- 无标题文档
查看论文信息

论文中文题名:

 煤矿履带式液压钻机SLAM建图与自主行驶方法研究    

姓名:

 姚丽杰    

学号:

 21205224103    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械    

研究方向:

 智能检测与控制    

第一导师姓名:

 毛清华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Research on Simultaneous Localization And Mapping and Autonomous Driving Method of Coal Mine Crawler Hydraulic Drilling Rig    

论文中文关键词:

 履带式液压钻机 ; SLAM建图 ; 路径规划 ; A*算法优化 ; DWA算法 ; 神经网络PID控制    

论文外文关键词:

 Crawler hydraulic drilling rig ; Simultaneous Localization And Mapping ; Path planning ; A* algorithm optimization ; DWA algorithm ; Neural network PID control    

论文中文摘要:

履带式液压钻机是煤矿井下钻孔施工的主要装备,在瓦斯灾害、水害等灾害防治中发挥着重要作用。目前,煤矿履带式液压钻机在井下行驶主要依靠人工操作或遥控,工作环境恶劣、人员劳动强度大、智能化程度较低。2020年,国家发布了《关于加快煤矿智能化发展的指导意见》,指明了煤矿钻探装备朝智能化方向发展,而路径规划与行驶控制是煤矿钻机智能化关键技术。因此,本文对履带式液压钻机的路径规划与行驶控制方法进行研究,对减轻作业人员劳动强度和实现煤矿钻机安全、高效、智能作业具有重要意义。

针对履带式液压钻机工作环境地形复杂、低纹理的问题,对基于粒子滤波的Gmapping和基于图优化的Cartographer两种建图算法进行了研究,通过对比两种算法的优缺点,提出了一种基于Map to Map优化回环检测的Cartographer建图算法,并在建图算法中加入IMU传感器的位姿信息。通过Gmapping和Cartographer算法对Gazebo虚拟环境进行建图仿真对比实验,结果表明:优化后的建图算法效果更优,地图描绘更加清晰。通过实验室环境和煤矿主体实验室的建图结果表明:优化后的建图算法在实验室环境构建的地图更精确,地图尺寸相对误差最大为1.545%,平均相对误差为1.225%;在煤矿主体实验室环境构建的地图可以清楚反映全局地图和外围边缘,且对于回环检测没有发生漂移、错位的现象。

针对履带式液压钻机机身尺寸约束及传统A*算法路径贴近障碍、冗余节点多、安全性和平滑性不足的问题,提出了一种改进A*算法全局路径规划、融合动态窗口法(DWA)局部路径规划的路径规划算法。该算法考虑钻机尺寸影响,在钻机和巷道壁、障碍之间加入安全扩展策略;对传统A*算法的启发函数进行自适应权重优化,同时将父节点的影响加入到启发函数;利用障碍物检测原理对规划的路径剔除冗余节点,使用分段三次Hermite插值对路径进行二次平滑处理;最后将改进A*算法与DWA算法融合实现钻机在煤矿井下的路径规划。对钻机不同工况环境进行路径规划仿真分析,结果表明:在不同工况环境下,改进A*相比Dijkstra和传统A*在保证安全距离的前提下加快了搜索速度并得到相对平滑的路径,搜索时间分别平均减少了88.5%和63.2%,在一定程度上缩短了路径长度,并且融合算法可以有效避开全局路径上出现的未知障碍。基于搭建的机器人实验平台路径规划实验结果表明:A*融合DWA算法能够规划出平滑、可行性较强的路径,并且通过激光雷达检测障碍可以实现避障行驶。

针对履带式液压钻机在复杂工况下容易偏离预设路径的问题,通过分析钻机行驶液压系统的工作原理,提出一种基于神经网络PID的钻机行驶控制方法。建立钻机行驶控制系统传递函数模型,基于Simulink建立行驶控制系统模型并进行控制算法仿真分析,结果表明:相比PID控制算法,神经网络PID控制算法超调量更小、响应时间更短。通过基于PLC控制的履带行走机构实验平台进行行驶控制模拟实验,结果表明:相比PID控制算法,神经网络PID控制算法具有更快的响应速度和更高的控制精度,在转向控制实验中履带行走机构实验平台偏角最大稳态误差为0.322°,稳态误差相比PID算法减少了34.7%。

 

 

论文外文摘要:

The crawler hydraulic drilling rig is the main equipment for drilling construction in underground coal mines, which plays an important role in the prevention and control of gas disasters, water disasters and other disasters.At present, the coal mine crawler hydraulic drilling rig mainly relies on manual operation or remote control in the underground, with poor working environment, high labor intensity and low intelligence. In 2020, the state issued the ' guidance on accelerating the intelligent development of coal mines ', pointing out that the coal mine drilling equipment is developing in the direction of intelligence, and path planning and driving control technology are the key technologies for intelligent coal mine drilling rigs. Therefore, the path planning and drive control method of crawler hydraulic drilling rig is studied, which is of great significance to reduce the labor intensity of operators and realize the safe, efficient and intelligent operation of coal mine drilling rig.

Aiming at the problem of complex terrain and low texture in the working environment of tracked hydraulic drilling rig, two mapping algorithms, Gmapping based on particle filter and Cartographer based on graph optimization are studied. By comparing the advantages and disadvantages of the two algorithms, a Cartographer mapping algorithm based on Map to Map optimized loop detection is proposed, and the pose information of IMU sensor is added to the mapping algorithm. The Gazebo virtual environment is simulated and compared by Gmapping and Cartographer algorithms. The results show that the optimized mapping algorithm has better effect and clearer map description. The mapping results of the laboratory environment and the main laboratory of the coal mine show that the optimized mapping algorithm is more accurate in the laboratory environment. The maximum relative error of the map size is 1.545%, and the average relative error is 1.225%. The map constructed in the main laboratory environment of coal mine can clearly reflect the global map and the peripheral edge, and there is no drift and dislocation in the loopback detection.

Aiming at the body size constraints of crawler hydraulic drilling rig and the problems of traditional A * algorithm path close to obstacles, many redundant nodes, insufficient safety and smoothness, a path planning algorithm combining the improved A * algorithm of global path planning and the dynamic window method ( DWA ) of local path planning is proposed. The algorithm considers the influence of the size of the drilling rig, and adds a safety expansion strategy between the drilling rig and the roadway wall and obstacle. The heuristic function of the traditional A * algorithm is optimized by adaptive weight, and the influence of the parent node is added to the heuristic function. The redundant nodes are removed from the planned path by using the principle of obstacle detection, and the path is smoothed twice by using piecewise cubic Hermite interpolation. Finally, the improved A* algorithm and DWA algorithm are combined to realize the path planning of drilling rig in coal mine.The path planning simulation analysis of drilling rig under different working conditions is carried out. The results show that under different working conditions, compared with Dijkstra and traditional A *, the improved A * accelerates the search speed and obtains a relatively smooth path under the premise of ensuring a safe distance. The search time is reduced by 88.5% and 63.2% on average, which shortens the path length to a certain extent, and the fusion algorithm can effectively avoid the unknown obstacles on the global path.The experimental results of path planning based on the built mobile robot experimental platform show that the A * fusion DWA algorithm can plan a smooth and feasible path, and obstacle avoidance can be realized by detecting obstacles through lidar.

Aiming at the problem that the tracked hydraulic drilling rig is easy to deviate from the preset path under complex working conditions, by analyzing the working principle of the drilling rig driving hydraulic system, a drilling rig driving control method based on neural network PID is proposed. The transfer function model of the drilling rig driving control system is established. The driving control system model is established based on Simulink and the control algorithm simulation analysis is carried out. The results show that compared with the PID control algorithm, the neural network PID control algorithm has smaller overshoot and shorter response time. The driving control simulation experiment is carried out on the experimental platform of the crawler walking mechanism based on PLC control. The results show that the neural network PID control algorithm has faster response speed and higher control accuracy than the PID control algorithm. In the steering control experiment, the maximum steady-state error of the deflection angle of the experimental platform of the crawler walking mechanism is 0.322 °, and the steady-state error is reduced by 34.7 % compared with the PID algorithm.

 

 

参考文献:

[1]李志强,李根.煤矿智能化建设探索与实践[J].中国煤炭,2022,48(01):46-52.

[2]吉辰,蹇开林,郝忠.煤与瓦斯突出过程中煤体破坏的有限元模拟[J].重庆大学学报,2020,43(04):85-93.

[3]李东民,朱士明,赵元志等.煤矿钻机自动防卡钻电液控制系统研究[J].重庆大学学报,2022,45(02):114-124.

[4]李泉新,刘飞,方俊等.我国煤矿井下智能化钻探技术装备发展与展望[J].煤田地质与勘探,2021,49(06):265-272.

[5]王陈.井下无人驾驶无轨胶轮车自主建图与导航技术研究[D]. 徐州:中国矿业大学,2022.

[6]赵文金,朱子恒,吴云雁.基于SLAM导航的煤矿井下机器人设计[J].山东煤炭科技,2024,42(02):161-165.

[7]张永新.精确定位技术在煤矿井下的应用研究[J].新型工业化,2021,11(04):242-243+247.

[8]朱舜,王立群,何军.一种基于SLAM技术的智能小车的开发与构建[J].电子测量技术,2018,41(14):21-25.

[9]Yarovoi A, Cho Y K. Review of simultaneous localization and mapping (SLAM) for construction robotics applications[J]. Automation in Construction, 2024, 162: 105344.

[10]陈斌斌,盛志超,叶林,等.基于多分辨率地图位姿跳变优化的改进Cartographer算法[J].计量与测试技术,2024,51(02):41-44.

[11]杨林,马宏伟,王岩.基于激光惯性融合的煤矿井下移动机器人SLAM算法[J].煤炭学报,2022,47(09):3523-3534.

[12]Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[J]. IEEE Transactions on robotics, 2016, 32(6): 1309-1332.

[13]黄通交.基于激光雷达的移动机器人SLAM技术研究与系统实现[D]. 杭州:浙江农林大学,2020.

[14]许哲,吴家跃.一种改进天牛群算法优化的RBPF-SLAM模型研究[J].测绘科学,2023,48(06):112-118.

[15]吴正越,张超,林岩.基于RBPF的激光SLAM算法优化设计[J].计算机工程,2020,46(07):294-299.

[16]Grisetti G ,Stachniss C ,Burgard W .Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters.[J].IEEE Trans. Robotics,2007,23(1):34-46.

[17]汪建华,黄磊,石雨婷,等.基于优化Hector-SLAM算法的机器人自主导航系统设计[J].工程设计学报,2023,30(06):678-686.

[18]薛金林,王培晓,周俊,等.基于改进Gmapping算法的果园二维环境地图精准构建[J].农业机械学报,2023,54(07):26-34+55.

[19]夏天,任彧.基于加权SDF地图的二维激光SLAM方法[J].计算机应用与软件,2022,39(04):143-148.

[20]韩彦峰,李君君,肖科.基于优化Gmapping算法的巷道喷浆机器人建图研究[J].湖南大学学报(自然科学版),2023,50(06):118-126.

[21]黄禹翔,吴国新,左云波.基于改进Cartographer的激光SLAM算法[J].北京信息科技大学学报(自然科学版),2023,38(02):47-52.

[22]Wang S, Zheng D, Li Y. LiDAR-SLAM loop closure detection based on multi-scale point cloud feature transformer[J]. Measurement Science and Technology, 2023, 35(3): 036305.

[23]沈欣,闵华松.基于速度积分位姿融合的改进Cartographer算法[J].应用激光,2021,41(05):1063-1069.

[24]鲍文亮.基于特征地图的煤矿辅助运输车辆定位方法[J].煤炭科学技术,2020,48(05):115-119.

[25]谢苗,侯文博,张鸿宇,等.一种掘支锚联合机组锚杆钻机自动定位系统[P].中国:201920208760.X, 2019-10-22.

[26]李猛钢.面向井下钻孔机器人应用的精确定位与地图构建技术研究[D]. 徐州:中国矿业大学,2020.

[27]Wang C, Li Z, Kang Y, et al. Applying SLAM algorithm based on nonlinear optimized monocular vision and IMU in the positioning method of power inspection robot in complex environment[J]. Mathematical Problems in Engineering, 2022, 2022.

[28]Gou R, Chen G, Yan C, et al. Three-dimensional dynamic uncertainty semantic SLAM method for a production workshop[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105325.

[29]马艾强,姚顽强,蔺小虎,等.面向煤矿巷道环境的LiDAR与IMU融合定位与建图方法[J].工矿自动化,2022,48(12):49-56.

[30]姜晓勇,吴起威,魏璇,等.基于激光雷达SLAM的三维点云自适应算法[J].激光与红外,2024,54(01):48-56.

[31]Dai J, Yan L, Liu H, et al. An offline coarse-to-fine precision optimization algorithm for 3D laser SLAM point cloud[J]. Remote Sensing, 2019, 11(20): 2352.

[32]Chhaniyara S, Brunskill C, Yeomans B, et al. Terrain trafficability analysis and soil mechanical property identification for planetary rovers: A survey[J]. Journal of Terramechanics, 2012, 49(2): 115-128.

[33]Brass P, Vigan I, Xu N. Shortest path planning for a tethered robot[J]. Computational Geometry, 2015, 48(9): 732-742.

[34]高百战,孙保山,康奇岳.我国煤矿坑道钻机研究现状及发展趋势[J].煤矿机械,2019,40(03):45-47.

[35]石智军,姚克,姚宁平等.我国煤矿井下坑道钻探技术装备40年发展与展望[J].煤炭科学技术,2020,48(04):1-34.

[36]张飞凯,黄永忠,李连茂等.基于Dijkstra算法的货运索道路径规划方法[J].山东大学学报(工学版),2022,52(06):176-182.

[37]Nan G, Liu Z, Du H, et al. Transmission Line-Planning Method Based on Adaptive Resolution Grid and Improved Dijkstra Algorithm[J]. Sensors, 2023, 23(13): 6214.

[38]孙小倩,辛绍杰.基于改进型A*算法的移动机器人路径规划[J].组合机床与自动化加工技术,2023(03):5-8.

[39]邵琪,时维国.基于改进蚁群算法的机器人路径规划研究[J].现代制造工程,2023(06):46-51.

[40]郝兆明,安平娟,李红岩等.增强目标启发信息蚁群算法的移动机器人路径规划[J].科学技术与工程,2023,23(22):9585-9591.

[41]梁爽. 智慧工厂中多移动机器人路径规划研究[D]. 上海:上海交通大学, 2017.

[42]封澳,杨锦宇,谢玉阳,等.基于改进PRM算法的机器人路径规划[J].计算机技术与发展,2024,34(02):127-133.

[43]陈奕梅,沈建峰,李柄棋.改进TEB算法的多机器人动态避障策略研究[J].电光与控制,2022,29(05):107-112.

[44]孔慧芳,夏露,张倩.基于改进人工势场法的智能车辆避撞路径规划[J].合肥工业大学学报(自然科学版),2023,46(05):583-589.

[45]邱朋,汪光,赵理等.采用改进人工势场法的动态无人车路径规划[J].机械设计与制造,2023(03):291-296.

[46]韩伟.室外环境基于多传感器履带式机器人自主导航[D]. 大连:大连理工大学,2017.

[47]闫萍.复杂环境中煤矿智能机器人巡检路径动态规划[J].微型电脑应用,2022,38(01):145-149.

[48]邢博闻,杨柳,胡庆松,等.无人船全覆盖路径规划算法研究[J].兵器装备工程学报,2022,43(09):28-33.

[49]肖献强,王鼎用,王家恩,等.AGV复合自主路径规划方法研究[J].机械设计与制造,2022,(03):262-265.

[50]BI T ,YE P ,XU Y , et al.Route Planning of Unmanned Aerial Vehicle Based on Sparse A~* Algorithm[C]//Advanced Science and Technology Application Research Center.Proceedings of 2019 International Conference on Informatics, Control and Robotics (ICICR 2019).Department of Automation, Beijing University of Posts and Telecommunications,2019:7.

[51]张天瑞,吴宝库,周福强.面向机器人全局路径规划的改进蚁群算法研究[J].计算机工程与应用,2022,58(01):282-291.

[52]许万,杨晔,余磊涛,等.一种基于改进RRT~*的全局路径规划算法[J].控制与决策,2022,37(04):829-838.

[53]Duraklı Z, Nabiyev V. A new approach based on Bezier curves to solve path planning problems for mobile robots[J]. Journal of Computational Science, 2022, 58: 101540.

[54]Hao W, Luo B, Zhang Z. Application study of UAV path planning based on the balanced search factor artificial bee colony algorithm[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 2083(3): 032064.

[55]Song Q, Li S, Yang J, et al. Intelligent optimization algorithm-based path planning for a mobile robot[J]. Computational intelligence and neuroscience, 2021, 2021(1): 8025730.

[56]张伟民,张月,张辉.基于改进A~*算法的煤矿救援机器人路径规划[J].煤田地质与勘探,2022,50(12):185-193.

[57]赵久强,赵庭辉,冯毅萍等.基于改进A*算法和DWA融合的机器人路径规划研究[J].实验技术与管理,2023,40(03):87-92.

[58]薛光辉,刘爽,李圆等.基于障碍物尺度的封闭狭长空间路径规划研究[J].矿业安全与环保,2023,50(03):62-67.

[59]金辉,牛若飞.基于A*算法的智能车多红绿灯信号交叉口通行的经济车速规划研究[J].北京理工大学学报,2023,43(06):595-601.

[60]Tian H, Yang Z H, Sun G M, et al. An improved A∗ path-planning algorithm for nuclear spill evacuation and radioactive source retrieval in complex terrain[J]. Nuclear Engineering and Design, 2023, 408: 112314.

[61]Li D, Yin W, Wong W E, et al. Quality-oriented hybrid path planning based on A* and Q-learning for unmanned aerial vehicle[J]. Ieee Access, 2021, 10: 7664-7674.

[62]王文飞,茹乐,鲁博等.基于改进DWA的无人机实时路径规划研究[J].电光与控制,2023,30(08):50-55+60.

[63]封硕,谢廷船,康靖等. 基于双粒子群算法的矿井搜救机器人路径规划[J]. 工矿自动化,2020,46(1):65-71.

[64]Wang Y, He Z, Cao D, et al. Coverage path planning for kiwifruit picking robots based on deep reinforcement learning[J]. Computers and Electronics in Agriculture, 2023, 205: 107593.

[65]Wang F, Bai Y, Zhao L. Physical Consistent Path Planning for Unmanned Surface Vehicles under Complex Marine Environment[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1164.

[66]高启业,高明,宋丽军.履带行走车辆行走轨迹纠偏方法研究[J].中国工程机械学报,2023,21(06):527-531.

[67]Sebastian B, Ben-Tzvi P. Active disturbance rejection control for handling slip in tracked vehicle locomotion[J]. Journal of Mechanisms and Robotics, 2019, 11(2): 021003.

[68]Liu L, Wang X, Wang X, et al. Path Planning and Tracking Control of Tracked Agricultural Machinery Based on Improved A* and Fuzzy Control[J]. Electronics, 2024, 13(1): 188.

[69]Wang S, Guo J, Mao Y, et al. Research on the model predictive trajectory tracking control of unmanned ground tracked vehicles[J]. Drones, 2023, 7(8): 496.

[70]Wang Q, Shi T. Study on electro-hydraulic control system of advanced support in large section roadway[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1633(1): 012101.

[71]Han J, Wang F, Wang Y. A control method for the differential steering of tracked vehicles driven independently by a dual hydraulic motor[J]. Applied Sciences, 2022, 12(13): 6355.

[72]Sabiha A D, Kamel M A, Said E, et al. ROS-based trajectory tracking control for autonomous tracked vehicle using optimized backstepping and sliding mode control[J]. Robotics and Autonomous Systems, 2022, 152: 104058.

[73]赵伟,赵汗青.基于模糊自整定PID的履带车辆自动驾驶系统纵向车速控制[J].计算机应用,2018,38(S1):63-66.

[74]张敏骏,蔡岫航,吕馥言,等.受限巷道空间区域栅格化掘进机自主纠偏研究[J].仪器仪表学报,2018,39(03):62-70.

[75]瞿圆媛,宋林珂,吉晓冬,等.井下掘进机行进纠偏调度规划与控制研究[J].矿业科学学报,2020,5(02):194-202.

[76]张旭辉,赵建勋,杨文娟,等.悬臂式掘进机视觉导航与定向掘进控制技术[J].煤炭学报,2021,46(07):2186-2196.

[77]范子彦,李立君,李宇航,等.油茶果采摘机阀控液压马达模糊神经网络PID控制[J].液压与气动,2021,45(11):76-85.

[78]由韶泽.煤矿井下钻孔机器人自主导航关键技术研究[D]. 徐州:中国矿业大学,2023.

[79]陈鹏.基于激光雷达与视觉融合的SLAM系统设计与实现[D]. 南京:南京邮电大学,2021.

[80]张礼睿.室内移动机器人RBPF-SLAM算法关键技术研究[D]. 杭州:浙江科技大学,2024.

[81]刘松.基于SLAM的移动机器人导航技术研究[D]. 西安:西安理工大学,2022.

[82]顾海华.基于ROS的移动搬运机器人的研究及设计[D]. 盐城:盐城工学院,2023.

[83]王子润,燕必希,董明利,等.基于激光雷达与改进AMCL的爬壁机器人定位方法[J].仪器仪表学报,2022,43(12):220-227.

[84]俞桂洲.防冲钻孔机器人行走控制技术研究[D]. 徐州:中国矿业大学,2023.

[85]刘鸾旸,周浩明,李野.基于RBF神经网络优化的PID控制算法研究[J].自动化与仪器仪表,2024(03):46-49.

中图分类号:

 TD41    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式