- 无标题文档
查看论文信息

论文中文题名:

 纵向氧化镓MOSFET器件结构设计与电学性能研究    

姓名:

 王海林    

学号:

 20207223078    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 宽禁带半导体器件    

第一导师姓名:

 栾苏珍    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Structural design and electrical properties of vertical gallium oxide MOSFET    

论文中文关键词:

 β-Ga2O3 ; VDMOS ; 异质结 ; 功率器件    

论文外文关键词:

 β-Ga2O3 ; VDMOS ; Heterojunction ; Power Device    

论文中文摘要:

氧化镓(Ga2O3)是一种新兴的宽禁带半导体材料,其禁带宽度为4.6-4.9 eV,临界场强高达8 MV/cm,且其在耐高压、高频、抗辐射方面的能力均优于已经广泛投入商用的GaN,SiC材料。因为Ga2O3材料在材料性能以及晶圆制备成本上的优势,其在信号基站、日盲探测器、雷达、射频模块、功率器件等领域有着广阔的应用前景。目前Ga2O3材料存在的主要问题是难以形成稳定的P型掺杂,因此制备的MOSFET器件大都是N型掺杂的无结型器件。无结型MOSFET一般都是耗尽型器件,不适合应用于功率器件领域。针对上述问题,本文设计了一种具有β-Ga2O3/4H-SiC异质结结构的纵向双扩散MOSFET(VDMOS),使用Sentaurus TCAD仿真软件建立了β-Ga2O3的材料参数和物理模型,随后搭建了器件结构并进行了电学特性的仿真。基于初始器件结构,通过调节器件的主要结构参数,对器件的电学性能进行了优化,得到了器件性能最优时的主要结构参数。然后考虑到实际器件制备过程中的环境因素以及在工艺过程中可能引入的陷阱和缺陷,添加了热力学模型和陷阱模型,模拟了不同环境因素和不同陷阱对器件性能的影响。具体所作工作如下:

(1)首先通过查阅β-Ga2O3相关文献,总结了前人的研究和工作中提出的物理模型和实验数据,并在Sentaurus TCAD仿真软件中建立了较为完整的β-Ga2O3材料的仿真模型。基于建立的仿真模型,在软件中模拟搭建了β-Ga2O3/4H-SiC VDMOS的器件结构,仿真了初始结构的输出特性、转移特性和击穿特性。随后基于初始结构,通过改变器件的结构参数和材料参数,研究了其对电学性能的影响。通过对器件主要结构参数的优化,优化了器件的阈值电压、比导通电阻、输出电流、击穿电压和功率品质因数(PFOM),得到了β-Ga2O3/4H-SiC VDMOS性能取得最优值时器件的结构参数。优化后的阈值电压为1.62 V,饱和电流为49.51 mA/mm,比导通电阻为5.47 mΩ·cm2,功率品质因数高达617 MW/cm2,击穿电压为1838 V。通过与传统无结器件的性能对比发现,本研究设计的β-Ga2O3/4H-SiC异质结VDMOS具有更低的比导通电阻和更高的击穿电压。该结构在实现增强型的同时具有更加优异的PFOM值,更加适合于功率器件。

(2)随后考虑到在实际器件的制备过程中存在的非理想因素会对器件性能造成一定的影响,在Sentaurus TCAD中添加了热力学模型和陷阱模型,模拟了非理想效应对β-Ga2O3/4H-SiC VDMOS性能的影响。首先考虑了器件的自热效应,模拟了在不同环境温度和热阻下,器件的性能变化和内部温度分布情况。模拟结果表明,外界温度的升高和热阻的增大,都会引起器件内部温度升高,从而导致器件性能的退化。同时器件内部温度分布图显示器件内部温度最高点在外延层中,温度沿外延层向源漏极方向逐渐降低。然后分析了器件制备过程中栅介质/半导体界面处可能存在的陷阱类型,分别研究了在添加界面态、栅介质层固定电荷以及近界面陷阱后器件性能的变化。模拟结果表明,为了使界面处陷阱对器件性能的影响降到最低,在器件制备时,应尽可能地将栅介质层固定电荷密度控制在1×1011 cm-2以下,近界面陷阱浓度控制在5×1018 cm-3以下,界面陷阱密度控制在1×1013 cm-2以下。最后分别研究了β-Ga2O3和4H-SiC中体缺陷对于器件性能的影响,模拟结果表明,为了降低体缺陷对于器件性能的影响,在器件制备时最好将β-Ga2O3中体缺陷浓度控制在1×1013 cm-3以下,将4H-SiC中体缺陷浓度控制在1×1016 cm-3以下。

上述结论表明,本研究设计的β-Ga2O3/4H-SiC VDMOS为实现高性能增强型β-Ga2O3功率器件提供了一种可行的设计思路,同时为以后的器件制备和性能优化提供了参考方案。

论文外文摘要:

Gallium oxide (Ga2O3) is a new semiconductor material with a wide band gap of 4.6-4.9 eV, and its critical breakdown field strength is as high as 8 MV/cm, and it is superior to GaN and SiC which have been widely put into commercial use in the aspects of high voltage resistance, high frequency resistance and radiation resistance. Because of its advantages in material properties and wafer preparation cost, Ga2O3 has broad application prospects in signal base stations, solar blind detectors, radars, radio frequency modules, power devices and other fields. At present, the main problem of Ga2O3 material is that it is difficult to form stable P-type doping, so most of the prepared MOSFET devices are N-type doped junctionless devices. Junctionless MOSFETs are generally depletion mode devices, which are not suitable for power device field. In order to solve the above problems, we design a vertical double diffusion MOSFET (VDMOS) with β-Ga2O3/4H-SiC heterojunction structure, establishes the material parameters and physical model of β-Ga2O3 by using Sentaurus TCAD simulation software, and then builds the device structure and simulates the electrical characteristics. Based on the initial device structure, the electrical properties of the device are optimized by adjusting the main structural parameters of the device, and the main structural parameters when the device performance is optimal are obtained. Then, considering the environmental factors in the actual device preparation process and the traps and defects that may be introduced in the process, we add thermodynamic models and trap models to simulate the effects of different environmental factors and different traps on the device performance. The specific works are as follows:

(1) Firstly, we summarized the physical models and experimental datas put forward by predecessors' researchs and works by consulting the relevant literature of β-Ga2O3, and established the relatively complete simulation models of β-Ga2O3 in Sentaurus TCAD simulation software. Based on the established simulation models, the device structure of β-Ga2O3/4H-SiC VDMOS is simulated in the software, and the output characteristic,transfer characteristic and breakdown characteristic of the initial structure are simulated. Then, based on the initial structure, the influence of changing the structural and material parameters of the device on its electrical performance was studied. By optimizing the main structural parameters of device, the threshold voltage, specific on-resistance, saturation current, breakdown voltage and power figure of merit (PFOM) of the device are optimized, and the structural parameters of the device when the performance of β-Ga2O3/4H-SiC VDMOS reaches the optimal value are obtained. The optimized threshold voltage is 1.62 V, the saturation current is 49.51 mA/mm, the Specific on-resistance is 5.47 mΩ·cm2, the power quality factor is as high as 617 MW/cm2, and the breakdown voltage is 1838 V. Compared with the traditional junction-free devices, it is found that the β-Ga2O3/4H-SiC heterojunction VDMOS designed in this study has lower specific on-resistance and higher breakdown voltage. This structure has better PFOM value while realizing enhancement, and is more suitable for power devices.

(2) Then, considering that the non-ideal factors in the actual device preparation process will have a certain impact on the device performance, adding the thermodynamic models and trap models in Sentaurus TCAD to simulate the impact of non-ideal effects on the  performance of β-Ga2O3/4H-SiC VDMOS. Firstly, we considered the self-heating effect of the device, and the performance change and internal temperature distribution of the device are simulated under different environmental temperatures and thermal resistances. The simulation results show that the increase of external temperature and thermal resistance will cause the increase of the internal temperature of the device, which will lead to the degradation of the device performance. The internal temperature distribution diagram of the device shows that the highest temperature in the device is in the epitaxial layer, and the temperature gradually decreases along the epitaxial layer towards the source and drain. Then, we analyzed the possible trap types at the gate dielectric/semiconductor interface during device preparation, and the changes of device performance after adding interface state, fixed charge of gate dielectric layer and near-interface traps are studied respectively. The simulation results show that in order to minimize the influence of traps at interface on the device performance, the fixed charge density of gate dielectric layer should be controlled below 1×1011 cm-2, the near-interface trap concentration should be controlled below 5×1018 cm-3 and the interface trap density should be controlled below 1×1013 cm-2. Finally, the effects of bulk defects in β-Ga2O3 and 4H-SiC on the device performance are studied respectively. The simulation results show that in order to reduce the influence of bulk defects on the device performance, it is best to control the bulk defects concentration in β-Ga2O3 below 1×1013 cm-3 and in 4H-SiC below 1×1016 cm-3 during device preparation.

The above conclusions show that the β-Ga2O3/4H-SiC VDMOS designed in this study provides a feasible design idea for realizing high-performance enhanced β-Ga2O3 power devices, and also provides a reference scheme for device preparation and performance optimization in the future.

参考文献:

[1]Blanchard R A, Akiyama H, Tworzydlo W. Dual depth trench-gated mos-controlled thyristor with well-defined turn-on characteristics: U.S. Patent 9,306,048[P]. 2016-4-5.

[2] Liu Q, Pu H B, Wang X. Ultra-high voltage 4H-SiC gate turn-off thyristor for low switching time[J]. Chinese Physics B, 2019, 28(12): 127201.

[3] Bablich A, Merfort C, Eliasz J, et al. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain[J]. Thin solid films, 2014, 558: 430-437.

[4] Hintikka M, Hallman L, Kostamovaara J. Comparison of the leading-edge timing walk in pulsed TOF laser range finding with avalanche bipolar junction transistor (BJT) and metal-oxide-semiconductor (MOS) switch based laser diode drivers[J]. Review of entific Instruments, 2017, 88(12):123109.

[5] Kuramata A, Koshi K, Watanabe S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12):1202A2.

[6] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3—H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722.

[7] 郭道友, 李培刚, 陈政委,等. 超宽禁带半导体β-Ga2O3及深紫外透明电极,日盲探测器的研究进展[J]. 物理学报, 2019(7): 36.

[8] Pearton S J, Yang J, Cary P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301.

[9] 赵金霞. β-Ga2O3材料在半导体技术领域的应用现状[J]. 微纳电子技术, 2018, 55(12):9.

[10]Guo X C, Hao N H, Guo D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140.

[11]Kong W Y, Wu G A, Wang K Y, et al. Graphene‐β‐Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731.

[12]王辉, 蒋苓利, 林新鹏, et al. A simulation study of field plate termination in Ga2O3 Schottky barrier diodes[J]. 中国物理B:英文版, 2018, 27(12):6.

[13]Li W, Peng Y, Chong W, et al. Structural, optical and photoluminescence properties of Pr-doped β-Ga2O3 thin films[J]. Journal of Alloys and Compounds, 2017, 697: 388-391.

[14]Wong M H, Murakami H, Kumagai Y, et al. Enhancement-Mode β-Ga2O3 Current Aperture Vertical MOSFETs With N-Ion-Implanted Blocker[J]. IEEE Electron Device Letters, 2019, 41(2): 296-299.

[15]Tadjer M J, Mahadik N A, Wheeler V D, et al. A (001) β-Ga2O3 MOSFET with+ 2.9 V threshold voltage and HfO2 gate dielectric[J]. ECS Journal of Solid State Science and Technology, 2016, 5(9): P468-P470.

[16]Ma J, Lee O, Yoo G. Effect of Al2O3 Passivation on Electrical Properties of β-Ga2O3 Field-Effect Transistor[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 512-516.

[17]Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504.

[18]Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511.

[19]Wong M H, Sasaki K, Kuramata A, et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V[J]. IEEE Electron Device Letters, 2015, 37(2): 212-215.

[20]Hu Z, Nomoto K, Li W, et al. Vertical fin Ga2O3 power field-effect transistors with on/off ratio> 109[C]//2017 75th Annual Device Research Conference (DRC). IEEE, 2017: 1-2.

[21]Lv Y, Zhou X, Long S, et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2[J]. IEEE Electron Device Letters, 2018, 40(1):83-86.

[22]Hu Z, Nomoto K, Li W, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage> 1 kV[J]. IEEE Electron Device Letters, 2018, 39(6): 869-872.

[23]Hu Z, Nomoto K, Li W, et al. 1.6 kV vertical Ga2O3 FinFETs with source-connected field plates and normally-off operation[C]//2019 31st International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2019: 483-486.

[24]Park J, Hong S M. Simulation Study of Enhancement Mode Multi-Gate Vertical Gallium Oxide MOSFETs[J]. Ecs Journal of Solid State Science & Technology, 2019, 8(7): Q3116-Q3121.

[25]马灵, 吕元杰, 刘宏宇, 等. 采用 T 型栅结构的高性能 Ga2O3 MOSFET[J]. 半导体技术, 2020, 45(6): 444-448.

[26]Wong H Y, Tenkeu A C F. Advanced TCAD simulation and calibration of gallium oxide vertical transistor[J]. ECS Journal of Solid State Science and Technology, 2020, 9(3): 035003.

[27]Zhou X, Liu Q, Xu G, et al. Realizing high-performance β-Ga2O3 MOSFET by using variation of lateral doping: a TCAD study [J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1501-1506.

[28]Zhou X, Liu Q, Hao W, et al. Normally-off β-Ga2O3 Power Heterojunction Field-Effect-Transistor Realized by p-NiO and Recessed-Gate[C]//2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD). IEEE, 2022: 101-104.

[29]刘恩科, 朱秉升, 罗晋生. 半导体物理学.第4版[M]. 国防工业出版社, 2010.

[30]韩雁, 丁扣宝. 半导体器件TCAD设计与应用[M]. 电子工业出版社,2013.

[31]Wachutka G. An extended thermodynamic model for the simultaneous simulation of the thermal and electrical behavior of semiconductor devices[C]//Proc. Sixth Int. NASECODE Conf. Boole Press Ltd, 1989: 409-414.

[32]Stepanov S, Nikolaev V, Bougrov V, et al. Gallium oxide: properties and applica - a review [J]. Reviews on Advanced Materials Science, 2016, 44: 63-86.

[33]ZHI G, VERMA A, WU X, et al. Anisotropic thermal conductivity in single crystal β-gallium oxide [J]. Applied Physics Letters, 2015, 106(11): 111909.

[34]XUE H, HE Q, JIAN G, et al. An Overview of the Ultrawide Bandgap Ga2O3 Semiconductor-Based Schottky Barrier Diode for Power Electronics Application [J]. Nanoscale Research Letters, 2018, 13(1): 1-13.

[35]Varshni Y P. Temperature dependence of the energy gap in semiconductors[J]. physica, 1967, 34(1): 149-154.

[36]Subrina R , Han L , Mou S , et al. Temperature and doping concentration dependence of the energy band gap in β-Ga2O3 thin films grown on sapphire[J]. Optical Materials Express, 2017, 7(10): 3561-3570.

[37]SLOTBOOM J W, DE GRAAFF H C. Bandgap narrowing in silicon bipolar transistors [J]. IEEE Transactions on Electron Devices, 1977, 24(8): 1123-1125.

[38]Lombardi C, Manzini S, Saporito A, et al. A physically based mobility model for numerical simulation of nonplanar devices[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1988, 7(11): 1164-1171.

[39]MA N, TANEN N, VERMA A, et al. Intrinsic electron mobility limits in β-Ga2O3 [J]. Applied Physics Letters, 2016, 109(21): 212101.

[40]HOI W M, KEN G, YOJI M, et al. All-ion-implanted planar-gate current aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer [J]. Applied Physics Express, 2018, 11(6): 064102.

[41]Arora N D, Hauser J R, Roulston D J. Electron and hole mobilities in silicon as a function of concentration and temperature[J]. IEEE Transactions on electron devices, 1982, 29(2): 292-295.

[42]Park J, Hong S M. Simulation study of enhancement mode multi-gate vertical gallium oxide MOSFETs [J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3116-Q3121.

[43]孙喆宇. Ga2O3功率器件的耐压特性研究[D].西安电子科技大学,2020.DOI:10.27389/d.cnki.gxadu.2020.002451.

[44]Ghosh K, Singisetti U. Ab initio velocity-field curves in monoclinic β-Ga2O3[J]. Journal of Applied Physics, 2017, 122(3): 035702.

[45]Selberherr S. Analysis and simulation of semiconductor devices[M]. Springer Science & Business Media, 2012.

[46]ZHANG Z, FARZANA E, AREHART A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy [J]. Applied Physics Letters, 2016, 108(5): 052105.

[47]GALECKAS A, LINNROS J, GRIVICKAS V, et al. Auger recombination in 4H-SiC: Unusual temperature behavior [J]. Applied Physics Letters, 1997, 71(22): 3269-3271.

[48]Ghosh K, Singisetti U. Impact ionization in β-Ga2O3[J]. Journal of Applied Physics, 2018, 124(8): 085707.

[49]Ghosh K, Singisetti U. Calculation of electron impact ionization co-efficient in β-Ga2O3[C]//72nd Device Research Conference. IEEE, 2014: 71-72.

[50]Green A J, Chabak K D, Heller E R, et al. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs [J]. IEEE Electron Device Letters, 2016, 37(7): 902-905.

[51]Zeng K, Vaidya A, Singisetti U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs [J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388.

[52]Kumar N, Vaca D, Joishi C, et al. Ultrafast thermoreflectance imaging and electrothermal modeling of β-Ga2O3 MESFETs[J]. IEEE Electron Device Letters, 2020, 41(4): 641-644.

[53]Cochrane C J, Lenahan P M, Lelis A J. An electrically detected magnetic resonance study of performance limiting defects in SiC metal oxide semiconductor field effect transistors[J]. Journal of Applied Physics, 2011, 109(1): 014506.

[54]Zhang Z, Farzana E, Arehart A R, et al. Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy[J]. Applied Physics Letters, 2016, 108(5): 052105

[55]贾仁需. 4H-SiC同质外延的表征及深能级分析研究[D].西安电子科技大学,2009.

中图分类号:

 TN386    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式