;54 (7):3389–3408.

[2]Xie MJ, Wang YF, Xiong WA, et al. A crack propagation method for pipelines with interacting corrosion and crack defects. Sensors. 2022;22(3):986.

[3]Morales CE, Miranda AF, Perez GY, et al. Evaluation of discontinuities in friction stir welds of aluminum matrix composites. Aircr Eng Aerosp Technol. 2018;90(7):1065–1071.

[4]李宝亮.钛合金型材挤压变形行为及组织演变研究[D].太原科技大学,2024.

[5]张世强.多轴非规则载荷下船体结构低周疲劳裂纹萌生寿命研究[D].北部湾大学,2024.

[6]杨晓倩.表面高能改性对Ti6Al4V合金疲劳小裂纹萌生与扩展的影响[D].贵州大学,2024.

[7]张天成.高速列车制动盘热疲劳裂纹萌生机理及磨损性能研究[D].长春工业大学,2023.

[8]吴嘉铭.基于无损检测的金属焊缝缺陷检测系统研究[D].西安理工大学,2024.

[9]申承金.纤维增强水工沥青混凝土配合比优化及剪切性能试验研究[D].西安理工大学,2024.

[10]P, LazzarinR, Tovo. A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches[J]. International Journal of Fracture, 1996, 78(1): 3-19.

[11]Susmel L. A unifying approach to estimate the high‐cycle fatigue strength of notched components subjected to both uniaxial and multiaxial cyclic loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(4): 26-32.

[12]Macek W, Robak G, Żak K, et al. Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens[J]. Engineering Failure Analysis, 2022, 135: 106121.

[13]Branco R, Costa J D, Borrego L P, et al. Notch fatigue analysis and life assessment using an energy field intensity approach in 7050-T6 aluminium alloy under bending-torsion loading[J]. International Journal of Fatigue, 2022, 162: 106947.

[14]Dantas R, Gouveia M, Silva F G A, et al. Notch effect in very high-cycle fatigue behaviour of a structural steel[J]. International Journal of Fatigue, 2023, 177: 107925.

[15]Macek W, Rozumek D, Faszynka S, et al. Fractographic-fractal dimension correlation with crack initiation and fatigue life for notched aluminium alloys under bending load[J]. Engineering Failure Analysis, 2023, 149: 107285.

[16]Kedir Y A, Lemu H G. Prediction of fatigue crack initiation under variable amplitude loading: literature review[J]. Metals, 2023, 13(3): 487.

[17]Hosseini S M, Azadi M, Ghasemi-Ghalebahman A, et al. Fatigue crack initiation detection in ductile cast iron crankshaft under rotating bending fatigue test using the acoustic emission entropy method[J]. Engineering Failure Analysis, 2023, 144: 106981.

[18]Wei J X, Yan H, Chen R S. Notch strength and notch fracture mechanisms of a cast Mg-Gd-Y alloy[J]. Materials Science and Engineering: A, 2022, 835: 142668.

[19]Zhang Z, Huang C, Xu Z, et al. Influence of notch root radius on high cycle fatigue properties and fatigue crack initiation behavior of Ti-55531 alloy with a multilevel lamellar microstructure[J]. Journal of Materials Research and Technology, 2023, 24: 6293-6311.

[20]Zhao H, Liu J, Hua F, et al. Multiaxial fatigue life prediction model considering stress gradient and size effect[J]. International Journal of Pressure Vessels and Piping, 2022, 199: 104703.

[21]Hua F, Liu J, Pan X, et al. Research on multiaxial fatigue life of notched specimens based on Weibull distribution and Bayes estimation[J]. International Journal of Fatigue, 2023, 166: 107271.

[22]Ye W L, Zhu S P, Niu X, et al. Fatigue life prediction of notched components under size effect using critical distance theory[J]. Theoretical and Applied Fracture Mechanics, 2022, 121: 103519.

[23]Dris E Y, Bentahar M, Drai R, et al. A0 Lamb mode tracking to monitor crack evolution in thin aluminum plates using acoustic emission sensors[J]. Applied Sciences, 2022, 12(23): 12112.

[24]Ciaburro G, Iannace G. Machine-learning-based methods for acoustic emission testing: A review[J]. Applied Sciences, 2022, 12(20): 10476.

[25]Erlinger T, Kralovec C, Schagerl M. Monitoring of atmospheric corrosion of aircraft aluminum alloy AA2024 by acoustic emission measurements[J]. Applied Sciences, 2022, 13(1): 370.

[26]Hosseini S M, Ghasemi-Ghalebahman A, Azadi M, et al. Crack initiation detection in crankshaft ductile cast iron based on information entropy of acoustic emission signals under tensile loading[J]. Engineering Failure Analysis, 2021, 127: 105547.

[27]Abdul Kudus S, Muhamad Bunnori N, Mustaffa N K, et al. Investigation on acoustic emission parameters due to fatigue damage of concrete beams with variable notched depth[J]. International Journal of Concrete Structures and Materials, 2022, 16(1): 29.

[28]Ha M, Kim J H, Kim S. Crack detection in upsetting of aluminum alloy using acoustic emission monitoring technology[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(7): 2823-2834.

[29]Agletdinov E A, Yasnikov I S. Application of recurrence quantification analysis of acoustic emission time series to analysis of a plastic flow of metals[J]. Physical Review E, 2023, 108(4): 044217.

[30]D'Angela D, Ercolino M, Bellini C, et al. Characterisation of the damaging micromechanisms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(5): 1038-1050.

[31]Xu J, Wang K, Ma Q, et al. Study on acoustic emission properties and crack growth rate identification of rail steels under different fatigue loading conditions[J]. International Journal of Fatigue, 2023, 172: 107638.

[32]Li P, Zhang W, Ye Z, et al. Analysis of acoustic emission energy from reinforced concrete sewage pipeline under full-scale loading test[J]. Applied Sciences, 2022, 12(17): 8624.

[33]Zhou W, Pan Z, Wang J, et al. Review on acoustic emission source location, damage recognition and lifetime prediction of fiber-reinforced composites[J]. Journal of Materials Science, 2023, 58(2): 583-607.

[34]Shi S, Wu G, Chen H, et al. Acoustic emission monitoring of fatigue crack growth in Hadfield Steel[J]. Sensors, 2023, 23(14): 6561.

[35]Mu W, Gao Y, Wang Y, et al. Modeling and analysis of acoustic emission generated by fatigue cracking[J]. Sensors, 2022, 22(3): 1208.

[36]Chen B, Yan Z, Chen W. Defect detection for wheel-bearings with time-spectral kurtosis and entropy[J]. Entropy, 2014, 16(1): 607-626.

[37]Ha M, Kim JH, Kim S. Crack detection in upsetting of aluminum alloy using acoustic emission monitoring technology. Int J Adv Manuf Technol. 2022;124(7–8):2823–2834.

[38]Li XW, Du SM, Ma CH, et al. Nano-SiO2 based anti-corrosion superhydrophobic coating on Al alloy with mechanical stability, anti-pollution and self-cleaning properties. Ceram Int. 2024;50(6):9469–9478.

[39]Saeedifar M, Zarouchas D. Damage characterization of laminated composites using acoustic emission: a review. Compos Part B-Eng. 2020;195:108039.

[40]Aggelis DG, Kordatos EZ, Matikas TE. Acoustic emission for fatigue damage characteriza tion in metal plates. Mech Res Commun. 2011;38(2):106–110.

[41]Karimian SF, Modarres M, Bruck HA. A new method for detecting fatigue crack initiation in aluminum alloy using acoustic emission waveform information entropy. Eng Fract Mech. 2020;223:106771.

[42]阳能军, 姚春江, 袁晓静, 等. 基于声发射的材料损伤检测技术[M]. 北京: 北京航空 航天大学,2016.

[43]Al-Dossary S, Hamzah R I R, Mba D. Observations of Changes in Acoustic Emission Waveform for Varying Seeded Defect Sizes in a Rolling Element Bearing[J]. Applied Acoustics, 2009, 70(1): 58-81.

[44]Qin G, Liu Z. Development of acoustic emission testing system[J]. Journal of Test and Measurement Technology, 2004, 18(3): 274-279.

[45]Yu A, Li X, Fu F, et al. Detection of sleeve grouting compactness based on acoustic emission technology[J]. Materials, 2023, 16(4): 1455.

[46]Ha M, Kim J H, Kim S. Crack detection in upsetting of aluminum alloy using acoustic emission monitoring technology[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(7): 2823-2834.

[47]Zhang X, Wang K, Wang Y, et al. Rail crack detection using acoustic emission technique by joint optimization noise clustering and time window feature detection[J]. Applied Acoustics, 2020, 160: 107141.

[48]Ma S, Li S, Wu C, et al. Crack detection and damage evaluation of asymmetrical steel-reinforced concrete frame nodes using acoustic emission technology[J]. Nondestructive Testing and Evaluation, 2024: 1-27.

[49]沈功田. 声发射检测技术及应用[M]. 北京: 科学出版社,2015.

[50]Al-Dossary S, Hamzah R I R, Mba D. Observations of changes in acoustic emission waveform for varying seeded defect sizes in a rolling element bearing[J]. Applied Acoustics, 2009, 70(1): 58-81.

[51]贺秀丽, 梁红玉, 闫志峰.AZ31镁合金单向及交变载荷作用下声发射波形特征对比 分析[J]. 锻压技术,2021,46(08):193-198.

[52]史悦, 董丽虹, 王海斗, 等. 声发射技术在疲劳失效领域的研究进展[J]. 材料导报, 2016, 30 (03): 109-115.

[53]Chai M, Lai C, Xu W, et al. Characterization of fatigue crack growth based on acoustic emission multi-parameter analysis[J]. Materials, 2022, 15(19): 6665.

[54]Lu D, Yu W. Characterization and analysis of the tensile and acoustic emission parameter distributions of single wool fibers[J]. Textile Research Journal, 2020, 90(21-22): 2454-2466.

[55]Xie K, Huang K, Wang Q, et al. Study of bond-slip performance of steel tube with UHPC based on acoustic emission parameter analysis[C]. Structures. Elsevier, 2024, 70: 107828.

[56]Zhao ZL, Ji HC, Zhong YZ, et al. Mechanical properties and fracture behavior of a TC4 titanium alloy sheet[J]. Materials. 2022;15(23):8589.

[57]Zengli P, Haisheng Z, Xin L, et al. Ductile fracture of X80 pipeline steel over a wide range of stress triaxialities and lode angles[J]. Eng Fract Mech. 2023;289:109470.

[58]Kardak AA, Sinclair GB. Stress concentration factors for ASTM E8/E8M-16a standard round specimens for tension Testing.Journal of testing and evaluation[J]. Test Eval. 2020;48(1):711–719.

[59]Yi YA, Xin BJ, Zheng YS, et al. Investigation of tensile behavior and failure mechanism of woven fabric based on acoustic emission[J]. Text Inst. 2020;112(10):1631–1638.

[60]Zhao ZQ, Liu P, Dang HY, et al. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite. Int[J]. Impact Eng. 2021;156:103928.

[61]Shimamoto Y, Tayfur S, Alver N, et al. Identifying effective AE parameters for damage evaluation of concrete in headwork: a combined cluster and random forest analysis of acoustic emission data[J]. Paddy Water Environ. 2022;21(1):15–29.

[62]Bai F, Gagar D, Foote P, et al. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals.[J]. Mech Syst Signal Process. 2017;84:717–730.

[63]Váňa R, Rosíková K, Javůrek J, et al. TESCAN Cryo FIB-SEM as a Flexible Tool for Advanced Sample Analysis[J]. Microscopy and Microanalysis, 2019, 25(S2): 566-567.

[64]Seyda J, Skibicki D, Pejkowski Ł, et al. Mechanical properties and microscopic analysis of sintered rhenium subjected to monotonic tension and uniaxial fatigue[J]. Materials Science and Engineering: A, 2021, 817: 141343.

[65]]Mukhopadhyay C K, Kasiviswanathan K V, Jayakumar T, et al.Acoustic Emission During Tensile Deformation of Annealed and Cold-Worked Aisi Type 304 Austenitic Stainless Steel[J]. Journal of Materials Science, 1993, 28(1): 145-154.

[66]Shannone C. A mathematical theory of communication[C]. Wiley-IEEE Press. Wiley-IEEE Press, 1948.

[67]Bridgman, P. W. The Thermodynamics of Plastic Deformation and Generalized Entropy[J]. Rev.mod.phys, 1950, 22(1): 56-63.

[68]Basaran C, Yan C Y. A thermodynamic framework for damage mechanics of solder joints[J]. Journal of Electronic Materials, 1998, 120(4): 379-384.

[69]Silva J M A, Devezas T C, Silva A L P, et al. Mechanical characterization of composites with embedded optical fibers[J]. Journal of composite materials, 2005, 39(14): 1261-1281.

[70]Bravo A, Toubal L, Koffi D, et al. Development of novel green and biocomposite materials: Tensile and flexural properties and damage analysis using acoustic emission[J]. Materials & Design (1980-2015), 2015, 66: 16-28.

[71]Farhidzadeh A, Mpalaskas A C, Matikas T E, et al. Fracture mode identification in cementitious materials using supervised pattern recognition of acoustic emission features[J]. Construction and building materials, 2014, 67: 129-138.

[72]Kahirdeh A, Khonsari MM. Acoustic entropy of the materials in the course of degradation[J]. Entropy. 2016;18(8):280.

[73]D’Angela D, Ercolino M, Bellini C, et al. Characterisation of the damaging micromechan isms in a pearlitic ductile cast iron and damage assessment by acoustic emission testing[J]. Fatigue Fract Eng Mat Struct. 2020;43(5):1038–1050.

[74]Huang S, Agyenim-Boateng E, Sheng J, et al. Effects of laser peening with different laser power densities on the mechanical properties of hydrogenated TC4 titanium alloy[J]. Hydrogen Energy. 2019;44(31):17114–17126.

[75]Wang BH, Cheng L, Dc L. Experimental study on forged TC4 titanium alloy fatigue properties under three-point bending and life prediction[J]. Materials. 2021;14(18):5329.

[76]Guo Q, Sun DL, Han XL, et al. Microstructure characterization of Al matrix composite reinforced with Ti-6Al-4V meshes after compression by scanning electron microscope and transmission electron microscope[J]. Micron. 2012;43(2–3):278–284.

[77]She XW, Jiang XQ, Zhang RH, et al. Study on microstructure and fracture characteristics of 5083 aluminum alloy thick plate[J]. Alloys Compd. 2020;825:153960.

[78]Wang BH, Cheng L, Wu YH, et al. Research on ultra-high cycle fatigue performance and reliability life analysis of TC4 by laser shock peening[J]. Phys: Conf Ser. 2022;2174(1):012037.

[79]陈彦禄.变转速滚动轴承长故障信号特征提取的同步压缩变换研究[D].湖南工业大学,2024.DOI:10.27730/d.cnki.ghngy.2024.000221.

[80]于欣楠.旋转机械复杂多分量信号分析及故障诊断应用研究[D].北京科技大学,2024.DOI:10.26945/d.cnki.gbjku.2024.000442.

[81]Fernandino D O, Tenaglia N, Di Cocco V, et al. Relation between microstructural heterogeneities and damage mechanisms of a ferritic spheroidal graphite cast iron during tensile loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(6): 1262-1273.

中图分类号:

 TB523    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式