- 无标题文档
查看论文信息

论文中文题名:

 基于深度学习的行人重识别技术研究    

姓名:

 陈超群    

学号:

 18207205040    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 数字图像处理    

第一导师姓名:

 侯颖    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Research on Person Re-identification Technology Based on Deep Learning    

论文中文关键词:

 行人重识别 ; 损失函数 ; 多分支网络 ; 深度学习    

论文外文关键词:

 Person re-identification ; Loss function ; Multi-branch network ; Deep learning    

论文中文摘要:

行人重识别技术是在跨摄像头的不同场景下对特定行人的识别和检索,被广泛应用在公共安全、智能安防和人机交互等领域。由于在实际场景中存在姿态、光照、遮挡、分辨率和视角变化等情况,会造成行人的外观特征差异较大,从而导致行人重识别的识别性能下降。本文基于深度学习的方法,从网络结构的设计和损失函数两个方面提出以下两种改进方法:

(1)针对提取的行人图像特征较为单一的问题,通过结合全局特征和多粒度局部特征,提出了一种基于改进多分支网络结构的行人重识别方法。该方法以ResNet50-IBN-a作为骨干网络,多分支网络结构共分为Top DropBlock分支、全局特征分支和两个局部特征分支,有效提取不同粒度的局部细节特征和全局特征,从而获得更全面的特征表示。同时,采用softmax损失和三元组损失函数对模型进行训练。

(2)针对行人重识别中的行人遮挡或者姿态变化等问题,通过分析行人图像切块的局部特征相关性,提出了一种基于局部特征上下文相关性的行人重识别方法。设计局部特征上下文相关性策略,将切分后的相邻水平条带进行组合,获得相邻局部特征之间的关联性,从而得到更丰富的特征表示。同时,采用softmax损失、中心损失和三元组损失函数对模型进行联合训练,进一步提升模型的分类效果和泛化能力。

将所提算法在Market1501、DukeMTMC-reID和CHUK03数据集上进行验证,并与多个主流算法对比。实验结果表明,改进的多分支网络结构能够有效地提取行人图像的细节特征,局部特征上下文相关性策略可以降低遮挡或姿态变化等对行人重识别的影响,有效提升行人重识别的算法性能。

论文外文摘要:

Person re-identification technology is the identification and retrieval of specific pedestrians in different scenarios across cameras, and is widely used in public safety, intelligent security, and human-computer interaction. Due to the presence of posture, illumination, occlusion, resolution, and viewing angle changes in the actual scene, the appearance characteristics of pedestrians will be quite different, and the performance of person re-identification will decrease. Based on the method of deep learning, this paper proposes the following two improvement methods from the two aspects of network structure design and loss function:

(1) Aiming at the problem that the extracted pedestrian image features are relatively single, by combining global features and multi-granularity local features, a pedestrian re-recognition method based on an improved multi-branch network structure is proposed.This method uses ResNet50-IBN-a as the backbone network. The multi-branch network structure is divided into Top DropBlock branch, global feature branch and two local feature branches. It can effectively extract local detailed features and global features of different granularities to obtain a more comprehensive feature representation. At the same time, the softmax loss and triplet loss function are used to train the model.

(2) Aiming at the problems of pedestrian occlusion or posture change in pedestrian re-recognition, a method of pedestrian re-recognition based on the context relevance of local features is proposed by analyzing the correlation of the local features of the pedestrian image segmentation.Design the local feature context correlation strategy, combine the adjacent horizontal strips after segmentation to obtain the correlation between adjacent local features, thereby obtaining a richer feature representation. At the same time, the softmax loss, center loss and triple loss function are used to jointly train the model to further improve the classification effect and generalization ability of the model.

Comparing with several state-of-the-art person re-identification methods on Market1501, DukeMTMC-reID and CHUK03 datasets, the experimental results show that our improved algorithm can effectively increase the performance of person re-identification. The improved multi-branch network structure can effectively extract the detailed features of pedestrian images and the local feature context correlation strategy can reduce the impact of occlusion or posture change.

参考文献:

[1]杨婉香,严严,陈思,张小康,等.基于多尺度生成对抗网络的遮挡行人重识别方法[J].软件学报,2020,31(07):1943-1958.

[2]罗浩,姜伟,范星,等.基于深度学习的行人重识别研究进展[J].自动化学报,2019,45(11):2032-2049.

[3]Gheissari N, Se Ba Stian T B , Hartley R . Person Reidentification Using Spatiotemporal Appearance[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2006:1528–1535.

[4]Li W, Zhao R, Xiao T, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 152-159.

[5]魏自勉. 基于多分块局部特征网络的行人重识别技术研究[D].国防科技大学, 2018.

[6]王粉花, 赵波, 黄超, 等.基于多尺度和注意力融合学习的行人重识别[J].电子与信息学报,2020,42(12):3045-3052.

[7]Martinel N, Micheloni C, Foresti G L. Saliency weighted features for person re-identification[C]//European Conference on Computer Vision. Springer, Cham, 2014: 191-208.

[8]Xiong F, Gou M, Camps O, et al. Person re-identification using kernel-based metric learning methods[C]//European conference on computer vision. Springer, Cham, 2014: 1-16.

[9]Zhao Rui,Ouyang Wanli,Wang Xiaogang.Person re-identification by salience matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2013:2528-2535.

[10]Gray D, Tao H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//European conference on computer vision. Springer, Berlin, Heidelberg, 2008: 262-275.

[11]Mignon A, Jurie F. PCCA: A new approach for distance learning from sparse pairwise constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2012: 2666-2672.

[12]LI W,WANG X. Locally aligned feature transforms across views[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2013:3594-3601.

[13]Kviatkovsky I , Adam A , Rivlin E . Color Invariants for Person Reidentification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(7):1622-1634.

[14]C. Kuo, S. Khamis and V. Shet. Person re-identification using semantic color names and RankBoost[C]//IEEE Workshop on Applications of Computer Vision. Clearwater Beach, USA, 2013:281-287.

[15]Rui Z, Ouyang W, Wang X. Unsupervised Salience Learning for Person Re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013: 3586-3593.

[16]Yang Y, Yang J, Yan J, et al. Salient color names for person re-identification[C]//European conference on computer vision. Springer, Cham, 2014: 536-551.

[17]Li Z, Chang S, Liang F, et al. Learning locally-adaptive decision functions for person verification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 3610-3617.

[18]Liao S, Hu Y, Zhu X, et al. Person re-identification by local maximal occurrence

representation and metric learning[C]//Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2015: 2197-2206.

[19]W. S. Zheng, S. Gong, T. Xiang, Person re-identification by probabilistic relative distance comparison[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2011: 649–656.

[20]M Köstinger, Hirzer M , Wohlhart P , et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2012:2288–2295.

[21]Pedagadi S, Orwell J, Velastin S, et al. Local fisher discriminant analysis for pedestrian re-identification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 3318-3325.

[22]Ahmed E , Jones M , Marks T K . An improved deep learning architecture for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2015:3908–3916.

[23]Varior R R, Haloi M, Wang G. Gated Siamese Convolutional Neural Network Architecture for Human Re-Identification[C]//European Conference on Computer Vision. 2016: 791-808.

[24]Zheng L, Shen L, Tian L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, 2015:1116-1124.

[25]Xiao T, Li H, Ouyang W, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 1249-1258.

[26]Zheng Z, Zheng L, Yang Y. A discriminatively learned cnn embedding for person reidentification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications. 2017, 14(1): 1-20.

[27]Zheng Z, Zheng L, Yang Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3754-3762.

[28]Wei L, Zhang S, Gao W, et al. Person transfer gan to bridge domain gap for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 79-88.

[29]Zheng Z, Yang X, Yu Z, et al. Joint discriminative and generative learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 2138-2147.

[30]熊炜,杨荻椿,熊子婕,等.基于全局特征拼接的行人重识别算法研究[J].计算机应用研究,2021,38(01):316-320.

[31]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(06):770-780.

[32]Luo H, Jiang W, Gu Y, et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2019, 22(10): 2597-2609.

[33]Wang F, Zuo W, Lin L, et al. Joint learning of single-image and cross-image representations for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 1288-1296.

[34]Zheng L, Zhang H, Sun S, et al. Person re-identification in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1367-1376.

[35]Sun Y, Zheng L, Yang Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European conference on computer vision. 2018: 480-496.

[36]Sun Y, Zheng L, Deng W, et al. Svdnet for pedestrian retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3800-3808.

[37]Qian X, Fu Y, Jiang Y G, et al. Multi-scale deep learning architectures for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5399-5408.

[38]陈首兵,王洪元,金翠,等.基于孪生网络和重排序的行人重识别[J].计算机应用,2018,38(11):3161-3166.

[39]Hong Z, Liu B, Lu Y, et al. Scale Voting With Pyramidal Feature Fusion Network for Person Search[J]. IEEE Access, 2019, 7: 139692-139702.

[40]张涛, 易争明, 李璇, 等.一种基于全局特征的行人重识别改进算法[J].激光与光电子学进展, 2020, 57(24):324-330.

[41]Jin X, Lan C, Zeng W, et al. Semantics-aligned representation learning for person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(07): 11173-11180.

[42]Zhang Z, Lan C, Zeng W, et al. Relation-aware global attention for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2020: 3186-3195.

[43]Zhao H, Tian M, Sun S, et al. Spindle net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1077-1085.

[44]Wei L , Zhang S , Yao H , et al. GLAD: Global-Local-Alignment Descriptor for Scalable Person Re-Identification[J]. IEEE Transactions on Multimedia, 2019, 21(4):986-999.

[45]Wang G, Yuan Y, Chen X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM international conference on Multimedia. 2018: 274-282.

[46]Zheng F, Deng C, Sun X, et al. Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 8514-8522.

[47]Li D, Chen X, Zhang Z, et al. Learning deep context-aware features over body and latent parts for person re-identification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 384-393.

[48]Zhao L, Li X, Zhuang Y, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3219-3228.

[49]Li S, Bak S, Carr P, et al. Diversity regularized spatiotemporal attention for video-based person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 369-378.

[50]Zhang Z, Lan C, Zeng W, et al. Densely semantically aligned person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 667-676.

[51]刘紫燕,万培佩.基于注意力机制的行人重识别特征提取方法[J].计算机应用,2020,40(03):672-676.

[52]李芮. 基于部位匹配与注意力模型的行人重识别算法研究[D].北京交通大学,2019.

[53]张玉康, 谭磊, 陈靓影. 基于图像和特征联合约束的跨模态行人重识别[J]. 自动化学报, 2021, 45: 1-8.

[54]Li W , Zhu X , Gong S . Harmonious Attention Network for Person Re-Identification[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern recognition. 2018: 2285-2294.

[55]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint:1409.1556, 2014.

[56]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

[57]Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105.

[58]Pan X , Luo P , Shi J , et al. Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net[C]// Proceedings of the European Conference on Computer Vision. 2018:464-479.

[59]Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.

[60]Quispe R, Pedrini H. Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification[J]. arXiv preprint: 2010.05435, 2020.

[61]Yang F, Yan K, Lu S, et al. Attention driven person re-identification[J]. Pattern Recognition, 2019, 86: 143-155.

[62]张磊,吴晓富,张索非,等.多分支协作OSNet的微结构优化研究[J].信号处理,2020,36(08):1335-1343.

[63]Gong X, Yao Z, Li X, et al. LAG-Net: Multi-granularity network for person re-identification via local attention system[J]. IEEE Transactions on Multimedia, 2021.

[64]Su C, Li J, Zhang S, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3960-3969.

[65]Sarfraz M S, Schumann A, Eberle A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 420-429.

[66]Wang C, Zhang Q, Huang C, et al. Mancs: A multi-task attentional network with curriculum sampling for person re-identification[C]//Proceedings of the European Conference on Computer Vision . 2018: 365-381.

[67]Zhou K, Yang Y, Cavallaro A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 3702-3712.

中图分类号:

 TP391.4    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式