- 无标题文档
查看论文信息

论文中文题名:

 双金属氧化物纳米流体热物性及强化传热防治煤自燃研究    

姓名:

 张小娟    

学号:

 20220089022    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 刘博    

第一导师单位:

 西安科技大学    

第二导师姓名:

 罗振敏    

论文提交日期:

 2023-06-17    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on thermophysical properties of bimetallic oxide nanofluid and strengthening heat transfer to prevent coal spontaneous combustion    

论文中文关键词:

 煤自燃 ; 纳米流体 ; 热棒 ; 移热    

论文外文关键词:

 Coal fire ; Nanofluids ; Hot rod ; Heat transfer    

论文中文摘要:

目前煤火灾害防治问题是矿山安全领域的重要课题, 由煤自燃引起的火灾事故占矿
井火灾的 90%以上,对井下人员的生命安全造成严重威胁。 热棒移热技术作为能够提取
煤堆内部热量的关键技术,近年来受到了广泛的关注。热棒移热的影响因素主要包括热
棒类型、流动工质类型及工质导热系数, 目前市面上常见的 CuO 纳米颗粒价格昂贵且组
分单一, CuO-H2O 纳米流体作为热棒的主要内部工质移热效能有限。因此本文从理论分
析结合实验研究的角度出发,制备了新型稳定性优良且具有高导热性的双金属氧化物纳
米流体,并对该纳米流体各项热物性能(导热系数、粘度、表面张力、接触角)进行测
试,探究了纳米流体热棒移热防治煤自燃效能,为煤火的防治及高效绿色开采奠定理论
基础。
本文采用前驱体-焙烧法制备不同种类的双金属氧化物纳米颗粒,结合超声分散、化
学分散耦合技术制备了 0.1%、 0.5%、 0.8%、 1.0%和 1.5%的不同基液(水、乙二醇)、 不
同质量分数的双金属氧化物纳米流体。 通过不同观察检测手段定性定量分析纳米流体的
悬浮稳定性;采用导热系数测试仪、粘度计、表面张力仪等测试仪器对双金属氧化物纳
米流体的导热系数、粘度、表面张力等进行测试, 通过 Merit 数筛选出满足要求的双金
属氧化物纳米流体(ZnAl-H2O(1.5wt.% 1%SDBS)、 MgAl-EG(1.5wt.% 无分散剂));自主
搭建煤自燃移热实验平台,将前期测试优选出的纳米流体作为流动工质加入热棒中,分
析探究不同充液率、不同插入倾角对热棒移热效能的影响, 确定热棒移热的最佳工况,
探究不同纳米流体工质热棒移热效果。
结果表明:(1) 制备的双金属氧化物纳米流体具有良好的悬浮稳定性,在静置 5 天
后,无明显分层和沉淀,紫外分光的吸光度维持在 6.0 左右; (2) 在基液中加入双金属
氧化物能够提升基液的导热系数及粘度,同时降低基液的表面张力和接触角; (3) 基液
(水、 乙二醇) 的导热系数最大分别增加了 29%和 132.9%, 随着温度的升高(20℃~
100℃), 纳米流体(水基、 乙二醇基) 的粘度分别降低了 66%和 121.03%, 当温度自 20℃
上升到 100℃, 水基纳米流体的表面张力最大下降了 22.96%, 乙二醇基纳米流体的表面
张力最大下降了 16.61%,接触角随质量分数的增大而减小,随分散剂的添加而减小;(4)
温度、 纳米流体的质量分数以及分散剂的添加都会对纳米流体的热物性能造成不同程度
的影响,例如,随着纳米颗粒质量分数的增大,导热系数值、粘度值以及表面张力值都
增大,接触角减小; (5) 双金属氧化物纳米流体在热棒中的移热性能优于基液,且优于
市面常见的 CuO-H2O 纳米流体。在最佳工况(30%充液率和 60°倾角) 下, ZnAl-H2O 纳
米流体的移热效能高于 CuO-H2O 纳米流体, ZnAl-H2O 纳米流体煤堆中下部测点 A1、 B1
比水、CuO-H2O 纳米流体各测点的最大降温值分别提高了 4.39%、4.56%和 1.36%、0.36%,
表明 ZnAl-H2O 纳米流体对煤堆中下部的移热效果最好。

论文外文摘要:

At present, the prevention and control of coal fire disaster is an important topic in the field
of mine safety. Fire accidents caused by coal spontaneous combustion account for more than
90% of mine fires, which poses a serious threat to the life safety of underground personnel. As
a key technology to extract heat from coal piles, hot rod heat transfer technology has received
extensive attention in recent years. The influencing factors of heat transfer of hot rod mainly
include the type of hot rod, the type of flowing working medium and the thermal conductivity
of working medium. At present, the common CuO nanoparticles on the market are expensive
and have a single component, and the heat transfer efficiency of CuO-H2O nanofluid as the main
internal working medium of hot rod is limited. Therefore, from the perspective of theoretical
analysis and experimental research, this paper prepared a new type of bimetallic oxide nanofluid
with excellent stability and high thermal conductivity, and tested various thermal properties
(thermal conductivity, viscosity, surface tension, contact angle) of the nanofluid, explored the
effectiveness of nanofluid hot rod heat transfer to prevent coal spontaneous combustion, and
laid a theoretical foundation for coal fire prevention and efficient green mining.
In this paper, different kinds of bimetallic oxide nanoparticles were prepared by precursorroasting method, and 0.1%, 0.5%, 0.8%, 1.0% and 1.5% bimetallic oxide nanofluids with
different base liquids (water and ethylene glycol) and different mass fractions were prepared by
combining ultrasonic dispersion and chemical dispersion coupling technology. The suspension
stability of nanofluids was qualitatively and quantitatively analyzed by different observation
and detection methods. The thermal conductivity, viscosity and surface tension of bimetallic
oxide nanofluids were tested by thermal conductivity tester, viscometer and surface tensiometer,
and the bimetallic oxide nanofluids (ZnAl-H2O(1.5wt.% 1%SDBS) and MgAl-EG(1.5wt.%
without dispersant)) that met the requirements were screened out by Merit number. The
experimental platform of coal spontaneous combustion and heat transfer was built
independently, and the nanofluid selected in the previous test was added into the hot rod as a
flowing working medium. The effects of different liquid filling rates and different insertion
angles on the heat transfer efficiency of the hot rod were analyzed and explored, and the best
working conditions of the hot rod were determined, and the heat transfer effects of different
nanofluid working mediums were explored.
The results show that: (1) The prepared bimetallic oxide nanofluid has good suspension
stability. After standing for 5 days, there is no obvious delamination and precipitation, and the
absorbance of ultraviolet spectroscopy is maintained at about 6.0; (2) Adding bimetallic oxide
into the base liquid can improve the thermal conductivity and viscosity of the base liquid, while
reducing the surface tension and contact angle of the base liquid; (3) The thermal conductivity
of base fluids (water and ethylene glycol) increased by 29% and 132.9% respectively. With the
increase of temperature (20℃ ~ 100℃), the viscosity of nanofluids (water-based and ethylene
glycol-based) decreased by 66% and 121.03% respectively. When the temperature rose from
20℃ to 100℃, the water-based nanofluids. (4) Temperature, the mass fraction of nanofluid and
the addition of dispersant all have different effects on the thermal properties of nanofluid. For
example, with the increase of the mass fraction of nanoparticles, the thermal conductivity,
viscosity and surface tension all increase, while the contact angle decreases. (5) The heat transfer
performance of the bimetallic oxide nanofluid in the hot rod is better than that of the base liquid
and the common CuO-H2O nanofluid in the market. Under the best working conditions (30%
liquid filling rate and 60 inclination), the heat transfer efficiency of ZnAl-H2O nanofluid is
higher than that of CuO-H2O nanofluid, and the maximum cooling values of the middle and
lower measuring points A1 and B1 of ZnAl-H2O nanofluid coal pile are 4.39%,4.56% and
1.36%,0.36% higher than those of water and CuO-H2O nanofluid respectively.
 

参考文献:

[1] 罗海珠,梁运涛.煤自然发火预测预报技术的现状与展望[J].中国安全科学学报,2003(03):79-81+1

[2] Lu Y, Qin BT. Identification and control of spontaneous combustion of coal pillars: a case study in the

Qianyingzi Mine, China[J]. Natural Hazards,2015,75(3).

[3] 沈一丁. 防治煤自燃高效泡沫灭火剂的实验研究[D].江苏:中国矿业大学,2018.

[4] 秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术,2021,49(01):66-

99.

[5] 战洪仁,惠尧,吴众.闭式热虹吸管强化传热研究进展[J].化工进展,2017,36(08):2764-2775.

[6] Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles[J]. Asme Fed, 1995,

231(1):99.

[7] 杨世铭,陶文铨.传热学 第三版[M].高等教育出版社,1998.

[8] Zhong KQ, Xiao Y, Lu X, et al. Nanofluidic two-phase closed thermosyphon-assisted thermoelectric

generator for heat recovery from coal spontaneous combustion[J]. Applied Thermal

Engineering,2021,197-204.

[9] 王彩霞,黄云,姚华,等.纳米流体研究进展[J].储能科学与技术,2017,6(01):24-34.

[10] Pritam KD. A review based on the effect and mechanism of thermal conductivity of normal nanofluids

and hybrid nanofluids[J]. Journal of Molecular Liquids,2017,2(40):420-446.

[11] Gupta M, Singh V, Kumar S, et al. Up to date review on the synthesis and thermophysical properties of

hybrid nanofluids[J]. Journal of cleaner production,2018,190(20):169-192.

[12] Li YH, Zhai YL, M MY, et al. Using molecular dynamics simulations to investigate the effect of the

interfacial nanolayer structure on enhancing the viscosity and thermal conductivity of nanofluids[J].

International Communications in Heat and Mass Transfer,2021,122-134.

[13] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J]. International

Journal of Mining Science and Technology,2020,20(3):303-311.

[14] Lu Y, Qin BT. Identification and control of spontaneous combustion of coal pillars: a case study in

the Qianyingzi Mine, China[J]. Natural Hazards,2015,75(3):2683-2697.

[15] 秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学术,2021,49(1):66-99.

[16] Deng J, Yang Y, Zhang YN, et al. Inhibiting effects of three commercial inhibitors in spontaneous coal

combustion [J]. Energy, 2018, 160: 1174-1185.

[17] Peng H, Li Y, Jia XL. Experimental study on thermoelectric generation Device based on accumulated

temperature waste heat of coal gangue[J]. Energy Reports,2022,8(7): 210-219

[18] Liang YT, Zhang J, Wang LC, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases:A review[J].Journal of Loss Prevention in the Process Industries,2019,57:208-222.

[19] Wang HY, Li JL, Dong ZHZ, et al. Effect of thermal damage on the pore-fracture system during coal

spontaneous combustion[J]. Fuel,2023,339:1-14.

[20] Pan RK, Li C, Chao JK, et al. Thermal properties and microstructural evolution of coal spontaneous

combustion[J]. Energy, 2023,262:1-8.

[21] 徐礼华.煤垛热管降温的实验研究[J].能源研究与利用, 1991, (2):11−15.

[22] 屈锐.重力热管提取储煤堆自燃热量的实验研究[D].西安:西安科技大学,2014.

[23] 李贝,高伟,邓军,等.基于热棒防灭火技术的煤自燃区域热迁移特征[J].中南大学学报(自然科学

版),2020,51(4):1135-1144.

[24] 易欣,任瑶,陈安明,等.基于热棒移热的储煤堆自燃防治研究现状及进展 [J].煤矿现代

化,2022,31(04):62-66.

[25] Liu ZH, Yang XF, Guo GL. Effect of nanoparticles in nanofluid on thermal performance in a miniature

thermosyphon [J]. Journal of Applied Physics,2007,102(1): 1-9.

[26] Shafahi M, Bianco V, Vafai K, et al. An investigation of the thermal performance of cylindrical heat pipes

using nanofluids[J]. International journal of heat and mass transfer, 2010, 53(1-3):376-383.

[27] Huminic G, Huminic A, Dumitrache F, et al. Study of the thermal conductivity of hybrid nanofluids:

Recent research and experimental study[J].Powder Technology,2020,367(52):347-357.

[28] Hamid G, Mohammad Reza Sarmasti E, Maryam S. Effect of nanofluid and surfactant on thermosyphon

heat pipe performance[J]. Heat Transfer Engineering,2020,41(22):1829-1842.

[29] 彭玉辉,黄素逸,黄锟剑.热管中添加纳米颗粒[J].化工学报,2004(11):1768-1772.

[30] 张 云 峰 , 刘 鹏 , 夏 寻 . 四 氧 化 三 铁 纳 米 流 体 强 化 热 管 换 热 的 实 验 研 究 [J]. 热 科 学 与 技

术,2020,19(6):555-560.

[31] 王助良, 戴世佳, 王宏宇,等.纳米流体及分散剂对重力热管性能影响试验[J]. 江苏大学学报(自然

科学版),2017,38(5):544– 548.

[32] 贾亚峰,尚玉明,何向明,等.纳米流体储能研究进展[J].新材料产业,2017(06):30-34.

[33] Ma KQ, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip[J].

Journal of Physics D: Applied Physics,2007,40(15):4722-4736.

[34] 李新芳,朱冬生.纳米流体传热性能研究进展与存在问题[J].化工进展,2006(08):875-879.

[35] 郑俨钊,雷建永,王桥,等.纳米流体研究综述[J].当代化工,2021,50(03):724-728.

[36] 李艳娇,赵凯,罗志峰,等.纳米流体的研究进展[J].材料导报,2008(11):87-92.

[37] Seung WL, Seong DP,In CB. Critical heat flux for CuO nanofluid fabricated by pulsed laser ablation differentiating deposition characteristics[J]. International Journal of Heat and Mass Transfer,2012,55(23):98-109.

[38] Lo CH, Tsung TT, Chen LC, et al. Fabrication of copper oxide nanofluid using submerged arc

nanoparticle synthesis system (SANSS)[J]. Journal of nanoparticle research: An interdisciplinary forum

for nanoscale science and technology,2005,7(3):313-320.

[39] 陈立飞.含碳纳米管纳米流体制备及其性能研究[J].上海第二工业大学学报,2011,28(02):124-129.

[40] 夏国栋,刘冉,杜墨.纳米流体导热系数影响因素分析[J].北京工业大学学报,2016,42(08):1252-1258.

[41] 丁婷婷,李子成,周颖,等.纳米流体研究进展[J].化工新型材料,2018,46(08):9-14.

[42] 宣益民.纳米流体能量传递理论与应用[J].中国科学:技术科学,2014,44(03):269-279.

[43] 李小可.高稳定性碳纳米管纳米流体的制备及热特性研究[D].四川:西南石油大学,2017.

[44] Amir K, Mohammad A. Experimental investigation of thermal conductivity of nanofluids containing of

hybrid nanoparticles suspended in binary base fluids and propose a new correlation[J]. International

Journal of Heat and Mass Transfer,2018,124-135.

[45] Mitiche I, Lamrous O, Makhlouf S, et al. Effect of the interface layer vibration modes in enhancing

thermal conductivity of nanofluids.[J]. Physical review. 2019,100(4):36-45.

[46] Azizian R, Doroodchi E, Moghtaderi B. Influence of Controlled Aggregation on Thermal Conductivity

of Nanofluids[J]. Journal of Heat Transfer,2016,138(2):66-73.

[47] Hicham Z, Soufiya M, Hamid L,et al. Population balance equation model to predict the effects of

aggregation kinetics on the thermal conductivity of nanofluids[J]. Journal of Molecular

Liquids,2016,218-225.

[48] 张 智 奇 , 钱 胜 , 王 瑞 金 , 等 . 纳 米 颗 粒 聚 集 形 态 对 纳 米 流 体 导 热 系 数 的 影 响 [J]. 物 理

报,2019,68(05):161-170.

[49] Aboozar K, Behzad V. Intelligent assessment of effect of aggregation on thermal conductivity of

nanofluids—Comparison by experimental data and empirical correlations[J]. Thermochimica

Acta,2019,681-693.

[50] 孔令辉. TiO2纳米流体热传输及摩擦学行为研究[D].北京:北京科技大学,2018.

[51] Fang F, Futter J, Hutchinson E, et al. Enhanced Thermal Conductivity of Nanofluids Made of Metal

Oxide Nanostructures Synthesized By Arc Discharge Method[J]. Nanotechnology Weekly,2020.

[52] Maheshwary PB, Handa CC, Nemade KR, et al. Role of nanoparticle shape in enhancing the thermal

conductivity of nanofluids[J]. Materials Today: Proceedings,2020,28(2).

[53] 王文志.银纳米流体的制备及其性能研究[D].山东:济南大学,2016.

[54] 刘冉.纳米流体稳定性和导热系数测试及其流动与换热特性研究[D].北京:北京工业大学,2016.

[55] 周树光,翟玉玲,王江.建立余热回收中纳米工质的导热系数预测模型[J].工业加热,2020,49(04):23-26+31.

[56] 曾远娴,肖鑫,陈梓云,等.导热油基 CuO 纳米流体的合成及其强化传热研究[J].化工技术与开发,2017,46(04):6-10+16.

[57] 曾远娴,肖鑫,黄萍,等.硬脂酸修饰 MoS_2 纳米颗粒的制备及其强化传热性能[J].广东化

工,2017,44(07):69-71+77.

[58] 寻倩倩.不同形貌银纳米流体的制备与物理性能研究[D].山东:济南大学,2017.

[59] 史继媛.氧化石墨烯纳米流体热物性能及在热管中应用的研究[D].山东:济南大学,2017.

[60] 赵宁波,郑洪涛,李淑英,等.Al2O3-H2O 纳米流体的热导率与粘度实验研究[J].哈尔滨工程大学学

报,2018,39(01):60-66.

[61] 钟桂健,李龙,翟玉玲,等.纳米流体导热系数的影响因素分析[J].工业加热,2018,47(04):20-24.

[62] 熊绍森.纳米流体热物性及相变蓄冷特性研究[D].湖北:武汉工程大学,2018.

[63] Sayantan M, Purna C. Mishra SK, et al. Role of temperature on thermal conductivity of nanofluids: a

brief literature review[J]. Heat and Mass Transfer,2016,52(11).

[64] Loulijat H, Zerradi H. The Effect of the Liquid Layer Around the Spherical and Cylindrical Nanoparticles

in Enhancing Thermal Conductivity of Nanofluids[J]. Journal of Heat Transfer,2019,141(3).

[65] 周璐,马红和,赵翊帆.纳米流体中表面活性剂界面层传热特性的分子动力学模拟[J].工程热物理学

报,2020,41(11):2834-2841.

[66] Serebryakova MA., Zaikovskii AV, Sakhapov SZ, et al. Novopashin. Thermal conductivity of nanofluids

based on hollow γ-Al2O3 nanoparticles, and the influence of interfacial thermal resistance[J].

International Journal of Heat and Mass Transfer,2017,108(2).

[67] Roni MD, Rakibul H, Shahadat MRB, Morshed AKM. Monjur Monjur. A molecular dynamics study of

the effect of nanoparticles coating on thermal conductivity of nanofluids[J]. Micro & Nano

Letters,2021,16(3).

[68] Konstantin YU, Andrey NP, Alexander RB, et al. Evaluation of Thermosyphon Application for Cooling

the Modular Automated Control Systems[J]. MATEC Web of Conferences,2016,72.

[69] 于 丽 , 卞 永 宁 , 刘 杨 , 等 . 低 浓 度 水 基 多 壁 碳 纳 米 管 纳 米 流 体 的 流 变 特 性 [J]. 材 料 导

报,2020,34(22):22010-22014+22019.

[70] 辛帅. 不同形貌二氧化钛纳米流体的制备及其热物性能研究[D].山东:济南大学,2017.

[71] 仲朝阳. 纳米颗粒聚集及尺寸对流动特性影响的 MD 研究[D].河北:河北工程大学,2020.

[72] Abedian B, Kachanov M. On the effective viscosity of suspensions[J]. International Journal of

Engineering Science,2010,48(11).

[73] Halil DK, Serkan D, Alpaslan T, et al. Effect of particle size on the viscosity of nanofluids: A review[J].

Renewable and Sustainable Energy Reviews,2018,82.

[74] Anuj KS, Arun KT,Amit RD. Rheological behaviour of nanofluids: A review[J]. Renewable and Sustainable Energy Reviews,2016,53.

[75] 贾小权,赵宁波,杨家龙.纳米流体粘度的实验测量及预测建模研究进展[J].热能动力工程,2017,32(02):1-10+134.

[76] 凌智勇,孙东健,张忠强,等.温度和颗粒浓度对纳米流体粘度的影响[J].功能材料,2013,44(01):92-95.

[77] 闫格尼,何钦波,郑兆志.太阳能集热钴-水纳米流体粘度特性实验研究[J].顺德职业技术学院学

报,2018,16(03):20-23.

[78] 陈红兵,李思琦,王聪聪,等.添加 TiO2 纳米颗粒和分散剂的相变流体粘度实验研究[J].功能材

料,2019,50(12):12103-12107.

[79] 王思娴. 磁性纳米流体流动与换热特性研究[D].云南:昆明理工大学,2020.

[80] 马明琰. 混合纳米流体热物性及对流换热特性实验研究[D].云南:昆明理工大学,2021.

[81] 杨国强. 铜/纳米碳复合材料的制备及其纳米流体性能研究[D].广东:广东工业大学,2020.

[82] 赵得先,王百年,江晓,等.镁铝层状双金属氧化物脱除溶液中 Cr(Ⅵ)[J].化工技术与开

发,2020,49(08):56-61+72.

[83] Zhang XZ, Shen JY, Ma YN, et al. Highly efficient adsorption and recycle of phosphate from wastewater

using flower-like layered double oxides and their potential as synergistic flame retardants[J]. Journal of

Colloid And Interface Science,2020,562-573.

[84] 张占松. 锌铝类水滑石与锌铝复合金属氧化物的制备及其光催化性能研究[D].内蒙古:内蒙古工

业大学,2015.

[85] Wu HY, Xia TT,Yin LL,et al. Adsorption of iodide from an aqueous solution via calcined magnetiteactivated carbon/MgAl-layered double hydroxide[J]. Chemical Physics Letters,2021,774-782.

[86] Ni J, Jing BQ, Lin JX, et al. Effect of rare earth on the performance of Ru/MgAl-LDO catalysts for

ammonia synthesis[J]. Journal of Rare Earths,2018,36(2).

[87] Chong RF, Su CH, Du YQ, et al. Insights into the role of MgAl layered double oxides interlayer in

Pt/TiO2 toward photocatalytic CO2 reduction[J]. Journal of Catalysis,2018,363-375.

[88] 王敦球,张涛,梁美娜,等.蔗渣炭/镁铝双金属氧化物的制备及其吸附As(Ⅴ)的研究[J].环境污染与防

治,2018,40(08):896-901.

[89] Iruretagoyena D, Shaffer MSP, Chadwick D. Adsorption of carbon dioxide on graphene oxide supported

layered double oxides[J]. Adsorption,2014,20(3).

[90] Jiang YH, Li AY, Deng H,et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified

banana straw biochar.[J]. Environmental science and pollution research international,2019,26(18).

[91] Ryoo R. Birth of a class of nanomaterial [J]. Nature, 2019, 575:40-41.

[92] 曹连静,孙玉利,左敦稳,等.水相体系中纳米 α-Al2O3 的分散稳定性研究[J].机械制造与自动化,2011,40(06):12-14+26.

[93] 郭立娟,宋汝彤,郭拥军,等.阳离子表面活性剂对纳米 SiO2 流体稳定性的影响[J].硅酸盐通报,2014,33(04):940-946.

[94] Assael MJ, Chen CF, Metaxa I., et al. Thermal Conductivity of Suspensions of Carbon Nanotubes in Water[J]. International Journal of Thermophysics,2004,25(4):971-985.

[95] 刘淑梅,王少波.纳米流体的合成及应用的研究进展[J]. 中国化工贸易,2016,8(11):102-105.

[96] Reay DA, Kew PA, Glen RJM, Heat transfer and fluid flow theory, in: Heat Pipes[M]. Chapter 2:2014.

中图分类号:

 TD752.2    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式