- 无标题文档
查看论文信息

论文中文题名:

 辉长岩和花岗岩高温水-岩作用下损伤机制    

姓名:

 张鹤    

学号:

 19209212057    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 水-岩作用    

第一导师姓名:

 孙强 ; 赵春虎    

第一导师单位:

 西安科技大学 ; 中煤科工集团西安研究院有限公司    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Damage mechanism of gabbro and granite under high-temperature water-rock action    

论文中文关键词:

 地热 ; 高温水-岩作用 ; 矿物溶蚀 ; 力学性质 ; 损伤机制    

论文外文关键词:

 Geothermal ; High temperature water-rock interaction ; Mineral dissolution ; Mechanical properties ; Damage mechanism    

论文中文摘要:

地热资源对减少开采利用化石能源,缓解全球环境问题,存在着极大的潜力。在开采利用过程中,地热赋存地层及围岩发生高温水-岩作用,影响地下岩层的稳定性,制约资源的开采效率。因此,研究岩石经过高温水-岩作用后的损伤机制,对提升地热资源的开采利用效率具有重要意义。本文以辉长岩、花岗岩为研究对象,以室内试验为主要手段,结合理论分析方法,研究了高温水-岩作用对两种岩石的影响,通过开展岩石微观结构变化特征和溶液元素变化特征分析试验,揭示岩石溶出矿物元素的变化规律,结合力学试验,阐明岩石发生高温水-岩作用时的变化过程和损伤机制。本文主要取得了以下认识:

(1)经过高温水-岩作用后,辉长岩总孔隙度降低,孔隙结构始终以小孔隙为主;花岗岩孔隙度增加,孔隙结构从以中孔为主过渡到以大孔为主。辉长岩单轴抗压强度提升,在325℃达到最高强度167.77MPa后开始波动变化;花岗岩单轴抗压强度降低,断裂韧度在325℃前从0.92MPa×m0.5降低至0.50MPa×m0.5后开始波动变化。随着温度的升高,花岗岩断裂模式从裂纹平行拓展改变为相交发育。辉长岩表面部分区域被溶液中析出的矿物覆盖,辉石颗粒被氧化,少量不规则坑洞出现在样品表面;花岗岩表面在250℃后部分小颗粒长石脱落,长石、石英表面出现较为明显的溶蚀痕迹,325℃后表面角闪石出现氧化痕迹。

(2)基于电感耦合等离子体质谱技术,研究不同温度的高温水-岩作用后,溶液中矿物元素的浓度,揭示处理前后矿物溶蚀元素的变化规律。结果表明,辉长岩、花岗岩溶液内的矿物元素浓度明显增加,按照浓度排序为:Si、Na、K、Ca、Al、Mg,其中Si、Na、Mg的浓度分别为辉长岩:600、16、11.4μg/mL;花岗岩:439、34.2、17.4μg/mL,Si浓度远大于其他元素。元素浓度的变化改变了溶液的物理性质,其中辉长岩pH、电导率随温度的升高整体增加,花岗岩则整体降低。辉长岩各元素浓度在不同温度出现较大的波动,花岗岩波动较小,大部分元素浓度在325℃左右最大。

(3)结合宏-微观变化特征,分析辉长岩、花岗岩高温水-岩作用变化过程,阐述微观结构和矿物成分变化影响力学强度的机制。结果表明,辉长岩、花岗岩受高温水-岩作用的影响分为两个方面,一是矿物的溶蚀,高温水环境下,岩石表面最先出现溶蚀,随着时间的增加,溶液渗入岩石内部,内部矿物开始溶蚀,元素溶出,强度降低。二是矿物受热后体积膨胀,挤压周围的矿物,出现晶间裂隙,当两个晶体相互挤压时,引发热应力集中,加上溶蚀降低了矿物颗粒强度,诱发晶体破裂,岩石强度进一步降低。

论文外文摘要:

Geothermal resources have great potential to reduce the exploitation and utilization of fossil energy and alleviate global environmental problems. In the process of mining and utilization, high temperature water-rock interaction occurs in geothermal strata and surrounding rocks which affects the stability of the underground rock formations and restricts the mining efficiency of resources. Therefore, it is meaningful to study the damage mechanism of rocks after high-temperature water-rock interaction, which is important to improve the utilization efficiency of geothermal resources. In this paper, taking gabbro and granite as the research objects, using laboratory tests as the main means, combined with theoretical analysis methods, the influence of two kinds of rocks under high temperature water-rock interaction was studied. By carrying out analysis tests on the characteristics of changes in rock microstructure and elements in solution, the changing rules of mineral elements dissolved from rock were revealed. Combined with mechanical tests, the change process and damage mechanism of rocks during high-temperature water-rock interaction were clarified. The main conclusions of this paper are as follows.

(1) After high temperature water-rock interaction, the total porosity of the gabbro decreases, but the pore structure is always dominated by small pores. The porosity of granite increases, and the pore structure transitions from dominated by mesopores to dominated by macropores. The uniaxial compressive strength of gabbro increases, and starts to fluctuate after reaching the highest strength of 167.77MPa at 325℃. The uniaxial compressive strength of granite decreases, and the fracture toughness decreased from 0.92MPa×m0.5 to 0.50MPa×m0.5 before 325℃, and then starts to fluctuate. With the increase of temperature, the fracture mode of granite changed from crack parallelism expansion changes to intersecting development. Part of the gabbro surface was covered with minerals precipitated from the solution, the pyroxene particles were oxidized, and a small number of irregular pits appeared on the surface of the sample. Some small-grained feldspars fall off on the granite surface after 250°C, and obvious dissolution traces appear on the surfaces of feldspar and quartz, and at 325°C, the hornblende on the rear surface shows oxidation marks.

(2) Based on inductively coupled plasma mass spectrometry, the concentration of some mineral elements in the solution after high temperature water-rock interaction at different temperatures was studied, and the change law of mineral dissolution elements before and after treatment was revealed. The results show that the concentration of mineral elements in the solution of gabbro and granite increases significantly. In order of concentration, they are Si, Na, K, Ca, Al, Mg, of which the concentrations of Si, Na, and Mg are 600, 16, 11.4μg/mL for gabbro; 439, 34.2, 17.4μg/mL for granite, Si is the most important element lost by the two rocks. The change of element concentration changed the physical properties of the solution. The pH and conductivity of gabbro increases with the increase of temperature, while the granite decreases. The element concentration of gabbro fluctuates greatly at different temperatures, while that of granite fluctuates little, and the concentration of most elements reaches its maximum at about 325℃.

(3) Combined with the characteristics of macro and micro changes, the changing process of high-temperature water-rock interaction of gabbro and granite was analyzed, and the mechanism of microstructure and mineral composition changes affecting mechanical strength was expounded. The results show that gabbro and granite are affected by high temperature water-rock interaction in two aspects, one is the dissolution of minerals, under high temperature water environment, the rock surface first appears dissolution, with the increase of time, the solution infiltrates into the rock, the minerals inside the rock begin to dissolve, element water out, the strength decreases. The second is the volume expansion of the mineral heat, squeezing the surrounding minerals, intergranular cracks, when the two crystals squeeze each other, resulting in thermal stress concentration, coupled with dissolution to reduce the strength of mineral particles, the emergence of transgranular cracks, rock strength further reduced.

参考文献:

[1] 汪集旸. 能源环境危机下的地热能开发[J]. 科技导报, 2012, 30(04): 3.

[2] 刘雅文. 《bp世界能源统计年鉴》2021年版发布:能源市场遭受巨大冲击[J]. 中国石油和化工, 2021, (08): 32-33.

[3] 姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(08): 2892-2910.

[4] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(04): 449-459.

[5] Axtmann R C. Environmental impact of a geothermal power plant[J]. Science, 1975, 187(4179): 795-803.

[6] 林黎,赵苏民,王心义. 天津地热水开发利用状况及保护对策研究[J]. 河南理工大学学报(自然科学版), 2006, (02): 105-110.

[7] 申建梅,陈宗宇,张古彬. 地热开发利用过程中的环境效应及环境保护[J]. 地球学报:中国地质科学院院报, 1998, (04): 67-73.

[8] 刘明亮,曹耀武,王敏黛,等. 腾冲热海热泉水化学组分来源及其形成机制探讨[J]. 安全与环境工程, 2014, 21(06): 1-7.

[9] 姚足金. 华北地热水3万年以来的古气候记录[J]. 地球科学, 1995, (04): 383-388.

[10]虞鹏鹏. 水岩反应及其研究意义[J]. 中山大学研究生学刊:自然科学与医学版, 2012, 33(04): 25-34.

[11]曹平,宁果果,范祥,等. 不同温度的水岩作用对岩石节理表面形貌特征的影响[J]. 中南大学学报(自然科学版), 2013, 44(04): 1510-1516.

[12]李佳琦,魏铭聪,冯波,等. EGS地热能开发过程中水岩作用对热储层特征的影响[J]. 可再生能源, 2014, 32(07): 1004-1010.

[13]刘长龄,刘钦甫. 高岭石矿物结晶有序化程度与成因关系研究新进展[J]. 地质找矿论丛, 2002, 17(02): 73-81.

[14]欧浩,卢国平,胡晓农,等. 广东省信宜-廉江地区地热水中氟的富集过程[J]. 环境化学, 2019, 38(05): 1128-1138.

[15]姚足金,陈宗宇. 低温地热系统水岩作用的实验研究[J]. 新能源, 1995, 17(04): 9-14.

[16]Hartlieb P, Toifl M, Kuchar F, et al. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution[J]. Minerals Engineering, 2016, 91: 34-41.

[17]Michalske T A, Freiman S W. A molecular interpretation of stress corrosion in silica[J]. Nature, 1982, 295(5849): 511-512.

[18]Mookherjee M, Stixrude L, Karki B. Hydrous silicate melt at high pressure[J]. Nature, 2008, 452(7190): 983-986.

[19]Zhou Z L, Cai X, Ma D, et al. Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content[J]. Engineering Fracture Mechanics, 2018, 193: 47-65.

[20]刘贵,周永胜,宋娟,等. 高温高压条件下实验变形石英闪长岩微观结构与熔体特征研究[J]. 岩石学报, 2012, 28(03): 1005-1016.

[21]Sirdesai N N, Singh T N, Ranjith P G, et al. Effect of varied durations of thermal treatment on the tensile strength of red sandstone[J]. Rock Mechanics and Rock Engineering, 2017, 50(01): 205-213.

[22]Wu G, Wang Y, Swift G, et al. Laboratory investigation of the effects of temperature on the mechanical properties of sandstone[J]. Geotechnical and Geological Engineering, 2013, 31(2): 809-816.

[23]Yin T B, Li X B, Cao W Z, et al. Effects of thermal treatment on tensile strength of laurentian granite using brazilian test[J]. Rock Mechanics and Rock Engineering, 2015, 48(06): 2213-2223.

[24]沈照理,王焰新. 水-岩相互作用研究的回顾与展望[J]. 地球科学, 2002, 22(02): 127-133.

[25]宋土顺,曲希玉,刘红艳,等. 岩屑长石砂岩与CO2流体在水热条件下的相互作用[J]. 矿物岩石, 2012, 32(03): 19-24.

[26]Dewers T, Hajash A. Rate laws for water-assisted compaction and stress-induced water-rock interaction in sandstones[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 13093-13112.

[27]张荣华,胡书敏,张雪彤. 从平衡-封闭-静态转向非平衡-开放-动力学研究-热液矿床成因的若干新概念概述[J]. 地质学报, 2016, (09): 2437-2453.

[28]张荣华,胡书敏. 地球深部流体演化与矿石成因[J]. 地学前缘, 2001, 8(04): 297-310.

[29]张荣华,胡书敏,张雪彤,等. 含金属流体亚临界区出现气液相分离与气体迁移金属[J]. 矿物学报, 2009, 29(S1): 292-293.

[30]Johnson J W, Norton D. Critical phenomena in hydrothermal systems; state, thermodynamic, electrostatic, and transport properties of H2O in the critical region[J]. American Journal of Science, 1991, 291(06): 541-648.

[31]张荣华,张雪彤,胡书敏. 临界区流体与矿物和岩石在地球内部极端条件下的反应[J]. 地学前缘, 2009, 16(01): 53-67.

[32]Klemperer S. Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow[J]. Geological Society London Special Publications, 2006, 268(01).

[33]张荣华,张雪彤,胡书敏,等. 中地壳温度压力条件下的水-岩作用化学动力学实验[J]. 岩石学报, 2007, 23(11): 2933-2942.

[34]张荣华,胡书敏,苏艳丰. 水热蚀变分带和矿物—水化的反应动力学过程[J]. 地质学报, 2002, 76(03): 431-431.

[35]张荣华,波西,赫尔曼,等. 在高温压下的循环溶液内矿物溶解作用化学动力学[J]. 地球学报, 1990, (01): 63-66.

[36]张荣华,胡书敏,张雪彤. 中地壳的地球化学动力学和矿石成因[J]. 地球学报, 2006, (05): 460-470.

[37]Zhang R, Zhang X, Hu S. Dissolution kinetics of quartz in water at high temperatures across the critical state of water[J]. The Journal of Supercritical Fluids, 2015, 100: 58-69.

[38]Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO) Existing problems, possible solutions and new reactor concepts[J]. Chemical Engineering Journal, 2001, 83(3): 207-214.

[39]Decuir M J, Gupta R B, Sastri B. Beneficiation of coal using supercritical water and carbon dioxide extraction: sulfur removal[J]. International Journal of Coal Science and Technology, 2020, 8(4): 717-726.

[40]Jing Y, Jing Z, Willis-Richards J, et al. A simple 3-D thermoelastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir[J]. Journal of Volcanology and Geothermal Research, 2014, 269: 14-22.

[41]丁茜,胡秀芳,高奇东,等. 塔里木盆地奥陶系碳酸盐岩热液蚀变类型及蚀变流体的分带特征[J]. 浙江大学学报(理学版), 2019, 46(05): 600-609.

[42]Simmons S, Christenson B. Origin of calcite in a boiling geothermal system[J]. American Journal of Science, 1994, 294(03): 361-400.

[43]Tenthorey E, Cox S F, Todd H F. Evolution of strength recovery and permeability during fluid–rock reaction in experimental fault zones[J]. Earth and Planetary Science Letters, 2003, 206(1): 161-172.

[44]Sumi K. Hydrothermal rock alteration of matsukawa geothermal area, iwate prefecture[J]. Mining Geology, 1966: 261-271.

[45]Lebedev E B, Zharikov A V. Study of intergranular films and interstitial phases in geomaterials using high temperature centrifuge and ultrasonic method at high pressure[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2000, 25(2): 209-214.

[46]Li M, Wang D, Shao Z. Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance[J]. Engineering Geology, 2020, 275(01).

[47]Xu C, Lin C, Kang Y, et al. An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression: characteristics, mechanisms and controlling factors[J]. Rock Mechanics and Rock Engineering, 2018, 51(08): 2321-2338.

[48]Liaw H-K, Kulkarni R, Chen S, et al. Characterization of fluid distributions in porous media by NMR techniques[J]. AIChE Journal, 1996, 42(02): 538-546.

[49]Morriss C, Rossini D, Straley C, et al. Core analysis by low-field NMR[J]. The Log Analyst, 1997, 38(02): 84-93.

[50]Hou X, Zhu Y, Wang Y, et al. Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs[J]. Fuel, 2019, 254(01).

[51]Kenyon W E, Howard J J, Sezginer A, et al. Pore-Size Distribution And NMR In Microporous Cherty Sandstones; proceedings of the SPWLA 30th Annual Logging Symposium, F, 1989 [C]. SPWLA-1989-LL.

[52]李海波,朱巨义,郭和坤. 核磁共振T2谱换算孔隙半径分布方法研究[J]. 波谱学杂志, 2008, 25(02): 273-280.

[53]白松涛,程道解,万金彬,等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(03): 98-107.

[54]张振涛,姜汉桥. 核磁共振方法研究油水过渡带驱替特征[J]. 石油地质与工程, 2019, 33(04): 4.

[55]Lai J, Wang G, Wang Z, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177: 436-457.

[56]Kogbara R B, Iyengar S R, Grasley Z C, et al. Non-destructive evaluation of concrete mixtures for direct LNG containment[J]. Materials and Design, 2015, 82: 260-272.

[57]Huang Y-H, Yang S-Q, Li W-P, et al. Influence of super-critical CO2 on the Strength and Fracture Behavior of Brine-Saturated Sandstone Specimens[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 653-670.

[58]Liu S, Xu J. An experimental study on the physico-mechanical properties of two post-high-temperature rocks[J]. Engineering Geology, 2015, 185: 63-70.

[59]陈宇龙,张玉. 不同温度热处理石灰岩的物理力学性质试验研究[J]. 岩石力学与工程学报, 2017, 36(A02): 8.

[60]Huang Y-H, Yang S-Q, Li W-P, et al. Influence of super-critical CO2 on the strength and fracture behavior of brine-saturated sandstone specimens[J]. Rock Mechanics and Rock Engineering, 2019, 53(02): 653-670.

[61]Hu X, Song X, Liu Y, et al. Experiment investigation of granite damage under the high-temperature and high-pressure supercritical water condition[J]. Journal of Petroleum Science and Engineering, 2019, 180: 289-297.

[62]Somerton W H. Additional thermal data for porous rocks-thermal expansion and heat of reaction[J]. Society of Petroleum Engineers Journal, 1961, 1:4(04): 249-253.

[63]Winkler E M. Stone in Architecture [M]. Stone in Architecture, 2011.

[64]Ge Z, Sun Q, Yang T, et al. Effect of high temperature on mode-I fracture toughness of granite subjected to liquid nitrogen cooling[J]. Engineering Fracture Mechanics, 2021, 252.

[65]Zhang H, Sun Q, Jia H, et al. Effects of high-temperature thermal treatment on the porosity of red sandstone: an NMR analysis[J]. Acta Geophysica, 2021, 69(01): 113-124.

[66]秦红璐,要惠芳,贾小宝,等. 基于NMR的深部煤储层孔裂隙特征[J]. 煤炭技术, 2019, 38(08): 55-58.

[67]蔡美峰. 岩石力学与工程.第2版 [M]. 岩石力学与工程.第2版, 2013.

[68]Atkinson C, Smelser R E, Sanchez J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(04): 279-291.

[69]Ge Z, Sun Q, Xue L, et al. The influence of microwave treatment on the mode I fracture toughness of granite[J]. Engineering Fracture Mechanics, 2021, 249(1-4).

[70]左建平,黄亚明,刘连峰. 含偏置缺口玄武岩原位三点弯曲细观断裂研究[J]. 岩石力学与工程学报, 2013, 32(04): 740-746.

[71]Hemler J J, Jones W R. Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism[J]. Economic Geology, 1964, 59(04): 538-569.

[72]Fournier R O. The behavior of silica in hydrothermal solution[J]. Review of Economic Geology, 1985, 2.

中图分类号:

 TU458    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式