- 无标题文档
查看论文信息

论文中文题名:

 转轮除湿蒸发冷却空调系统性能研究    

姓名:

 邓文杰    

学号:

 19203053009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 供热 ; 供燃气 ; 通风及空调工程    

研究方向:

 制冷、空调系统的节能技术    

第一导师姓名:

 陈柳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Performance Study of Desiccant Wheel Evaporative Cooling Air Conditioning System    

论文中文关键词:

 转轮除湿 ; 蒸发冷却 ; 高温冷水 ; 空调系统 ; 数据中心    

论文外文关键词:

 Desiccant wheel ; Evaporative cooling ; High-temperature chilled water ; Air conditioning system ; Date center    

论文中文摘要:

        蒸发冷却空调依靠环境空气的“干湿球温差”为驱动势来产生冷量,是一种低碳绿色的可再生能源空调。然而,蒸发冷却空调受限于环境空气的湿球温度和露点温度。提出了由固体除湿和蒸发冷却相耦合的转轮除湿蒸发冷却空调系统,该系统先通过转轮除湿空调系统降低环境空气的湿球温度,再利用蒸发冷却技术实现冷却,系统可由低品位热能驱动在湿热地区制备冷风和冷水。具体研究内容与结果如下:

        提出了转轮除湿蒸发冷却空调系统,系统可同时制备出冷风和冷水,冷风作为新风送入房间,冷水供应于显热空调末端。对系统进行了热力学过程理论研究和㶲性能分析,研究表明:与传统转轮除湿空调系统相比,系统再生的热量㶲为1.14 kW,降低了20.3%;冷量㶲为0.35 kW,降低了18.6%;㶲效率为78.4%,提高了34.2%,说明转轮除湿蒸发冷却空调系统的热力完善度更高。

        设计并建立了转轮除湿蒸发冷却空调系统实验台,对系统的运行性能进行了研究,研究表明:当气水比为1.40时,系统制备冷风和冷水的温度都达到最低值,分别为17.2℃和15.4℃,热力性能系数(TCOP)为1.51。分析了系统应用于三个典型区域的适用性,研究表明:系统在中温中湿地区再生温度应高于60℃,而在中温高湿和高温高湿地区再生温度应高于70℃。

        将转轮除湿蒸发冷却空调系统应用于广州某办公建筑,经系统处理后的冷却新风直接送入室内,系统制备冷水供应于房间的显热空调末端。利用TRNSYS软件模拟研究了系统的动态特性,结果表明:系统能够维持空调房间的温度为25.6~26.8℃和相对湿度为57%~62%。与温湿度独立控制双冷源空调系统相比,该系统在典型周的平均性能系数(COP)和平均节电率分别高出57.9%和36.2%,在典型月内可减少45.9%的二氧化碳排放量。

        将转轮除湿蒸发冷却空调系统应用于数据中心冷却,系统根据室外气象参数实现全新风、蒸发冷却和转轮除湿蒸发冷却三种运行模式,并用TRNSYS软件分析了该运行模式应用于哈尔滨、北京、上海、广州和贵阳数据中心冷却的节能潜力,模拟结果表明:哈尔滨电能利用效率(PUE)最低,为1.085;北京、上海和贵阳PUE值较接近,分别为1.1251.1771.153;广州PUE最高,为1.237。哈尔滨水利用效率(WUE)最低,为0.282;北京和贵阳WUE值较接近,分别为0.3360.376;上海WUE值略高,为0.484;广州WUE值最高,为0.661哈尔滨碳利用效率(CUE)最低,为0.271;北京和贵阳CUE值较接近,分别为0.3180.351;上海CUE值略高,为0.379;广州CUE值最高,为0.450

论文外文摘要:

        Evaporative cooling air-conditione relies on the "wet and dry bulb temperature difference" of the ambient air as the driving potential to generate cooling, which is a low-carbon green renewable energy air-conditioner. However, evaporative cooled air conditioners are limited by the wet bulb temperature and dew point temperature of the ambient air. A desiccant wheel evaporative cooling air conditioning system coupled by solid dehumidification and evaporative cooling is proposed. The system first reduces the wet bulb temperature of the ambient air through desiccant wheel air conditioning system, and then uses evaporative cooling technology to achieve cooling, and the system can be driven by low-grade thermal energy to prepare chilled air and chilled water in hot and humid regions. The specific study contents and results are as follows:

        The desiccant wheel evaporative cooling air conditioning system is proposed. The system can prepare chilled air and chilled water at the same time, the chilled air is sent to the room as fresh air, and the chilled water is supplied to the dry cooling terminal. Theoretical analysis of the thermodynamic process of the system and system's exergy performance were performed. The study shows that compared with the traditional conventional desiccant wheel air conditioning system, the system regenerates 1.14 kW of heat exergy, which is 20.3% lower; and 0.35 kW of cold exergy, which is 18.6% lower; the system's exergy efficiency is 78.4%, which is 34.2% higher, indicating that the desiccant wheel evaporative cooling air conditioning system has higher thermal perfection.

        The experimental platform of desiccantwheel evaporative cooling air conditioning system was designed and established, and the operational performance of the system was studied. The result shows that when the air-to-water ratio is 1.40, the temperature of both chilled air and chilled water prepared by the system reaches the lowest value of 17.2°C and 15.4°C, respectively, with a thermal coefficient of performance of 1.51. The applicability of the system applied to three typical regions was investigated, and the result shows that the regeneration temperature of the system is higher than 60℃ in the moderate temperature and humidity regions,and the regeneration temperature is higher than 70°C in the moderate temperature and high humidity regions and the high temperature and humidity regions.

        The desiccant wheel evaporative cooling air conditioning system is applied to an office building in Guangzhou, where the chilled air prepared by the system is sent into the room, and the chilled water is supplied to the dry cooling terminal of the room. The dynamic characteristics of the system were simulated and studied using TRNSYS software. The results showed that the system can maintain the temperature of the conditioned space at 25.6~26.8℃ and the relative humidity at 57%~62%. Compared with dual cooling source air conditioning systems with independent temperature and humidity control, the average COP and average electricity saving rates of the system are 57.9% and 36.2% higher in a typical week, respectively, and can reduce carbon dioxide emissions by 45.9% in a typical month.

        The desiccant wheel evaporative cooling air conditioning system is applied to the data center. The system can realize three operation modes according to the meteorological parameters: all fresh air, evaporative cooling, and desiccant wheel evaporative cooling. The energy saving potential of data center air conditioning in Harbin, Beijing, Shanghai, Guangzhou and Guiyang is analyzed using TRNSYS software. The simulation results show that Harbin has the lowest PUE of 1.085; Beijing, Shanghai and Guiyang have similar PUE of 1.125, 1.177 and 1.153, respectively; Guangzhou has the highest PUE of 1.237. Harbin has the lowest WUE of 0.282; Beijing and Guiyang have similar WUE of 0.336 and 0.376, respectively; Shanghai has a slightly higher WUE of 0.484; Guangzhou has the highest WUE of 0.661. Harbin has the lowest CUE of 0.0.271; Beijing and Guiyang have similar CUE of 0.318 and 0.351, respectively; Shanghai has a slightly higher CUE of 0.379; Guangzhou has the highest CUE of 0.450.

参考文献:

[1] 郑雷, 崔静. 可持续发展建设中的暖通空调技术及节能措施[J]. 房地产导刊, 2019, 000(11):205.

[2] 黄翔. 空调工程[M]. 北京:机械工业出版社, 2017.

[3] Wu X N, Ge T S, Dai Y J, et al. Review on substrate of solid desiccant dehumidification system[J]. Renewable & Sustainable Energy Reviews, 2018(82):3236-3249.

[4] Henning H M. Solar assisted air conditioning of buildings-an overview[J]. Applied Thermal Engineering, 2007, 27(10):1734-1749.

[5] Abdulrahman T M, Sohif B M, Sulaiman M Y, et al. Historical review of liquid desiccant evaporation cooling technology[J], Energy Building.2013(67):22-33.

[6] Jani D B, Mishra M, Sahoo P K. Solid desiccant air conditioning–A state of the art review[J]. Renewable & Sustainable Energy Reviews, 2016, 60(07):1451-1469.

[7] Pennington NA. Humidity changer for air-conditioning[P]. Google Patents; 1955.

[8] Jain S, Dhar P, Kaushik S. Evaluation of solid-desiccant-based evaporative cooling cycles for typical hot and humid climates[J]. International Journal of Refrigeration, 1995;18(05):287-296.

[9] Collier R, F Arnold, Barlow R. Overview of Open-Cycle Desiccant Cooling Systems and Materials[J]. Office of Scientific & Technical Information Technical Reports, 1981.

[10] Pesaran A A, Penney T R, Czanderna A W. Desiccant cooling: state-of-the-art assessment [J]. National Renewable Energy Lab, 1992.

[11] La D, Dai Y J, Li Y, et al. Technical development of rotary desiccant dehumidification and air conditioning: A review[J]. Renewable & Sustainable Energy Reviews, 2010, 14(01):130-147.

[12] 葛天舒. 转轮式两级除湿空调理论与实验研究[D]. 上海:上海交通大学, 2009.

[13] 陈思豪, 陈柳. 低温驱动双转轮除湿空调系统研究[J]. 建筑科学, 2019, 35(08):89-94.

[14] Worek W M, Moon C J. Desiccant integrated hybrid vapor-compression cooling: Performance sensitivity to outdoor conditions[J]. Heat Recovery Systems and CHP, 1988, 8(06):489-501.

[15] Dai Y J, Wang R Z, Xu Y X. Study of a solar powered solid adsorption-desiccant cooling system used for grain storage. Renewable Energy, 2002, 25(03): 417-430.

[16] Hao X, Zhang G, Chen Y, et al. A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification[J]. Building & Environment, 2007, 42(09):3298-3308.

[17] 杨长明, 李平. 转轮除湿技术的应用与研究进展[J]. 浙江建筑, 2012, 29(06):63-66.

[18] Liu Y F, Wang R Z. Pore structure of new composite adsorbent SiO2·xH2O·yCaCl2 with high uptake of water from air[J]. Science in China (Series E:Technological Sciences),2003(05):551-559.

[19] 张学军, 代彦军, 王如竹. 新型复合干燥剂吸附分形特性[J]. 工程热物理学报, 2004, 25(02):320-322.

[20] 常烜宇, 李勇, 何海斌, 等. 硅胶及硅胶—氯化锂复合材料蓄能特性实验与分析[J]. 太阳能学报, 2017, 38(07):1767-1772.

[21] Kodama A, Watanabe N, Hirose T, et al. Performance of a Multipass Honeycomb Adsorber Regenerated by a Direct Hot Water Heating[J]. Adsorption-journal of the International Adsorption Society, 2005, 11(01):603-608.

[22] 雷燕子. 新型吸附材料除湿转轮传递过程性能研究[D]. 西安:西安科技大学, 2020.

[23] 赵惠忠, 闫坦坦, 贾少龙, 等. 新型复合吸附剂硅胶/氧化石墨烯在开式吸附下的吸附性能研究[J]. 离子交换与吸附, 2018, 34(06):500-509.

[24] 何晨晨, 陈柳. 新型复合固体除湿材料的吸附和解吸性能研究[J]. 低温与超导, 2020, 48(04):62-69.

[25] Ehrenmann J, Henninger S K, Janiak C. Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs[J]. European Journal of Inorganic Chemistry, 2010.

[26] Joudi K A, Dhaidan N S. Application of solar assisted heating and desiccant cooling systems for a domestic building[J]. 2001, 42(8):995-1022.

[27] Angrisani G, Roselli C, Sasso M, et al. Dynamic performance assessment of a solar-assisted desiccant-based air handling unit in two Italian cities, Energy Conversion and Management. 2016, 331-345.

[28] Pramuang S, Exell R. The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator[J]. Renewable Energy, 2007, 32(01):173-182.

[29] Bourdoukan P, Wurtz E, Joubert P. Experimental investigation of a solar desiccant cooling installation[J]. Solar Energy, 2009, 83(11):2059-2073.

[30] Chaudhary G Q, Ali M, Sheikh N A, et al. Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling[J]. Applied Thermal Engineering, 2018, 40:696-706.

[31] 丁云飞, 丁静, 杨晓西. 基于太阳能再生的转轮除湿独立新风系统[J]. 流体机械, 2006, 34(08):63-66.

[32] Fong K F, Chow T T, Lee C K, et al. Advancement of solar desiccant cooling system for building use in subtropical Hong Kong[J]. Energy & Buildings, 2010, 42(12):2386-2399.

[33] 郝红, 张于峰, 邓娜, 等. 转轮热泵耦合式空调系统的节能性研究[J]. 太阳能学报, 2009, 30(01):45-50.

[34] 谭益坤, 陈柳, 陈思豪. 热泵再生型转轮除湿空调系统研究[J]. 低温与超导, 2019, 47(09):79-84.

[35] Sheng Y, Zhang Y, Zhang G. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system[J]. Energy, 2015, 83:583-596

[36] 葛凤华, 王剑, 郭兴龙, 等. 热泵废热再生转轮除湿空调系统的性能研究[J]. 太阳能学报, 2016, 37(9):2326-2331.

[37] Xysa B, Jlcc D, Yzc E, et al. Experimental investigation on a dehumidification unit with heat recovery using desiccant coated heat exchanger in waste to energy system-ScienceDirect[J]. Applied Thermal Engineering, 2021,185:116342.

[38] Casas W, Schmitz G. Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building[J]. Energy and Buildings, 2015, 37(05):493-501.

[39] Xz A, Rr B. Experimental investigation for a non-adiabatic desiccant wheel with a concentric structure at low regeneration temperatures[J]. Energy Conversion and Management, 2019.201:112165.

[40] Baniyounes A M, Liu G, Rasul M G, et al. Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia[J]. Renewable & Sustainable Energy Reviews, 2012, 16(08):6423-6431.

[41] Sopian K, MS M, Dezfouli, et al. Solar assisted desiccant air conditioning system for hot and humid areas, International Journal of Environment & Sustainability. 2014,3:22–32.

[42] Heidari A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates[J]. Energy Conversion and Management, 2019, 185:396-409.

[43] Jani D B, Mishra B M, Sahoo C. Performance analysis of a solid desiccant assisted hybrid space cooling system using TRNSYS[J]. Journal of Building Engineering, 2018,19:26-35.

[44] Maryam, Karami, Shahram, et al. Performance characteristics of a solar desiccant/M-cycle air-conditioning system for the buildings in hot and humid areas[J]. Asian Journal of Civil Engineering, 2020, 21(02):189-199.

[45] Liu Y, Chen Y, Wang D, et al. Performance evaluation of a hybrid solar powered rotary desiccant wheel air conditioning system for low latitude isolated islands[J]. Energy and Buildings, 2020, 224:110208.

[46] Chen L, Tan Y. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable energy, 2020, 146(02):2142-2157.

[47] 王起. 直接蒸发冷却空调系统在乌鲁木齐地铁中的应用[J].市政技术, 2020, 38(02):177-184.

[48] 何家键, 杨霰, 亢燕铭, 等. 典型气象季在直接蒸发冷却空调中的应用[J]. 东华大学学报, 2020, 46(01):123-127.

[49] 严政, 黄翔, 黄凯新 ,等. 单元式直接蒸发冷却空调在西安某交通岗亭的应用[J]. 暖通空调, 2019, 49(09):142-145.

[50] 李德胜. 从南迪普电厂实例谈直接蒸发冷却空调的影响因素及应用[J]. 广西节能, 2017(02):30-32.

[51] 李耀亮, 周文和. 直接蒸发冷却空调技术兰州地区适用性的分析[J]. 建筑热能通风空调, 2016, 35(12):67-70.

[52] 王俊, 黄翔, 邱佳, 等. 高压喷雾直接蒸发冷却空调系统在中庭建筑应用分析[J]. 制冷与空调, 2015, 15(07):63-65+75.

[53] 宗达, 张健, 陈洁. 数值模拟对直接蒸发冷却空调性能的分析[J]. 建筑节能, 2013, 41(10):13-17.

[54] 方宏, 蔡珊瑜. 地下交通空间中直接蒸发冷却空调系统的设计应用[J]. 建筑结构, 2013, 43::200-203.

[55] 黄翔, 周海东, 范坤, 等. 通信机房应用直接蒸发冷却空调方式的优化及节能分析[J]. 暖通空调, 2013, 43(10):28-34.

[56] Eidan A A, Alwan A K, AlSahlani B A, et al. Enhancement of the Performance Characteristics for Air-Conditioning System by Using Direct Evaporative Cooling in Hot Climates[J]. Energy Procedia, 2017, 142:3998-4003.

[57] 张谦, 马高峰. 铁路客站喷雾蒸发冷却高效空调系统研究[J]. 中国新技术新产品, 2021(17):97-99.

[58] 徐方成, 黄翔, 武俊梅. 管式间接蒸发冷却空调机组在纺织厂的应用[J]. 棉纺织技术, 2009, 37(02):59-61.

[59] 刘艳峰, 李娟, 王莹莹, 等. 直接与露点间接蒸发冷却空调技术在我国的地区适用性研究[J]. 暖通空调, 2019, 49(12):8-14.

[60] 武以闯, 黄翔, 褚俊杰, 等. 西安地区某蒸发冷却空调宿舍热舒适性分析[J]. 建筑节能, 2017, 45(08):6-12.

[61] Joudi K A, Mehdi S M. Application of indirect evaporative cooling to variable domestic cooling load[J]. Energy Conversion and Management, 2000, 41(17):1931-1951.

[62] 肖新文. 间接蒸发冷却空调机组应用于数据中心的节能分析[J]. 暖通空调, 2019, 49(03):67-71.

[63] 何华明. 蒸发式冷气机应用于通信机房的节能分析[J]. 制冷与空调, 2011, 11(03): 107-111.

[64] 李婷婷, 黄翔, 折建利, 等. 东北某数据中心机房空调系统节能改造分析[J]. 西安工程大学学报, 2017, 31(03): 364-368.

[65] 傅耀玮, 黄翔. 蒸发冷凝式间接蒸发冷却空调机组的设计与测试[J]. 西安工程大学学报, 2022, 36(01):61-69.

[66] 褚俊杰, 徐伟, 霍慧敏. 间接蒸发冷却空调在近零能耗公共建筑中的应用与实测[J]. 建筑科学, 2021, 37(10):9-15+41.

[67] 由玉文, 蒋晖, 王劲松, 等.高温高湿地区间接蒸发冷却空调机组的应用分析研究[J]. 流体机械, 2019, 47(08):71-75.

[68] 余龙, 万建武, 李俊华. 热管式间接蒸发冷却空调方式的能耗分析[J]. 建筑热能通风空调, 2012, 31(06):62-65+55.

[69] 吴成斌, 付东明, 赵雪飞, 等. 新型露点间接蒸发冷却空调机组及其性能研究[J]. 制冷与空调:2022:1-5.

[70] 屈悦滢, 黄翔, 赵娟, 等. 复合式露点间接蒸发冷却空调机组的应用研究与优化设计[J]. 制冷与空调(四川), 2020, 34(05):517-523.

[71] 方凯乐, 强天伟, 宣永梅. 太阳能制冷与露点蒸发冷却耦合的空调系统[J]. 西安工程大学学报, 2020, 34(02):52-59.

[72] 黄凯新, 黄翔, 严政, 等. 复合式露点间接蒸发冷却空调机组在敦煌机场某食堂的应用[J]. 制冷与空调, 2019, 19(03):46-50.

[73] 王于曹, 陆刘记, 吴学红. 逆流式波纹隔板露点间接蒸发冷却器性能研究[J]. 低温与超导, 2018, 46(04):58-62+87.

[74] 折建利, 黄翔, 吕伟华, 等. 交叉式露点间接蒸发冷却空调机组在数据机房的应用方案[J]. 制冷与空调, 2017, 17(01):35-39.

[75] Zhao X, Li J M, Riffat S B. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling[J]. Applied Thermal Engineering, 2008, 28(14-15):1942-1951.

[76] 周海东, 黄翔, 于学顺. 模拟通信基站应用露点间接蒸发冷却空调技术的实验研究[J]. 制冷与空调, 2012, 12(03):71-76+108.

[77] Anisimov S, Pandelidis D, Danielewicz J. Numerical study and optimization of the combined indirect evaporative air cooler for air-conditioning systems[J]. Energy, 2015, 80:452-464.

[78] Khalid O, Ali M, Sheikh N A, et al. Experimental analysis of an improved Maisotsenko cycle design under low velocity conditions[J]. Applied Thermal Engineering, 2016, 95:288-295.

[79] 李朝阳, 黄翔, 焦煜, 等. 露点式蒸发冷却空调机组用于干燥地区的试验研究[J]. 流体机械, 2020, 48(04):62-67+61.

[80] 倪诚明. 太阳能烟囱与露点间接蒸发冷却复合空调节能系统分析[J]. 制冷, 2014, 33(04):66-70.

[81] Mochizuki M, Xiao P W, Mashiko K, et al. Experimental Investigations on Cold Energy Storage Employing Heat Pipes for Data Center Energy Conservation[J]. International Journal of Energy Science, 2012, 2(03):77-83.

[82] Beccali M, Butera F, Guanella R, et al. Simplified models for the performance evaluation of desiccant wheel dehumidification[J]. International journal of energy research, 2003, 27(01):17-29.

[83] Ahrendts J. Reference states[J]. Energy, 1980, 5(8-9):666-677.

[84] Blwa, Anl. Exergy transfer and parametric study of counter flow wet cooling towers-ScienceDirect[J]. Applied Thermal Engineering, 2011, 31(5):954-960.

[85] 谭羽非. 工程热力学[M]. 化学工业出版社, 2010.

[86] Luqman M, Al-Ansari T. A novel integrated wastewater recovery, clean water production and air-conditioning system[J]. Energy Conversion and Management, 2021, 244(1): 11452

[87] 陈尔健, 贾腾, 姚剑, 等. 太阳能空调与热泵技术进展及应用[J]. 华电技术, 2021, 43(11):40-48.

[88] 王庚, 张小松, 陈瑶, 等. 陶瓷泡沫填料逆流直接蒸发冷却热质传递特性的实验研究[J]. 东南大学学报(自然科学版), 2012, 42(03):458-463.

[89] Ge T S, Li Y, Wang R Z, et al. Experimental study on a two-stage rotary desiccant cooling system[J]. International Journal of Refrigeration, 2009, 32(03):498-508.

[90] Hasan A. Going below the wet-bulb temperature by indirect evaporative cooling: Analysis using a modified ε-NTU method[J]. Applied Energy, 2012, 89(01):237-245.

[91] Holman JP. Experimental methods for engineers[M], New York: McGraw-Hill Education, 2012:60-96.

[92] Anisimov S, D Pandelidis, Jedlikowski A, et al. Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling[J]. Energy, 2014, 76:593-606.

[93] Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1):3-17.

[94] Chen Q, Ning P, Guo Z Y. A new approach to analysis and optimization of evaporative cooling system II: Applications[J]. Energy, 2011, 36(5):2890-2898.

[95] Chen L, Chen S H, Liu L, et al. Experimental investigation of precooling desiccant-wheel air-conditioning system in a high-temperature and high-humidity environment[J]. International Journal of Refrigeration, 2018,95:83-92

[96] Jani D B, Mishra M, Sahoo P K. Experimental investigation on solid desiccant–vapor compression hybrid air-conditioning system in hot and humid weather[J]. Applied Thermal Engineering, 2016, 104:556-564.

[97] A. Fouda a, Z. Melikyan b. A simplified model for analysis of heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2011, 31(05):932-936.

[98] Yan D, Qiang F, et al. Influence of indoor design air parameters on energy consumption of heating and air conditioning[J]. Energy and Buildings, 2013, 56(01):78-84.

[99] Yang C M, Chen C C, Chen S L. Energy-efficient air conditioning system with combination of radiant cooling and periodic total heat exchanger[J]. Energy, 2013, 59:467-477.

[100] Jurinak J J. Open cycle desiccant cooling-component models and system simulations[D]. Madison: University of Wisconsin,1982.

[101] Wu J M, Huang X, Zhang H. Theoretical analysis on heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2009, 29(5):980-984.

[102] ASHRAE Standard 90.1-2016. Energy standard for buildings except low-rise residential buildings. Atlanta. 2016.

[103] 江明旒. 运行工况对冷水机组性能的影响[J]. 制冷技术, 2021, 41(05):78-82.

[104] Heidari A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates[J]. Energy Conversion and Management, 2019, 185:396-409.

[105] Maryam, Karami, Shahram, et al. Performance characteristics of a solar desiccant/M-cycle air-conditioning system for the buildings in hot and humid areas[J]. Asian Journal of Civil Engineering, 2020, 21(2):189-199.

[106] 王大哲. CECS118, 2000冷却塔验收测试规程[M]. 北京:中国程建设标准化协会,2000.

[107] 路建岭, 赵惠忠, 邹志军, 等. 喷雾冷却塔气水比和截面风速对冷却效率的影响[J]. 流体机械, 2009, 37(12):68-71.

[108] 白延斌, 黄翔, 孙铁柱, 等. 气水比对蒸发冷却高温冷水机组出水温度的影响[J]. 流体机械, 2011(10):83-86.

[109] 王文兴, 王纬, 张婉华, 等. 我国SO2和NOX排放强度地理分布和历史趋势[J]. 中国环境科学, 1996(03):161-167.

中图分类号:

 TU831.5    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式